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Abstract
Purpose of Review The present review discusses brain circuits that are engaged by negative emotions and possibly linked to
cardiovascular disease risk. It describes recent human brain imaging studies that relate activity in these brain circuits to emotional
processes, peripheral physiology, preclinical pathophysiology, as well as clinical outcomes.
Recent Findings Negative emotions and the regulation of negative emotions reliably engage several brain regions that cross-
sectional and longitudinal brain imaging studies have associated with CVD risk markers and outcomes. These brain regions
include the amygdala, anterior cingulate cortex, medial prefrontal cortex, and insula. Other studies have applied advanced
statistical techniques to characterize multivariate patterns of brain activity and brain connectivity that associate with negative
emotion and CVD-relevant peripheral physiology.
Summary Brain imaging studies on emotion and cardiovascular disease risk are expanding our understanding of the brain-body
bases of psychosocial and behavioral risk for cardiovascular disease.
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Introduction

Cardiovascular disease (CVD) is a leading contributor to mor-
bidity and mortality in the developed world. A large body of
epidemiological research suggests that negative emotions and
mood states may play a significant role in the development
and progression of CVD. Moreover, it is thought that negative
emotions, moods, and related dispositional traits (e.g., anxiety,
anger, and depressive phenotypes) may impact CVD risk and
progression via peripheral physiological changes that are
evoked by stressful or otherwise adverse experiences.

However, the brain mechanisms that link the experience, ex-
pression, and regulation of negative affective states and traits
with downstream physiological changes are not fully
understood.

To better understand these mechanisms, parallel lines of re-
search using animal models, as well as human brain imaging
studies, have attempted to identify brain circuits that are impli-
cated in processing and responding to negative emotional stim-
uli, as well as the regulation of autonomic, neuroendocrine,
immune, and cardiovascular physiology. Emerging human
brain imaging studies have, moreover, begun to link function-
ing in these brain circuits to preclinical and clinical CVD end-
points. Accordingly, the present review summarizes findings
from these brain imaging studies, which together point to local-
ized activity as well as patterned and network-level responses
within a brain circuitry encompassing specific brainstem, sub-
cortical, and cortical structures. After this summary, we identify
open questions for further research in this field.

Emotion, Stress, and Cardiovascular Disease

Although mortality due to cardiovascular disease (CVD) has
declined in recent decades, it nonetheless remains a leading
cause of death among adult men and women in developed
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countries [1]. In addition to traditional CVD risk factors, psy-
chosocial factors are thought to influence the development
and progression of CVD across the lifespan [2, 3]. Key among
these psychosocial factors are processes involving the gener-
ation and regulation of negative emotions [4]. Negative emo-
tions may relate to CVD within at least two contexts. First,
chronic or prolonged experiences of negative emotional or
mood states, such as clinical depression, as well as the trait-
like tendency to experience negative emotion, each associate
with preclinical CVD disease markers, clinical CVD inci-
dence, as well as treatment outcomes [5–7]. Along these lines,
increased CVD risk has been demonstrated in relation to sev-
eral other clinical disorders (e.g., anxiety, post-traumatic
stress) and personality characteristics (e.g., hostility) that in-
volve negative emotions [8–10]. Second, acute emotional re-
sponses to negative events may trigger cardiac events in at-
risk individuals or individuals with ongoing CVD [11].
Importantly, reported associations between CVD and experi-
ences of chronic or acute negative emotion are often indepen-
dent of conventional CVD risk factors, such as lipid levels,
blood pressure, and tobacco use [12]. Similarly, the statistical
effect size of associations between negative emotionality and
CVD is comparable to these and other CVD risk factors [13].
We note that, in addition to the literature on negative emo-
tions, a parallel line of research suggests a possible protective
role for positive emotions in CVD risk and incidence [14, 15];
however, to our knowledge, none of the brain imaging studies
described below have yet examined neural correlates of pos-
itive emotions as they relate to CVD risk. Hence, taken to-
gether, chronic and acute negative emotional states represent a
substantial and potentially modifiable source of risk for CVD
and other chronic diseases of aging.

Despite cumulative epidemiological and clinical evi-
dence linking negative emotions to CVD, physiological
mechanisms underlying this link are not fully understood.
A key component of negative emotional responses is the
generation of peripheral physiological changes involving
the autonomic, immune, and neuroendocrine systems.
Some of the most frequently documented physiological
changes that accompany negative emotions and are jointly
implicated in CVD pathogenesis include a suppression of
parasympathetic cardiac control, an increase in sympathet-
ic nervous system activity, an increase in systemic inflam-
mation, and activation of the hypothalamic-pituitary-
adrenal axis [16–19]. The role of these different peripheral
physiological changes in the context of emotion and CVD
is beyond the scope of the present review; yet, we note that
these peripheral physiological responses can vary substan-
tially across different emotions, contexts, and individuals.
Regarding the latter, observed inter-individual variability
in peripheral physiological responses may correspond to
specific phenotypes that forecast an individual’s CVD risk
or prognosis [20].

In a separate line of research, the peripheral physiological
responses listed above (and others) are considered to comprise
biological aspects of the canonical stress response: they are
evoked when environmental demands tax or exceed an indi-
viduals’ ability to cope in order to prepare or motivate the
individual to respond to changing environmental contexts
and life circumstances [21]. In the context of emotional re-
sponses, these stressor-evoked peripheral physiological ad-
justments are adaptive insofar as they provide the individual
with energy and metabolic support to respond to changes in
the environment. However, it is thought that prolonged or
repeated experience of stress and negative emotions may in-
duce pathological changes in the heart and vasculature via
activation of these physiological pathways [22]. For example,
there are appreciable individual differences in peripheral
blood pressure responses to acute stressors; moreover, indi-
viduals with a tendency to show larger and perhaps more
sustained (longer lasting) physiological stress responses have
increased risk for future incident CVD [23]. Accordingly,
these and other perspectives on psychological stress have the
goal of identifying components of negative emotions that
translate into peripheral physiological responses and hence
CVD risk.

Importantly, however, for emotional or stressful stimuli to
be translated into downstream physiological responses and
hence CVD risk, they must first be processed by the brain
[24]. Hence, the brain represents an integral yet relatively
underappreciated component in the emotion-CVD link [25].
Drawing from preclinical animal models of stress and CVD, a
growing line of research aims to delineate the brain circuits
jointly involved in generating and regulating stress and nega-
tive emotions, as well as in generating and regulating subse-
quent peripheral physiological responses. These neurobiolog-
ical accounts and their accompanying brain imaging studies,
reviewed below, indicate that there are overlapping neural
circuits for negative emotion and CVD risk, respectively.

Neural Substrates of Negative Emotion
and Psychological Stress

There is not a complete agreement of how negative emotions
and mood states are generated and regulated in the brain.
Nonetheless, many leading neurobiological models attribute
emotional and stress processing to a core brain circuit com-
prising brainstem and subcortical regions including the amyg-
dala, hypothalamus, periaqueductal gray (PAG), as well as
cortical regions including the medial prefrontal cortex
(mPFC), anterior cingulate cortex (ACC), and insula (Fig. 1)
[26]. Hence, it is not plausible that there is any single brain
region for negative emotions in particular. Rather, emotional
and stressful experiences engage circuit-level patterns in the
brain, and these patterns likely vary across contexts and
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individuals [27]. Moreover, these patterns of neural responses
within and across the above brain regions may be most im-
portant for emotion and emotion-associated risk for CVD.

Notwithstanding, of particular relevance to understanding
the affective neurobiology of CVD risk is the role of the
amygdala. The amygdala (Fig. 1, red) is thought to be in-
volved in assigning salience and relevance to environmental
stimuli [28]. In particular, the amygdala is critical for pairing
fearful stimuli and situations with appropriate responses [29].
Moreover, the amygdala issues neuroanatomical connections
to the regions listed above, particularly the mPFC (Fig. 1,
blue) [30–32]. Animal models suggest that lesions to the
amygdala associate with impaired physiological and behav-
ioral responses to emotional stimuli [33]; in contrast, electrical
stimulation of the amygdala in humans and animals results in
an array of subjective, behavioral, and downstream physiolog-
ical responses including feelings of fear and anxiety, altered
respiration, and increased heart rate and blood pressure [34].
Finally, many, but not all, human brain imaging studies show
that negative emotional states reliably evoke activity within
the amygdala [35–37], and alterations in amygdala

responsivity are consistently observed in clinical depression
and other affective disorders [38]. Collectively, the amygdala
is a major focus in neuroscience research linking emotion to
peripheral physiology.

Parallel to subcortical and brainstem structures are regions
within the cortex, particularly the mPFC, ACC, and insula,
that are involved in negative emotion. Moreover, substantial
human brain imaging evidence indicates that these cortical
regions represent and regulate downstream visceral physio-
logical signals, especially those of the autonomic, vascular,
neuroendocrine, and immune systems [39, 40].

Briefly, the mPFC and ACC (Fig. 1, blue and purple,
respectively) are thought to be involved in processes including
executive control, conflict monitoring, and the expression and
regulation of negative emotion [41–44]. Regarding the latter
process, the mPFC and ACC are critically implicated in the
regulation of negative emotion, in particular cognitive reap-
praisal [45]. Cognitive reappraisal is a major clinical focus of
behavioral interventions for depression and other affective
disorders [46], and individual differences in the tendency to
use cognitive regulation of emotion associates with preclinical
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Stress and Emotion Related  
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(e.g., autonomic, immune, neuroendocrine)
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Body-to-Brain 
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Fig. 1 Neuroanatomically connected limbic and cortical brain regions
linking negative emotion, psychological stress, and regulation of
peripheral physiology. Highlighted are limbic regions including the
amygdala (red), hippocampus (green), and hypothalamus (pink) as well
as cortical regions including the insula (yellow), anterior cingulate cortex
(purple), and ventromedial prefrontal cortex (blue). Negative emotion
and psychological stress engage these regions via changes in (1) local
(within-region) activity, (2) distributed and patterned (across-region)
activity, and (3) network-level interactions between regions over time.

These responses issue brain-to-body visceromotor commands via
specific brainstem nuclei to influence physiology in peripheral organs.
Exaggerated or prolonged engagement of these responses promotes
cumulative pathophysiology and future clinical CVD endpoints. Along
this pathway, the effect of stress and negative emotion on the body affects
the brain via body-to-brain viscerosensory feedback (dotted arrows),
including baroreceptor firing, recruitment of circulating mediators of
systemic inflammation into the brain, and brain structural damage/
remodeling following myocardial infarction
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markers of CVD [47]; hence, the role of these cortical struc-
tures in emotion regulation and CVD risk is an emerging line
of research. Separately, the mPFC and ACC issue ‘brain-to-
body’ visceromotor commands in the form of autonomic and
cardiovascular responses to environmental stimuli [48–50]. In
particular, dorsal and ventral divisions of the ACC and mPFC
may be involved in generating sympathetic and parasympa-
thetic responses to stimuli, respectively [25]. Stimulation of
the ventral mPFC (vmPFC) appears to reduce sympathetic
tone and arterial pressure [51, 52]. Neurological patients with
focal damage to areas in the dorsal ACC exhibit altered (i.e.,
“blunted”) autonomic and cardiovascular responses to effort-
ful cognitive tasks [53], perhaps indicating that more dorsal
and midline cortical territories participate in generating sym-
pathetic nervous system responding.

Another cortical brain region implicated in emotion and
CVD risk is the insula (Fig. 1, yellow). In the context of
emotion, the insula integrates ‘body-to-brain’ viscerosensory
feedback into subjective emotional states [54, 55].
Specifically, viscerosensory feedback (e.g., autonomic, im-
mune) conveying bodily states is sensed by the posterior
insula and subsequently integrated and interpreted by the an-
terior insula. The process by which viscerosensory feedback is
sensed and processed is known as interoception, and hence,
the insula is considered to be an ‘interoceptive cortex’ [56,
57]. In the context of emotion, viscerosensory feedback
shapes feeling states (e.g., fatigue), and biases motivations
and drives to maintain optimal functioning [58]. Separately,
the insula is involved in regulating cardiac function [59••].
Interestingly, several studies have found that stroke patients
with infarctions localized to the insula, when compared to
patients with infarctions in other brain regions, exhibit altered
autonomic tone, elevated blood pressure, and more complex
arrhythmias [60–62]. Moreover, stimulating the insula can
induce cardiac arrhythmias as well as structural damage to
cells of the heart (myocytolysis) [63]. Along these lines, it
has been suggested that the insula may be involved in acute
emotion-induced cardiac alterations, arrhythmias, and sudden
death, including Takotsubo cardiomyopathy [64].

Taken together, brain substrates for emotion and CVD risk
are not limited to evolutionarily ‘old’ subcortical and
brainstem structures, but additionally implicate cortical and
insular regions and networks involved in higher-order cogni-
tive, emotional, and social behavioral processes [65].

Brain Imaging Studies of Emotion, Stress,
and CVD

Drawing from the evidence linking emotional processes to
CVD risk as described above, an emerging body of brain
imaging research examines brain circuits jointly implicated
in processing emotional and stressful experiences as well as

regulating physiology that is involved in CVD [66, 67]. To
this end, such brain imaging studies typically employ behav-
ioral task paradigms in the scanner, requiring participants to
view emotional or aversive pictures or film clips [68], com-
plete difficult cognitive tasks under unpredictable time pres-
sure and negative feedback [69], prepare a difficult speech
before an unsupportive panel of judges [68], or respond to
social exclusion during a computerized group interactions
[70]. Further, these studies examine an array of peripheral
physiological systems that are engaged by negative emotion
and also relate to CVD pathophysiology, including heart rate
[71], heart rate variability [72], cardiac contractility [73], baro-
reflex sensitivity [74], and blood pressure [75]. Broadly, these
studies consistently report brain regions, particularly those
described above, that relate to peripheral physiology during
emotional and stressful experiences [74, 76, 77]. For example,
a recent study observed an association between amygdala re-
sponses during the processing of threatening faces with circu-
lating levels of C-reactive protein (CRP) [78], a marker of
systemic inflammation known to predict incident CVD inde-
pendently of traditional CVD risk factors [79]. In another
study, negative emotion inductions engaged areas in the
mPFC, insula, and PAG, and responses in these areas associ-
ated with changes in high-frequency heart rate variability [80],
an indirect or surrogate index of cardiac parasympathetic au-
tonomic nervous system function that is linked to CVD risk
[81].

Other brain imaging studies examine associations of emo-
tion processing with markers of preclinical CVD pathophysi-
ology. In one study, amygdala responses during the processing
of emotional faces associated with carotid intima-media thick-
ness (cIMT), a preclinical marker of CVD risk [82]. In another
study, activity in the dorsal subdivision of the ACC (dACC)
during cognitive regulation of negative emotional stimuli as-
sociated with cIMT [83]. In the latter study, the observed
association was statistically mediated by circulating levels of
the pro-inflammatory cytokine interleukin(IL)-6. Several oth-
er regions in the mPFC, ACC, and insula associated with IL-6,
but not with cIMT. Notably, however, this study failed to
replicate the above association between amygdala activity
during the processing of negative emotional stimuli and
cIMT, indicating that single brain areas including the amyg-
dala may not be uniformly associated with CVD risk across all
contexts and subject populations.

While the above studies are promising insofar as they iden-
tify candidate brain regions linking emotion to CVD, nearly
all are cross sectional, which limits generating causal interpre-
tations. As mentioned previously, some of the candidate brain
regions reviewed here are implicated in relaying and
representing viscerosensory feedback to the brain; hence, it
is plausible that preclinical changes in peripheral CVD risk
factors (e.g., inflammatory or vascular state) could influence,
in a body-to-brain manner, brain activity observed in response
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to emotion [39]. Accordingly, to better interrogate the direc-
tionality of these brain-body pathways, what is needed are
longitudinal brain imaging studies demonstrating that func-
tional activity in brain circuits involved in negative emotion
precede the development of CVD, or otherwise predict clini-
cal outcomes in CVD patients.

The only study so far to take a longitudinal approach to
these questions used a brain imaging method called positron
emission tomography to examine resting metabolism of the
amygdala in a sample of nearly 300 individuals [84••]. This
study showed that higher resting activity in the amygdala at
baseline was associated with a greater incidence of CVD
events, defined as coronary death, myocardial infarction, cor-
onary insufficiency, angina, cerebrovascular accidents, revas-
cularization, peripheral artery disease, and heart failure, over a
median follow-up period of 3.7 years. Importantly, the predic-
tive utility of resting amygdala activity on these subsequent
events remained following statistical adjustment for several
traditional CVD risk factors at baseline. Finally, the relation
between baseline amygdala activity and CVD event incidence
was statistically mediated by bonemarrow activity and arterial
inflammation, and amygdala activity was positively associat-
ed with increased symptoms of perceived stress in a subset of
participants. In summary, this study provided crucial longitu-
dinal evidence in a clinical population linking neural sub-
strates of negative emotion to objective CVD outcomes, and
moreover identified physiological pathways that plausibly
mediate this longitudinal risk.

Toward Brain Networks and Multivariate
Patterns for Predicting CVD Risk

Thus far, the majority of brain imaging research on negative
emotion, stress reactivity, and CVD has focused on mean
levels of activity within discrete regions of the brain. Two
emerging lines of research aim to expand current knowledge
using novel conceptual and statistical approaches: formulating
the brain into networks of connections between brain regions,
as well as examining patterns of activity across distinct brain
regions.

First, brain circuits involved in emotional responses
and physiological control may be conceptualized as
networks. These networks comprise brain regions that
are structurally connected via white matter fibers (i.e.,
structural connectivity networks [85]) as well as brain
regions whose observed activities correlate with each oth-
er over time (i.e., functional connectivity networks [86]).
The reformulation of brain regions into networks and their
resulting connections attracts substantial interest, as met-
rics of communication between brain regions might esti-
mate underlying neuronal processes more accurately than
activity levels within brain regions [87].

As mentioned above, candidate brain regions involved in
emotion and CVD risk are richly interconnected. Hence, met-
rics of structural and functional connectivity between these
brain regions may more accurately estimate biobehavioral risk
in the context of negative emotions and stress. Indeed, psy-
chological stress consistently alters functional connectivity
between the amygdala, insula, ACC, and mPFC, and changes
in these estimates of functional connectivity relate to down-
stream autonomic and cardiovascular reactivity (for review,
see [66]). Several of these regions can be grouped into a
corticolimbic circuit involving limbic (subcortical) regions
such as the amygdala and hippocampus, as well as
neuroanatomically connected cortical regions in the ACC
and mPFC. This circuit is involved in emotion regulation,
stress reactivity, and control over peripheral autonomic and
cardiovascular physiology [88, 89]. Connections between
these regions as well as the insula, periaqueductal gray matter,
parabrachial complex, nucleus of the tractus solitarius, and
ventrolateral medulla have moreover been historically de-
scribed as comprising a central autonomic network [90].
Several brain imaging studies have linked connectivity across
this network with peripheral physiology and CVD. For exam-
ple, during a cognitive stressor task, individuals with exagger-
ated blood pressure responses also exhibited increased func-
tional connectivity (i.e., cross-correlation) between the amyg-
dala and other regions including the mPFC, insula, hippocam-
pus, and pons [91]. Similarly, during a task in which partici-
pants received negative social feedback, individuals with
greater IL-6 responses to the task also exhibited greater func-
tional connectivity between the amygdala and mPFC [92].
Collectively, these and other studies suggest that functional
connectivity between subcortical (i.e., amygdala) and cortical
(e.g., mPFC) regions may link negative emotional states to
peripheral physiological pathways as well as preclinical
markers for CVD.

Parallel to the above are advances in statistical approaches
to characterizing patterns of brain activity. These statistical
approaches contend that complex psychological phenomena,
such as negative emotions, may be expressed in the brain by
distributed patterns, or signatures, of activity across multiple
regions. Due to the multivariate nature of these brain patterns,
studies typically employ machine learning algorithms to ex-
amine the predictive utility on unseen, out-of-sample observa-
tions. Similar to the above argument for brain networks, it is
thought that patterns of neural responses across the entire
brain may be important to consider above-and-beyond those
observed in individual regions [93].

Indeed, several ‘brain signatures’ have recently been gen-
erated in the context of emotion and CVD. In one study, a
brain signature encompassing the amygdala, insula, ACC,
mPFC, as well as other regions, predicted subjective response
to viewing negative affective pictures [94]. In the context of
peripheral physiology, a separate recent study identified a
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brain signature comprising the dACC, ventral mPFC
(vmPFC), and brainstem that predicted peripheral autonomic
(i.e., heart rate, skin conductance) responses to a social stress-
or over time [95•]. Moving toward individual differences in
physiological reactivity, a recent study identified a brain sig-
nature for interindividual variability in cardiovascular re-
sponses to stress, which comprised similar regions within
the ACC and vmPFC, as well as the insula [96•].
Importantly, brain signatures identified in these studies were
able to accurately predict emotional and physiological re-
sponses in participants who were not used to model and gen-
erate the brain signature, showing that these brain signatures
are generalizable. Moreover, these multivariate patterns pre-
dicted responses better than individual regions. To our knowl-
edge, no studies have yet leveraged these statistical techniques
toward predicting future preclinical CVD factors or clinical
incidence; hence, this is a promising avenue for future
research.

Open Questions and Future Directions

So far, brain imaging studies reviewed above suggest that
brain regions involved in negative emotion and stress, as well
as their network-level interactions and distributed patterns of
activity, may associate with concurrent and future CVD risk.
However, several open questions remain regarding the precise
nature of these observed relationships, their reliability and
generalizability, their relation to downstream physiology and
health behaviors, as well as their clinical utility.

First, while the present review focuses on brain circuits
for immediate emotional responses and downstream periph-
eral physiology, there are nonetheless other indirect path-
ways that could plausibly link emotion to CVD risk that
implicate entirely independent sets of brain regions and cir-
cuits. One clear example points to behavioral evidence
linking emotion to health behaviors that are known to ele-
vate CVD risk, in particular diet, physical activity, alcohol
intake, and smoking habits [97]. These behaviors and life-
styles are influenced by emotions but engage somewhat dis-
tinct brain circuits from the set reviewed here. Specifically, a
corticostriatal network, including components of the basal
ganglia and neuroanatomically connected divisions of the
mPFC, is implicated in reward valuation, craving, reinforce-
ment learning, and motor planning [98]. Alterations in this
corticostriatal circuitry have been extensively documented in
mood and stress-related disorders [99] and could plausibly
be implicated in biasing individuals toward adopting un-
healthy behaviors following negative emotional states
[100]. Neural activity in these brain areas has also been
linked to systemic inflammation [101]. However, to our
knowledge, no brain imaging studies have yet examined this
specific link in the context of emotion and CVD.

Second, there is a lack of consensus on the generalizability
and reliability of task paradigms that evoke stress and negative
emotion in the above reviewed studies. For example, anger
and hostility have long been proposed to confer CVD risk, but
no studies have used anger provocation tasks during brain
imaging in order to link brain activity to physiology and dis-
ease markers. It is unclear whether brain circuits engaged by
anger would similarly associate with peripheral physiology
and CVD risk markers. In contrast, a separate and emerging
brain imaging method examines brain activity and functional
connectivity networks at rest [102]. Connectivity across these
networks at rest, also called intrinsic connectivity networks,
has been linked to individual differences in emotion as well as
peripheral markers of CVD risk (e.g., inflammation, heart rate
variability) [103–105]. To this end, it is unclear whether indi-
vidual differences in these brain circuits measured at rest, in-
cluding the longitudinal study discussed above, are compara-
ble or generalizable to individual differences evoked by emo-
tions or stress in the context of CVD. Similarly, while the
reliability of some of the above brain imaging tasks have been
previously examined [106], there are open questions about
whether other brain imaging studies of other emotion or emo-
tion regulation tasks reliably reveal individual difference phe-
notypes that effectively stratify participants according to emo-
tional responsivity and CVD risk.

Third, nearly all the extant brain imaging research on emo-
tion and CVD focuses on risk factors and clinical occurrence,
with little or no focus on functional or clinical prognosis for
participants currently affected by chronic affective disorders
or clinical CVD. Hence, future research is needed to charac-
terize the role of these and other brain circuits in clinical sam-
ples. To this end, a recent study examined neural correlates of
mental stress-induced myocardial ischemia (MI) in coronary
heart disease patients [107•]. This study found that patients
exhibiting mental stress-induced MI also demonstrated exag-
gerated responsivity to stress in prefrontal cortical regions
including the ACC. Whether these differences in stress-
induced brain responsivity in this clinical sample relate to
clinical prognosis is an exciting question for future study.
Separately, as the majority of the above brain imaging studies
was conducted on psychiatrically healthy community sam-
ples, it is relatively unknown whether these findings extend
to individuals diagnosed with chronic psychiatric disorders.
Along these lines, acute CVD events confer elevated risk for
poor mental health outcomes (e.g., posttraumatic stress disor-
der) which in turn is associated with risk for recurrent CVD
events [108]; hence, future studies may examine whether
brain changes or remodeling following CVD events prospec-
tively predict mental and physical health outcomes.

Finally, future studies might examine surrogate or interme-
diate markers in psychosocial interventions designed to re-
duce negative emotion or improve emotion regulation (e.g.,
cognitive behavioral therapy, mindfulness meditation) prior to
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later stage endpoints, particularly in patients with clinical de-
pression or other affective disorders who are at elevated CVD
risk [109].

Conclusions

The recent research presented in this review adds to a
growing body of evidence indicating that activity within
specific brain regions and circuits may link negative emo-
tional and mood states and psychological stress to CVD
risk. However, this evidence largely relies on cross-
sectional studies on individuals without CVD and does
not systematically examine potential mediating pathways
or moderating influences. Future studies that adopt longi-
tudinal designs, employ advanced statistical techniques,
and consider potential mediating pathways across diverse
healthy and clinical samples stand to greatly increase our
understanding of the brain-body pathways linking emo-
tion with CVD [25].
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