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Abstract Low levels of high-density lipoprotein cholesterol
(HDL-C) have been associated with an increased risk of
coronary heart disease in prospective population studies and
clinical trials of high-risk patients treated with a low to mod-
erate intensity statin. As a result, therapeutic targets were
developed to increase concentrations of HDL-C. Subsequent-
ly, clinical trials of high-intensity statins have not supported
this previously well-established association. In trials of high-
intensity statin therapy, low HDL particle concentration
(HDL-P) has been associated with an increased risk of future
cardiovascular events. Therefore, strategies that increase
HDL-C without expanding the pool of HDL-P with its rich
proteome/lipidome do not seem to be an effective strategy. In
this review, we discuss potential mechanisms of action for the
anti-atherogenic effect of HDL and the impact of current and
emerging therapies on the functional capacity of HDL-P.
Finally, we discuss emerging therapies that increase the con-
centration and functional properties of HDL.

Keywords HDL .apoA-I .Sphingosine-1-phosphate .LDL .

Triglycerides . Phospholipids . HDL particles . HDL
functionality .Reversecholesterol transport .Atherosclerosis .

Niacin . Fibrates . CETP inhibitor

Introduction

Cardiovascular disease (CVD) of atherosclerotic origin re-
mains the major cause of morbidity and mortality worldwide

[1]. A landmark meta-analysis [2] including more than 90,000
patients (comprised in 14 randomized clinical trials studying
statin therapy) confirmed that there was a 21 % reduction in
CVD events for every 40 mg/dL of decrease in the concen-
tration of low-density lipoprotein cholesterol (LDL-C) [2],
thus, confirming the safety and effectiveness of statin-
induced LDL-C reduction. Notwithstanding, despite a de-
crease in CVD events associated with statin therapy, a signif-
icant number of CVD events still take place, a phenomenon
termed “residual risk” [3]. For instance, in stable CHD pa-
tients enrolled in Treating to New Targets (TNT) trial [4],
high-dose atorvastatin (80 mg daily) was 22 % more effective
than low-dose atorvastatin (10 mg daily) in reducing recurrent
events. This translates into a 78 % of CVD events still taking
place in spite of LDL-C levels of 78 mg/dL. In an analysis of
patients with LDL-C levels <70 mg/dL, low high-density
lipoprotein (HDL) cholesterol (HDL-C) levels were as-
sociated with a higher event rate in this cohort of
atorvastatin-treated patients; however, these risk relation-
ships were nonsignificant among the subset of patients
randomized to atorvastatin 80 mg daily [5]. In the
Justification for the Use of Statins in Primary Preven-
tion: An Intervention Trial Evaluating Rosuvastatin
(JUPITER) trial, low levels of HDL-C were not associated
with more events in rosuvastatin treated participants [6], but
low levels of HDL particles (HDL-P) were predictive of CVD
events [7••].The analysis of HDL in JUPITER suggests that
the concentration of HDL particles rather than the cholesterol
content of HDL particles is a more robust predictor of CVD
events, and a more appropriate target for therapeutic interven-
tions [8••]. Pharmacologic therapies that target the cholesterol
content of HDL (HDL-C) vs expanding the pool of
HDL-P have consistently failed to reduce CVD events.
These trials suggest new approaches to HDL modifying
therapies for reducing residual risk in patients treated
with high-intensity statins.
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apo A-I can diffuse back to the plasma; in fact, the concentra-
tion of plasma oxTrp72 apo A-I is directly correlated with
CVD, even after adjusting by HDL-C and conventional risk
factors [32•].

Specifically focusing on T2DM, nonenzymatic glycation
of HDL particles is one of the main mechanisms of dysfunc-
tional HDL. Nonenzymatic glycation of apoA-I has been
shown to impair all the beneficial effects of the HDL particles;
(1) It reduces ABCA1-dependent cholesterol efflux [33] and
the HDL-mediated activation of LCAT [33]; (2) The usual
HDL-induced inhibition of endothelial VCAM-1 expression
is lost in HDL from T2DM CVD patients, thus, favoring the
adhesion of macrophages to activated endothelial cells [34,
35, 36•] and reducing the anti-inflammatory activity of HDL;
(3) HDL from T2DM loses its vasorelaxant effects, in fact
HDL isolated from T2DM patients has a reduced ability to
stimulate endothelial nitric oxide production and endothelial-
dependent vasodilation and to promote endothelial progenitor
cell-mediated endothelial repair [37]; (4) HDL from T2DM
CVD patients does not inhibit endothelial apoptosis because it
fails to activate anti-apoptotic proteins while simultaneously
stimulating pro-apoptotic pathways [36•]. Interestingly, these
HDL activities seem to be partially restored in T2DM patients
after niacin treatment [37].

There are other mechanisms explaining dysfunctional HDL
in diabetes. Chronic inflammation in T2DM elevates serum
amyloid A (SAA) protein [38], and SAA displaces apoA-I
from the surface of HDL, thus, generating free apoA-I, which
is cleared faster by the kidney. Besides, oxidative stress is
enhanced in T2DM, which both reduces the levels of PON1
[39] and selectively oxidizes amino acid residues in apoA-I
(such as Met, Cys, Tyr, and Lys), with the final result being a
decrease in the anti-oxidant capacity of HDL particles.

The changes in lipid content also contribute to HDL dys-
function in diabetes. The altered phospholipid composition of
HDL in T2DM results in an elevated sphingomyelin to phos-
phatidylcholine ratio, which increases HDL surface rigidity
[40] (a key determinant of anti-oxidant activity of HDL) [41].

“Diabetic dyslipoproteinemia” is characterized by low
levels of HDL-P, high levels of large VLDL particles, total
and small oxidized LDL-P [42]. In insulin-resistant states,
hypertriglyceridemia is primarily due to increased hepatic
production of VLDL particles, postprandial hyperlipidemia
and low lipoprotein lipase (LPL) levels. This hypertriglyc-
eridemia enhances the CETP-mediated interchange of TG
from TG-rich lipoproteins to HDL-L/HDL-VL and the subse-
quent TG-enrichment of HDL. Hepatic lipase has greater
activity against TG and will, thus, convert large HDL particle
to small HDL particles, which are also cleared more rapidly
from the circulation by the kidney, thus, reducing the concen-
tration of HDL-P. Furthermore, TG-enriched HDL are intrin-
sically more unstable in the circulation, with apoA-I loosely
bound; in fact, the CE/TG ratio represents a key factor in

determining HDL particle stability and plasma residence time.
A low CE/TG ratio indicates unstable HDL particles. These
intrinsically unstable HDL particles are more rapidly cleared
from the circulation, further decreasing HDL-P.

Epidemiologic Evidences of the Protective Role of HDL

Since the 1960s, it has been consistently described in prospec-
tive epidemiologic studies a strong inverse relationship be-
tween HDL-C levels and CVD risk among patients with high
or normal LDL-C levels (for a complete review, [11]). A
“classic” study suggested that every 1-mg/dL increase in
HDL-C was associated with a CHD risk reduction of 2 %–
3 % in CVD events [43]. In addition, this inverse correlation
between HDL-C concentrations and CVD events also seemed
to remains true in the presence of low LDL-C levels [5, 44].

However, the hypothesis that HDL-C and apoA-I directly
confer biological protection against atherosclerosis has never
been proven. The same is true for the hypothesis that raising
HDL-C or apoA-I levels will result in reduced CVD risk. In
fact, several recent lines of evidence have questioned HDL-C
and apoA-I as relevant therapeutic targets. First, a recent study
showed that some genetic variants that raise HDL-C levels are
not associated with a proportionally lower risk of myocardial
infarction [45•]. Second, a subanalysis of JUPITER trial has
shown that HDL-C and apoA-I were associated with reduced
CVD risk among patients in the placebo arm, but that this
association was lost among people on rosuvastatin 20 mg
achieving very low LDL-C [6]. Third, data from population
studies and from a meta-analysis have suggested that changes
in HDL-C levels after initiation of lipid modifying therapy are
not independently associated with CVD risk [46•, 47]. Finally,
recent clinical trials have shown that HDL-C raising pharma-
cologic therapy increases HDL-C levels but does not reduce
CVD events (eg, AIM-HIGH [48] and HPS-THRIVE for
niacin, dal-OUTCOMES [49•] for dalcetrapib, ACCORD
[50] for fenofibrate).

One possible explanation for this apparent inconsistency
between epidemiologic studies and intervention/genetic stud-
ies is that we have been focusing specifically on a surrogate
and crude measurement like HDL-C, ie, on the cholesterol
content of HDL, which may not accurately reflect the benefi-
cial properties of HDL. Thus, we should focus on more
sensitive markers of HDL metabolism (eg, HDL-P), which
truly reflect and are responsible for the actual beneficial effects
of HDL. Several arguments support this hypothesis. First, the
relationship between HDL-C and CVD risk is partially con-
founded by the association between low HDL-C and high
levels of LDL-P. In fact, data from the Framingham Offspring
Study [51] demonstrate a significant “disconnect” between
LDL-C and LDL-P in patients with low HDL-C levels; this
implies that a substantial portion of the excess CVD risk of

512, Page 4 of 16 Curr Cardiol Rep (2014) 16:512



patients with low HDL-C stems from an unrecognized excess
of small, dense LDL-P containing less cholesterol than nor-
mal. Second, HDL-C (and even apo A-I) are static mass-based
measurement, which cannot represent a dynamic functional
process such as RCT (or the anti-inflammatory, anti-apoptotic,
anti-oxidant effects of HDL). In fact, only 5 % of the total
cholesterol carried by HDL particles is derived from macro-
phage cholesterol efflux [10••], thus, HDL-C may be an
insensitive method to quantify the anti-atherosclerotic proper-
ties of HDL. However, the effects of HDL are performed by
the HDL-P, therefore, the concentration of HDL-P represent a
direct measurement of macrophage RCT. HDL-P particles
contain 2–5 molecules of apoA-I; as a consequence, the
concentration of apoA-I cannot be used to quantify HDL-P.

To support this hypothesis, there is direct evidence that the
concentration of HDL-P provides clinically useful informa-
tion that is distinct from HDL-C. For instance, in some recent
studies, HDL-P concentration has emerged as a predictor of
CVD risk that may be superior to that of HDL-C both in
population studies [52, 53••, 54•] and randomized, clinical
trials of lipid-modifying therapies [7••, 55]. In the Multi-
Ethnic Study of Atherosclerosis (MESA), HDL-C was not
associated with carotid intima-medial thickness (cIMT) after
adjusting by HDL-P and LDL-P; however, low HDL-P pre-
dicted higher risk of elevated carotid intima-medial thickness
regardless of HDL-C level [53••], even after adjusting by
LDL-P. In the JUPITER trial, even though HDL-C did not
predict CV risk in statin-treated patients, HDL-P did predict
CV risk in all patients (placebo and statin) and even after
adjusting by HDL-C levels [7••]. This is finally confirmed in
a subanalysis of Veterans Affair High-Density Lipoprotein
Intervention Trial (VA-HIT) [55], HDL-VS particles (with
high capacity to accept cholesterol) were predictors of CVD
risk (OR 0.71, %95 CI, 0.60–0.84, P<0.01), whereas the risk
associated with HDL-M concentration was weaker (OR 0.82
[0.70–0.96], P<0.02) and for HDL-L/HDL-VL particles
(with low capacity to regain cholesterol) nonsignificant. Ad-
ditionally, the clinical relevance of HDL-P also explains the
results of the genetic analyses; different alleles in the endo-
thelial lipase (EL) gene increase HDL-C without reducing
CVD risk [45•], because mutations resulting in reduced EL
activity only increases HDL-C without actually increasing
HDL-P, while mutations resulting in reduced phospholipid
transfer protein activity translate into reduced CVD risk be-
cause they result in increased number of HDL-P [56].

Nonpharmacologic Strategies for Increasing HDL-C

Aerobic Exercise

Regular aerobic exercise moderately increases HDL-C by
about 5% [57, 58]. There appears to exist a minimum exercise

volume for a significant increase in HDL-C level that was
estimated to be 900 kcal of energy expenditure per week or
120 minutes of exercise per week [58]. Exercise duration per
session was the most important element of an exercise pre-
scription, more so than exercise intensity or duration; in fact, a
meta-analysis of 25 studies estimated that every 10-minute
prolongation of exercise per session was associated with an
approximately 1.4 mg/dL increase in HDL-C level [58]. Ex-
ercise was more effective in raising HDL-C in subject with
initially total cholesterol levels >220 mg/dL or if the body
mass index was under 28 [58]. In the first month of exercising
the anti-inflammatory effects of HDL-C predominate; in fact
after only 3 weeks of exercise, although HDL-C levels did not
change, HDL-C preferentially converted to an anti-
inflammatory state [59].

Weight Loss

Since obesity is the central abnormality contributing to insulin
resistance, weight loss is particularly beneficial for overweight
and T2DM patients [60]. In obese patients, the loss of only 1
kilogram is associated to 0.35 mg/dL increase in HDL-C
concentration [61]. Since LPL levels are reduced in acute
caloric restriction but are greatly increased with established
weight loss [62], patients actively losing weight experience an
early and transient phase of HDL-C reduction and then HDL-
C levels increases proportional to weight loss when the weight
is stabilized [63]. In 34 morbid obese patients, bariatric sur-
gery was accompanied by a 20 % decrease in weight, a 14 %
increase in HDL-C levels, a 42 % raise in HDL-2 (HDL-L)
particles and an improvement in cholesterol efflux through
ABCG1 and SR-BI [64].

Tobacco Cessation

Among nonsmokers and light, moderate, and heavy smokers,
a significant dose response effect was present for HDL-C
(reduction of 4.6, 6.3, and 8.9 % for light, moderate, and
heavy smokers compared with nonsmokers) and apolipopro-
tein AI (reduction of 0, 3.7 and 5.7 % for moderate, and heavy
smokers compared with nonsmokers) [65]. Tobacco cessation
increases both HDL-C concentrations by 4 mg/dL in men and
6 mg/dL in women , apo A-I levels [66] and HDL-P (espe-
cially HDL-2 or HDL-L) [66], as early as 2 weeks [67].

Alcohol Intake

Moderate alcohol intake (20–40 gr daily, roughly 2 drinks in
males and 1 drink in females) increases HDL-C levels by
5 %–15 % and decrease CVD risk [68, 69]. Ethanol itself
seems to be the cause of this lipoprotein change, thus, all
alcoholic drinks could theoretically raise HDL-C [69]. In a
recent meta-analysis of more than 16,000 patients, there was a
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J-shaped curve of alcohol consumption vs all-cause and CVD
mortality [70] (with maximal protection at 22 gr of daily
alcohol).

Diets

Diets rich in polyunsaturated free fatty acids (nuts, olive oil,
and fatty fish such as salmon, trout, or sardines) increase
HDL-C levels and reduce CV risk [71••]. Consumption of a
saturated fat reduces the anti-inflammatory potential of HDL
and impairs arterial endothelial function. In contrast, the anti-
inflammatory activity of HDL improves after consumption of
polyunsaturated fat [72].

Diets with low glycemic index both increase HDL-C levels
[73–75] and improve HDL anti-inflammatory properties [59].
In fact, considering glycemic index as a continuous variable, we
found a reduction in HDL-C concentration of –0.06 mmol/L
per 15-unit increase in glycemic index in the diet [74].

The effect of these interventions is summarized in Table 1.

Pharmacologic Treatment

Statins

HDL-C increase due to statin therapy is only mild, by around
5 %–10% and greatly depends on the statin, with rosuvastatin
showing the greatest increases in HDL-C. In a double blind
study with 318 patients with metabolic syndrome,
rosuvastatin increased HDL-P by 15 % and HDL-C by 10 %
compared with placebo and was more effective than atorva-
statin in increasing both HDL-C and HDL-P [76]. Besides,
while atorvastatin increased HDL-C and HDL-P to a higher
extent in patients with high baseline TG levels, the effects of

rosuvastatin on HDL-C and HDL-P were independent of
baseline TG levels [76].

This effect is partly due to a mild increase in apo A-I
synthesis [77] and a reduction in CETP activity [78]. Addi-
tionally, statin therapy seems to improve the effects of HDL
on cholesterol efflux through SR-B1 but not through ABCA1.
Specifically, treatment with atorvastatin was accompanied by
a dose-dependent increase in cholesterol efflux from hepato-
ma cells, an experimental model already validated for the SR-
B1 receptor [79]. Additionally, in THP-1 cells, statins increase
miR33 expression, thus, reducing ABCA1 expression; in fact,
in J774 cells (an experimental model validated for ABCA1
receptor), incubation with statins reduced ABCA1-mediated
cholesterol efflux to HDL [80•]. However, whether such statin
effects demonstrated under cell culture conditions are relevant
in vivo remains unknown.

Fibrates

Fibrates are peroxisome proliferator-activated receptor alpha
(PPAR-α) agonists. The fibrates-induced increase in HDL-C
is 10%–20%, while the reduction in TG and LDL-C is 20%–
50 % and 10 %–20 %, respectively. We want to remark that
gemfibrozil is the rare example of a raise in HDL-C (7 %)
while also specifically increasing the concentration of HDL-P
by 21 % [55]. Their mechanism of action is multiple [81].
Fibrates slightly increase the expression of apo A-I, ABCA1,
and SR-BI. They also decrease TG (by reducing VLDL syn-
thesis and by activating LPL), which leads to decreased CETP
activity. Thus, TG reduction is an indirect way of increasing
HDL-C, and the higher the baseline levels of TG, the more
marked the increase in HDL-C levels.

The primary-prevention Helsinki Heart Study showed a
34 % reduction in CVD events with an 11 % increase in
HDL-C [82]; the benefits were more pronounced in the

Table 1 Effects of
nonpharmacologic strategies in
HDL-C concentrations

LPL lipoprotein lipase, PUFA
polyunsaturated fatty acid, RCT
reverse cholesterol transport

Modified from: Santos-Gallego
CG, Torres F, Badimon JJ. The
beneficial effects of HDL-C on
atherosclerosis: rationale and
clinical results. Clin Lipidol.
2011;6:181–208 [11]

Therapeutic intervention Increase in HDL-C
levels, %

Mechanism of action

Aerobic exercise 5–10 Increases HDL-VS, RCT, LPL, atheroprotective
subpopulations, antioxidant activity

Tobacco cessation 5–10 Increases apoA-I and HDL-L

Increases LCAT and RCT

Decreases CETP

Weight loss 0.35 mg/dL per kilogram
of weight lost

Increases LCAT, LPL, and RCT

Bariatric surgery 15 % Increases HDL-L and RCT (via SR-B1 and ABCG1)

Alcohol consumption 5–15 Increases ABCA1, apo A-I, and paraoxonase

Decreases CETP

Dietary factors

(n-3 PUFAs, n-6 PUFAs,
low glycemic index)

0–5 Improves LDL-C/HDL-C ratio

Increases HDL-L, antioxidant and
anti-inflammatory capacity
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subgroup with TG >200 mg/dL and HDL-C <42 mg/dL, in
which there was a 72 % reduction in CVD event [83]. How-
ever, as LDL-C was also decreased by 11 %, those results
could be attributed to LDL-C-reduction; besides, only 2.5 %
of patients were diabetic. The secondary-prevention VA-HIT
[84] clinical trial was the first trial ever in demonstrating that
HDL-C increase reduced CVD events in patients. As LDL-C
levels were identical in both study groups, the 22 % reduction
in CV events could only be attributed to the gemfibrozil-
mediated 6 % increase in HDL-C levels. Importantly, gemfi-
brozil treatment raised the concentration of HDL-P (10%) and
HDL-VS/HDL-S particles (21 %); as a matter of fact, the
concentrations of these HDL-P achieved with gemfibrozil
were significant, independent predictors of new CVD events
(OR 0.71, 95 % CI, 0.61–0.81). We want to point out that,
25 % of patients were diabetic and gemfibrozil showed to
reduce CV events in both DM patients (RR 24 [0.1–43],
P<0.05) and non-DM patients (RR 24 [6, 7••, 8••, 9••, 10••,
11–14, 15•, 16•, 17, 18, 19•, 20–30], P=0.009).

The Bezafibrate Infarction Prevention (BIP, only 10 % of
DM population) [85] and Fenofibrate Intervention and Event
Lowering in Diabetes (FIELD, 100 % of T2DM patients) [86]
clinical trials did not show a reduction in CV events in the
overall study population, but fibrates reduced the primary
composite end point in patients with baseline TG >200 and
HDL-C <35 mg/dL. The Action to Control Cardiovascular
Risk in Diabetes (ACCORD) Lipid Trial [87] studied in 5518
T2DM patients the combination of statin and fibrate vs statin
monotherapy; again, there were no significant differences in
CVD events. We want to emphasize that not all fibrates are
created equal; unlike gemfibrozil [55], fenofibrate has not
shown to increase the concentration of HDL-P. Besides,
100 % of the population was T2DM, but surprisingly only
15 % of the patients showed diabetic dyslipoproteinemia,
precisely the subgroup where fibrates have consistently prov-
en to be more effective [87]. For a review of all the trials, see
Table 2 and other publications [11].

Overall, fibrates seem to reduce total cardiovascular events,
coronary events, and albuminuria progression, but they do not
show any effect on total or cardiovascular mortality [88].

Niacin

Niacin (vitamin B3, at doses of 1–1.5 gr) is the most effective
therapy so far for raising HDL-C. It increases HDL-C by
20 %–35 % and reduces LDL-C by 15 %–20 % and TG by
30 %–50 %, while also decreasing Lp(a). Interestingly, niacin
treatment did not increase the number of HDL-P but it in-
creased HDL-C exclusively due to an increase in the size of
the HDL particles [89]. Niacin treatment also seemed to
improve the cholesterol efflux, anti-inflammatory, anti-
oxidant, vasorelaxant, and endothelial protective effects of
HDL-C in diabetic patients [37, 90].

Niacin initially showed consistent benefits in random-
ized clinical trials with clinical endpoints and with im-
aging endpoints (atherosclerosis burden). For a review
of all the trials, see Table 2 and other publications [11].
However, great controversy has stirred in the last year
with the premature end of the seemingly definitive
trials, Atherothrombosis Intervention in Metabolic Syn-
drome with Low HDL/High Triglycerides: Impact on
Global Health Outcomes [48] (AIM-HIGH) and Heart
Protection Study2-Treatment of HDL to Reduce the
Incidence of Vascular Events (HPS-2 THRIVE), both
showing lack of effect of niacin treatment using CVD
outcomes as primary endpoints. AIM-HIGH study ran-
domized 3300 statin-naïve patients with a 3-year follow-
up to niacin or placebo (on the background of statin
and ezetimibe to maintain LDL-C <80 mg/dL), but
failed to demonstrate difference in CVD events between
both arms. 34 % of population was diabetic, but there
was no overall effect of niacin in diabetes vs
nondiabetes patients.

HPS-2 THRIVE enrolled 25,673 patients (32 % of DM
population) with a follow-up of 4 years to simvastatin or
simvastatin+niacin/laropiprant (niacin causes flushing by
binding the PGD2 receptor and laropiprant inhibits this recep-
tor, thus, mitigating flushing), but also failed to demonstrate a
difference in CVD events. Besides, the niacin arm was asso-
ciated with a 3.7 % absolute excess in the incidence of
diabetes complications, and a 1.8 % absolute increase in
new diagnoses of diabetes (equating to a 25 % increased risk
of new-onset diabetes). This study was the last nail in the
coffin of niacin.

Additional hypotheses may explain the failure of
niacin in this context. First and foremost, the combina-
tion of statin and niacin does not increase the number
of HDL-P [89, 90]. Therefore, strategies that increase
HDL-C without expanding the pool of HDL with its
rich proteome/lipidome do not seem to be an effective
strategy. In fact, this is corroborated because niacin
treatment in AIM-HIGH raised HDL-C by 29 % but it
did not improve cholesterol efflux or the HDL anti-
inflammatory properties [91•], thus, providing a mecha-
nistic hypothesis for these disappointing results. Be-
sides, niacin treatment moderately enhances the capacity
of serum HDL to promote cholesterol efflux from
cholesterol-loaded THP-1 macrophages [90], however,
niacin had no effect on cholesterol efflux from J774
macrophages in statin-treated patients [92], and all pa-
tients in both trials were on statins (which, as previous-
ly explained, reduce cholesterol efflux through an
miR33-mediated decrease in ABCA-1 expression
[80•]). Thus, the atheroprotective properties attributed
to niacin may not be the same in statin-treated patients
as reported for niacin monotherapy.
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CETP Inhibitors

Certain Japanese patients with very high HDL-C levels due to
low CETP activity were reported in 1989 [93]. That led to the
development of several CETP inhibitors, including
torcetrapib, dalcetrapib, anacetrapib, and evacetrapib.
Torcetrapib was a promising agent since it increased HDL-C
by 60 % [94]. Unexpectedly, torcetrapib exhibited deleterious
effects in human patients. The Investigation of Lipid Level
Management to Understand its Impact in Atherosclerotic
Events (ILLUMINATE) clinical trial was the clinical out-
comes trial studying in 15,067 patients (45 % DM) the effect
of torcetrapib on clinical events [95], it showed a significant
increase in both CVD mortality and all-cause mortality in
spite of HDL-C increase of 72 % and LDL-C decreases of
25 %, while the 3 imaging studies confirmed atherosclerosis
progression (both using IVUS [96] and carotid intima media
thickness [97, 98]). Torcetrapib was deleterious in both DM
and non-DM patients.

Two different hypotheses may explain this unexpected
finding. The first theory relies in that torcetrapib increases
HDL-C levels by increasing the cholesterol content within
the HDL particle, not by increasing the concentration of
HDL-P (thus, not expanding HDL lipidome/proteome and
not augmenting the HDL-VS, the main acceptors for macro-
phage cholesterol efflux). The second hypothesis is that CETP
inhibition strategy is safe and useful (some preliminary reports
suggest that torcetrapib modestly improves the cholesterol
efflux to HDL-L/HDL-VL [99, 100]), but there was unexpect-
ed off-target toxicity of the specific molecule torcetrapib. In
fact, torcetrapib resulted in activation of renin-angiotensin-
aldosterone system, increases in natremia, reductions in
kalemia, and increases in blood pressure (in some patients
up to 15 mm Hg) [95]. Moreover, other CETP inhibitors
(dalcetrapib and anacetrapib) do not cause hypertension and
polymorphisms in the CETP gene are concordant with HDL-
C levels but not with blood pressure (ie, the hypertensive
action of torcetrapib is unlikely to be due to CETP inhibition).

Dalcetrapib is the second CETP inhibitor tested in clinical
trials. It increases HDL-C by 34 % [101] but it has demon-
strated no improvement in CVoutcomes (although it was not
harmful) in dal-OUTCOMES [49•] in 15781 patients (25 %
DM), no reduction of MRI-evaluated atherosclerosis in dal-
PLAQUE [102] and no improvement in endothelial function
as per flow-mediated dilation in dal VESSEL [103]. The effect
of dalcetrapib was similar in both DM and non-DM patients.
Anacetrapib increases HDL-C by 138 %, and LDL-C by
40 %, without any increase in CVD events [104], interesting-
ly, anacetrapib treatment enhanced cholesterol efflux to HDL
and the anti-inflammatory properties of HDL [90]. The Ran-
domized EValuation of the Effects of Anacetrapib Through
Lipid-modification (REVEAL HPS-3 TIMI 55) trial will be
the morbidity and mortality clinical trial assessing anacetrapibT
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effectiveness in clinical practice in CVD patients in combina-
tion with statins. An interesting aspect of anacetrapib is the
40 % reduction in LDL-C, so it is possible that anacetrapib
improves CVoutcomes, but it will be difficult to demonstrate
if this beneficial effect is due to the raise in HDL-C or to the
additional lowering of LDL-C.

Therapies Specifically Increasing the Number of HDL-P

We have shown that strategies that increase HDL-C without
expanding the pool of HDL-P do not seem to be an effective
strategy to reduce CVD. Therefore, novel therapies increasing
HDL-P are highly sought after.

Apo A-I Milano is a molecular variant of apo A-I charac-
terized by the Arg(173)–>Cys substitution due to a rare point
mutation (R173C), which allows for disulfide dimer forma-
tion and consequent anti-oxidant properties of thiol groups.
Individuals carrying the apo A-I(Milano) mutation have very
low plasma HDL-C levels (10–20 mg/dL) but paradoxically
do not develop CVD, leading to the hypothesis that apo A-
I(Milano) may be a more functional and beneficial variant of
apo A-I [105, 106]. In experimental models, apo A-I(Milano)
has demonstrated to regress atherosclerosis in mice [107] and
rabbits [108], to change the atheroma plaque into a less
vulnerable phenotype [108], to reduce in-stent restenosis
[109] and to exhibit antithrombotic [110], and vasoprotective
[111] properties. These atheroprotective effects have been
successfully confirmed in human patients. First, patients im-
mediately after acute coronary syndrome received 5 weekly
injections of Apo A-IM, and intravascular ultrasound found
that there was a 4.5 % plaque regression [112]. Besides,
another study with injection of reconstituted HDL-C with
apo A- IMilano was associated with reverse coronary remodel-
ing and reduced atheroma burden [113].

Direct infusion of rHDL (combination of apo A-I and
phospholipids) has been shown to improve RCT [114] and
to be endothelial protective. The effect of 4 weekly injections
of reconstituted HDL was studied in 183 ACS patients (20 %
DM)l [115] using surrogate endpoints (atheroma burden by
intravascular ultrasound): there was no statistical significance
in atheroma volume in the treatment group compared with
placebo (primary endpoint) but there was significant differ-
ences compared with baseline atheroma volume (by 5 %,
secondary endpoint), but with a high percentage of liver
abnormalities.

A novel and promising strategy is the weekly infusions of
autologous delipidated HDL. This therapy reduced plaque
volume by 12 % in 28 ACS patients [116] (while placebo
did increase plaque volume by 3 %). This difference was not
statistically significant (P=0.2) due to the small sample size
(only 28 patients). Besides, the concentration of HDL-VS
increased in the delipidated arm form 5.6 % to an impressive
79.8 %, and this raise in the pool of HDL-P likely explains the

impressive reduction in IVUS-determined atheroma burden
[116].

Resverlogix (RVX-208) is an apo A-I upregulator because
it is a BET-protein inhibitor, leading to enhanced apoA-I gene
transcription and increasing, apo A-I synthesis. Resverlogix
increased apo A-I mRNA expression, de novo apo A-I syn-
thesis and nascent HDL in vitro in hepatic cells culture;
resverlogix also increased serum apo A-I by 60 % and HDL-
C levels by 97 % in vivo in adult green monkeys, while
simultaneously increasing cholesterol efflux via ABCA1,
ABCG1, and SR-BI [117]. In an initial human study with 18
healthy volunteers, RVX-208 treatment increased apo A-I by
10 %, HDL-C by 10%, cholesterol efflux by 11 %, and HDL-
VS by 42 % [117]. However, these promising results were
only moderately confirmed in a subsequent study involving
299 statin-treated patients; resverlogix showed a dose-
dependent increase on apo A-I levels (by 5.6 %) and HDL-C
(by 3.2–8.3 %) [118]. HDL-P only increased by 5 % (HDL-
VS by 4 %), which may not be enough to translate in im-
provements in CVD outcomes. Finally, a recent clinical trial in
324 patients with CVD and HDL-C <39 mg/dL were treated
with resverlogix for 26 weeks. There was no statistically
significant differences in the primary endpoint (-0.6 % change
in percent atheroma volume as determined by intravascular
ultrasound, P=0.08), but there was nonetheless significant
reduction of atheroma in the subset of patients with high C-
reactive protein and less vulnerability as per virtual histology
[119].

Apo A-I mimetic peptides are 18 amino acids peptides,
which do not have sequence homology with apo A-I (243
amino acids), but mimic the class A amphipathic helixes
contained in apo A-I. Intravenous L-4 F inhibits lesion forma-
tion in diet-induced atherosclerosis in mice [120]. D-4 F is the
same peptide as L-4 F, but is synthesized from all D-amino
acids instead of L-amino acids, which confers resistance to
intestinal peptidases, thereby allowing oral administration; in
fact, oral D-4 F protected mice from diet-induced atheroscle-
rosis [121]. In humans, the administration of 1 single dose of
D-4 F to CVD patients improved anti-inflammatory properties
of HDL [122]. To overcome the barrier of the cost of chem-
ically synthesizing these peptides, a new variety of tomato
genetically overexpressing the apo A-I mimetic 6 F has been
developed [123].

Conclusions

Although effective, LDL-C lowering is not enough to
completely abrogate atherosclerotic burden and CV events,
therefore, strategies focusing on HDL are an attractive prom-
ise. First we explain the atheroprotective effects of HDL, both
dependent of RCT and also of pleiotropic effects independent
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of RCT (anti-inflammatory, anti-diabetic, antithrombotic,
anti-apoptotic, vasodilating, and anti-oxidant properties).
Then we explain that the relationship between HDL-C and
CVD risk are partially confounded by the association between
low HDL-C and high levels of LDL-P. This is the rationale to
understand that the most important feature of HDL is function
(dependent on the concentration of HDL-P) and not HDL-C
levels (the amount of cholesterol carried by HDL-P). If we
increase HDL-C without expanding the number of particles
(eg, niacin in AIM-HIGH or HPS-THRIVE), CVD risk will
not be reduced. Therefore, strategies that increase HDL-C
without expanding the pool of HDL-P with its rich
proteome/lipidome do not seem to be an effective strategy.
Finally, the main strategies targeting HDL are explained, with
specific focus on the present and future pharmacologic arma-
mentarium and in the results of the main clinical trials involv-
ing HDL raising therapy through expansion of the numbers of
HDL particles.
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