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Abstract The aortic valve is highly responsive to cyclical and
continuous mechanical forces, at the macroscopic and cellular
levels. In this report, we delineate mechanokinetics (effects of
mechanical inputs on the cells) andmechanodynamics (effects
of cells and pathologic processes on the mechanics) of the
aortic valve, with a particular focus on how mechanical inputs
synergize with the inflammatory cytokine and other biomolec-
ular signaling to contribute to the process of aortic valve
calcification.
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Introduction

Aortic valve (AV) disease is a leading cause of cardiovas-
cular morbidity in the USA and the developed world [1],
and will likely increase in prevalence as life expectancy
continues to rise in coming decades [2]. Biomechanical
forces imposed during each cardiac cycle play a role in both
the progression and the consequences of AV disease. In this
Report, we borrow terms from the pharmacology literature
to delineate AV mechanokinetics (how mechanical forces
affect the valve cells and tissue) from AV mechanodynamics

(how valve cells and resultant pathologic processes in the
tissue affect the mechanics), to provide a snapshot of the
key evolving concepts related to the biomechanical in-
fluences on the causes and consequences of calcific aor-
tic valve stenosis and potential strategies to prevent the
implicated mechanobiologic pathways. Although the em-
phasis will be on recently published science, technology
and conceptual analysis, limited older work will be in-
cluded when pertinent and necessary to provide context.

AV Structure-Function: Cells, Matrix, and Whole Valve
Dynamics in Health

The AV, situated at the junction of the left ventricle and the
aorta, provides the check valve for blood leaving the heart for
the systemic circulation. Because of high peripheral resistance
that causes a substantial diastolic back pressure on the valve in
the closed position, the AVexists in high-demand mechanical
environment that requires a specialized architecture. The AVis
made up of 3 equal sized leaflets or cusps that are shaped like
half moons, hence the name ‘semi-lunar’ valve. Each cusp is a
few hundred microns thick and is made up of 3 layers: fibrosa
(near the aortic side), spongiosa, and ventricularis (near the
ventricular side). Valvular structural specializations and tissue
dynamics have been described in detail in several recent re-
views [3••, 4••]. Valve function is enabled by a complex,
highly differentiated, and highly responsive (both mechani-
cally and biologically), dynamic tissue macro- and micro-
structure, consisting of a layered architectural pattern
composed of cells (valvular endothelial cells [VECs] at the
blood-contacting surfaces and deep valvular interstitial cells
[VICs]) and extracellular matrix (ECM) (including collagen,
elastin, and glycosaminoglycans [GAGs]). The fibrosa layer
close to the outflow surface is the principal load-bearing layer
and is enriched in type I collagen, which is highly aligned and
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imparts specific and anisotropic (ie, different in the radial and
circumferential directions) biomechanical responses [4••, 5].
The central layer (the spongiosa) is made up primarily of loose
connective tissue rich in GAGs; this layer has been hypothe-
sized to provide cushioning and lubrication between the 2
outer layers [6]. The layer facing the ventricular chamber
(the ventricularis) is rich in elastin, which is believed to
provide some recoil that assists cuspal closure [7].

The single layer of VECs lining the cuspal surfaces are
distinct from endothelial cells that populate the inner surfaces
of the aorta [8–11], and those covering the fibrosa have a
different gene expression profile from those covering the
ventricularis [12]. VECs may contribute to the regulation of
valve calcification. Indeed, VECs covering the fibrosa have
upregulated proteins expected to promote calcification, while
VECs subjected to the ventricular hemodynamic waveform
(ie, experienced in vivo by the VEC lining the ventricularis)
have increased expression of the “atheroprotective” transcrip-
tion factor Kruppel-like factor2 (KLF2) [13], expected to
downregulate calcification.

In contrast, VICs comprise a heterogeneous collection of
cells with variable and dynamic features characteristics of
fibroblasts, smooth muscle cells, and myofibroblasts [3••,
14]. In the normal AV, most VICs exhibit a fibroblast-like
phenotype. However, when VICs are subjected to certain
biomechanical or biochemical stimuli, they become activated,
demonstrating a myofibroblast phenotype, with contractile
features and increased protein synthesis [15, 16]. Furthermore,
under certain stimuli, VICs assume a phenotype that resem-
bles that of osteoblasts (see below). ECM architecture and
VIC phenotype are dynamic not only in response to altered
environmental conditions, but also throughout in-utero matu-
ration, growth and adulthood, and disease [17]. Relevant to
the present discussion, aged valves have markedly decreased
VIC cell density. Indeed, VIC cell density of aged adult valves
is only approximately 10 % that of fetal valves [17]. Addi-
tionally, collagen fibers become progressively more aligned
with age (ie, more characteristic of a diastolic configuration)
suggesting that there is an ongoing “creep” of aortic valve
structure during adult life, consistent with the progressive
stiffening of valve cusps with increasing age [18, 19].

AV Mechanokinetics Leading to Calcification: Role
of Interstitial Cell Plasticity in AV Pathobiology

Most recent work in AV disease has focused on
mechanokinetics, or how mechanical forces alter cellular
function. The mechanical environment of the cusps can
directly affect VIC differentiation [3••, 14, 20]; mechanical
forces relevant to the valve function are shear stress from
passing blood, buckling stresses during opening and clos-
ing, and planar stress when valve is closed [4••]. These

forces are effectively translated from the structural proteins
of the valvular ECM to the cells as demonstrated by differ-
ences in VIC phenotype for the left-sided (aortic) and right-
sided (pulmonary) semilunar valves [21]. Multiple studies
have probed the effect of planar stress on VIC phenotype
and function, primarily in the form of applied strain via in
vitro bioreactors [22–24, 25••]. Studies have also examined
the role of shear stress on VEC function and also studies of
VEC-VIC communication [26, 27].

The hallmark of calcific aortic valve disease is the forma-
tion of nodules of calcific minerals (largely calcium phos-
phate, similar to the hydroxyapatite of bone) in the affected
valvular tissue, and generally beginning in and most severely
in the fibrosa [28], with frequent formation of bone within the
calcific deposits (called osseous metaplasia) [29]. VICs asso-
ciated with these calcific nodules exhibit an osteoblast-like
phenotype and express extracellular bone matrix proteins. The
cellular mechanisms involved in valvular calcific nodule mor-
phogenesis are important and highly controversial; the current
understanding is summarized in the recent publication from
the NHLBI Aortic Stenosis Working Group on calcific aortic
valve disease [30••].

Two hypotheses of calcific nodule morphogenesis from
the resident VIC population dominate current thinking: the
apoptotic/dystrophic calcification theory and the ossification
theory (Fig. 1) [31, 32••]. Evidence suggests that these 2
approaches comprise a range of responses of VICs to bio-
mechanical and biochemical stimulation and are not mutu-
ally exclusive. The apoptotic/dystrophic calcification theory
describes a calcification mechanism in which cell injury is
an important and early event. This mechanism is epitomized
by the failure of bioprosthetic heart valves, in which calci-
fication is initiated primarily within residual porcine aortic

Fig. 1 Current hypotheses of aortic valve calcification mechanisms
involving VICs. It is unclear if these pathways are mutually exclusive
or if they are overlapping, and to what extent
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valve or bovine pericardial cells that have been devitalized by
glutaraldehyde pretreatment [3••, 33]. The key event involves
reaction of calcium-containing extracellular fluid with the
phosphorus-containing membranes of the non-functional cells,
which are incapable of excluding calcium ions. Calcification of
dead or damaged cells is called dystrophic calcification, and is
considered a passive phenomenon. Calcification is accelerated
by young valve recipient age and increased mechanical stress.
In calcific AV disease, the increased mechanical stress on
resident VICs induced by aging-related valvular remodeling
and other mechanical and biochemical processes could play an
important role in cell injury [3••, 30••]. The cytokine
transforming growth factor-β1 (TGF-β1) induces rapid dys-
trophic calcification in vitro through an apoptosis mediated
process [34–37]. Conversely, bone morphogenetic proteins 2
and 4 (BMP-2 and BMP-4) are potent osteogenic morphogens
that are associated with the ossification theory, which specifies
regulated osteogenic differentiation of VICs rather than cell
injury as the key event, and thus an active calcification process
[32••, 38–41]. It is unclear if these calcification processes either
can occur independent of one another yet concurrently, or if
they are somehow linked or interdependent, or if they are
mutually exclusive.Moreover, there is debate onwhether VICs
can attain osteoblastic function directly or only by progressing
through a myofibroblast phenotype first [42]. Rodriguez et al.
found that the core of nodules contain different types of min-
eralization as well as apoptotic cells [43]. Also, Chen et al.
described ossifying nodules that did not contain apoptotic
cells, noting that different types of nodules may be forming
[44]. It is evident that a more detailed description and under-
standing of the mechanisms of calcific nodule morphogenesis
are needed, and further investigation of the behavior of VICs
and their interactions (such as cell-cell tension) in nodule
formation is essential in clarifying the mechanisms involved.

This notion of cell-cell tension and cell-ECM interactions
implicates a key role for mechanics in calcification, and
there is synergism between the cytokines mentioned above
and mechanical inputs, which complicates the debate of
dystrophic calcification vs ossification even further. While
the complex effects of cytokines on VIC proliferation, re-
pair, and injury have been explored [45, 46•, 47, 48],
mechanokinetic studies of calcific nodule formation are in
their infancy. In vitro studies have found clear dependence
of VIC phenotype and/or calcific nodule formation on sub-
strate chemistry [50, 51], substrate stiffness [32••, 52], and
applied strain [37, 53], similar to the seminal work that
describes the mechano-dependent differentiation of stem
cells [49]. The majority of these studies focus on dystrophic
calcification as a result of substrate chemistry or strain;
however, Yip et al. successfully generated calcific nodules
without apoptosis by culturing VICs on substrates of low
stiffness [32••]. The model developed in this study is the
only in vitro model available for generating ossific nodules.

AV Mechanodynamics Following Calcification:
What do we Know About Stenosis Mechanisms?

Calcification, regardless of the mechanism by which it arises,
restricts the motion of the leaflets, causing sclerosis (defined as
early calcification without significant pressure gradient across
the valve) and ultimately stenosis (with a significant pressure
gradient). In addition, early calcification is likely to lead to
increased mechanical loading on the non-calcified portion of
the leaflet, which could initiate calcification in these regions
via the mechanisms described above. This theory is supported
by clinical observations in patients who are diagnosed with AV
sclerosis by echocardiography or computed tomographic im-
aging, estimated to be approximately 25% of patients at age 65
[54•]. Moreover, AV sclerosis is associated with an an approx-
imately 50 % increased risk of myocardial infarction and
cardiac death over 5 years, probably primarily because AV
sclerosis serves as a marker for coronary artery atherosclerosis.
Once evenmild valve obstruction is present, progression to AV
steniosis is virtually inevitable, sometimes occurring in as little
as 4–8 years after initial diagnosis [55], although progression is
variable among patients. Once a nidus of sclerosis emerges
within a leaflet, the stiffening of the leaflet follows, likely due
to ‘strain magnification’ experienced by the surrounding, ini-
tially healthy, tissue (as described mathematically in [37]).
Briefly, if the leaflets were a supple, highly compliant sheet
(like latex), then a focal area that becomes stiff would in turn
lead to greater than normal (ie, concentrated) strain in the
region directly outside of the focal area. If strain leads to
mechanobiologic changes to the VICs, then this strain magni-
fication would proceed to change the VICs in a ripple effect
emanating from the focal area. Over a few years, the ripple
effect alters the leaflet properties and decreases compliance,
likely leading to stenosis. An initial attempt at a computational
model of the gross progression of disease has been published
[56].

Congenital bicuspid aortic valve (BAV), the most frequent
gross developmental cardiovascular malformation in humans,
has an increased propensity to calcification and stenosis. BAV
is usually uncomplicated in early life but frequently eventuates
in calcific aortic stenosis or regurgitation in later life [57]. The
vulnerability of BAV to calcification is so great that although
the prevalence of BAV is (only) approximately 1 % in the
overall population, congenital BAV is the anatomic substrate
in approximately half of adults who have surgery for calcific
aortic stenosis. In addition, calcification of a BAV occurs
approximately a decade earlier in these patients than in those
who have an anatomically normal valve. Themechanistic basis
for the propensity for accelerated calcification of a BAV is
uncertain. Nevertheless, in a finite element model, bicuspid
valve geometry presented much higher stresses compared with
the tricuspid model, particularly in the central basal region of
the conjoint cusp (+800 %) [57]. However, another
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computational model has suggested that the cellular deforma-
tions are not significantly different in the 2 geometries in the
calcification-prone region [58]. Interestingly, not only have
mutations in the transcriptional regulator NOTCH1 been
linked to human developmental valve abnormalities but also
NOTCH1 signaling represses osteoblast-like calcification
pathways [59, 60].

Quadricuspid aortic valves also occur, and calcific steno-
sis is unusual, although data are limited. Clinical and path-
ologic studies suggest that 1 %–2 % of surgically removed
aortic valves are quadricuspid and that regurgitation is the
predominant pathology [61, 62]. Whether there is a biome-
chanical reason accounting for the specific pathologic pro-
file of quadricuspid valves is unknown.

Novel Mechanobiological Strategies to Prevent
Calcification

While the specific mechanisms of calcification remain unclear,
the clinical investigation of drugs and heart valve disease in the
past 15 years has been both hopeful and cautionary. The
hopeful story has been that lipid-lowering drugs (ie, statins)
would prevent valve disease [63, 64], in a similar fashion to
their effectiveness against atherosclerosis. In 2001, 2 retrospec-
tive observational clinical studies suggested that statins may
inhibit progression of AV stenosis [65, 66]. However, prospec-
tive, randomized clinical studies appearedmuch less promising.
A small double-blind, placebo controlled study showed no
benefit of statins to reduce valve disease and a larger clinical
study demonstrated, rather conclusively, that statins do not
reduce major cardiovascular outcomes, including AV replace-
ment, in patients with existing AV stenosis [67]. A more recent
meta-analysis of 2,344 patients from previous trials shows that
statins do not prevent the progression of AV stenosis [68•]. In
light of these findings, the enthusiasm for statin therapy as a
potential preventive treatment for valve disease has been se-
verely dampened. It is possible, however, that statins initiated
earlier in the natural history of valve calcification might slow or
prevent disease, but this is a very difficult hypothesis to test.
Recent in vitro data demonstrated that C-type natriuretic pep-
tide prevents myofibroblast differentiation of VICs and was
also found to be upregulated by Simvastatin [69], suggesting a
mechanism by which benefit could accrue from statins. A very
recent report found that single nucleotide polymorphisms in the
lipoprotein(a) locus was highly correlated with AV calcification
and was across all patient populations examined [70•]. There-
fore, statin therapy may be more effective in patients with these
polymorphisms.

One of the present authors (WDM) recently found 2 dis-
tinct pathways that may be selectively targeted to prevent
calcification of VICs. First, the serotonin 2B receptor, which
was implicated in the drug-induced valve disease [71] that

occurred with Fen-Phen, pergolide, and cabergoline, can be
antagonized to prevent non-canonical TGF-β1 signaling and
calcification in vitro [72•]. Targeting of the serotonin 2B
receptor is similar to the much more focused on angiotensin
receptors for treatment of valve disease [73]. Jaffre et al. [74]
demonstrated that the serotonin 2B receptor works in concert
with the angiotensin II type 1 receptor, to mediate hypertro-
phic signaling in cardiac fibroblasts. Angiotensin II demon-
strates a mechano-dependent signaling activation during
ventricular pressure overload similar to that noted above for
serotonin 2B, and increased angiotensin II signaling at the
type 1 receptor results in an increase in TGF-β1 secretion and
the subsequent downstream initiation of fibrosis. In the afore-
mentioned study, Jaffre et al. conclusively demonstrated a
necessary interdependence between serotonin 2B and angio-
tensin II type 1 receptors in regulating TGF-β1 secretion.
Many of the cardiac-related studies into the molecular signal-
ing pathways of the 2 receptors have focused on their role in
ventricular fibroblasts. This strategy needs to be further ex-
amined in small animal models of valve disease, but selective
targeting strategy combined with the clear arrest of TGF-β1
effects appears promising.

Second, the homophilic cadherin, cadherin-11, was found
to be required for TGF-β1-induced calcific nodule forma-
tion in vitro [75••]. Because cadherin-11 is involved in bone
formation, this provides a plausible common pathway be-
tween the ossific and dystrophic calcification pathways, and
targeting cadherin-11 with functional blocking antibodies
may be an additional strategy in preventing calcification.
As the mechanism(s) becomes clear, there may be additional
novel mechanobiologic targets that may prevent pathologic
differentiation of VICs that leads to calcification.

Conclusions

There is still much to be examined in the mechanokinetics
and mechanodynamics of heart valve calcification; however,
in the past few years, there has been success in elucidating
the early inflammatory mechanisms and potential interven-
tion strategies to prevent these processes. A major challenge
is relating in vitro findings to clinical directives through
early detection of calcification. We believe that as mecha-
nisms are better understood in the coming years, a molecular
signature of early, pre-calcification that can be imaged in
vivo may be possible. Further, if inflammatory processes in
the VICs can be targeted and halted it may be possible to
develop a non-surgical intervention strategy against calcific
heart valve disease.
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