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Abstract
Purpose of Review Lipoprotein(a) has emerged as a strong independent risk factor for cardiovascular disease. Targeted 
screening recommendations for Lp(a) measurement exist for adults and youth known to be at high-risk. However, Lp(a) 
measurements are not included in universal screening guidelines in the US; hence, most families in the US with high Lp(a) 
levels who are at risk of future atherosclerotic heart disease, stroke, or aortic stenosis are not recognized. Lp(a) measurement 
included as part of routine universal lipid screening in youth would identify those children at risk of ASCVD and enable 
family cascade screening with identification and early intervention for affected family members.
Recent Findings Lp(a) levels can be reliably measured in children as young as two years of age. Lp(a) levels are genetically 
determined. The Lp(a) gene is inherited in a co-dominant fashion. Serum Lp(a) attains adult levels by two years of age and 
is stable for the lifetime of the individual. Novel therapies that aim to specifically target Lp(a) are in the pipeline, including 
nucleic acid-based molecules such as antisense oligonucleotides and siRNAs.
Summary Inclusion of a single Lp(a) measurement performed as part of routine universal lipid screening in youth (ages 
9–11; or at ages 17–21) is feasible and cost effective. Lp(a) screening would identify youth at-risk of ASCVD and enable 
family cascade screening with identification and early intervention for affected family members.
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Introduction

High lipoprotein(a) (Lp(a)) has recently emerged in the 
literature as a strong genetic risk factor for atherosclerotic 
cardiovascular disease (ASCVD) including coronary artery 
disease, stroke, and aortic stenosis.

In this review, we will discuss the structure and func-
tion of Lp(a) and its genetic components and variability, 
modalities of measurement, and demonstrated association 
with cardiovascular disease. We will also review the cur-
rent guidelines for universal lipid screening in children and 

provide an overview of past and current therapies targeting 
Lp(a).

Structure and Function of Lipoprotein(a)

Human lipoprotein(a) (Lp(a)) is a complex lipoprotein com-
posed of a low-density lipoprotein (LDL)-like particle con-
taining a 1:1 molar ratio of apolipoprotein B-100 (apoB) and 
apo(a). Apo(a) is a polymorphic glycoprotein which char-
acterizes Lp(a) [1–4]. Assembly of the Lp(a) molecule is 
theorized to happen in the liver at the hepatocyte cell mem-
brane surface [1]. The two components of Lp(a), apoB-100 
and apo(a), are linked by a disulfide bond between apoB-100 
and one of the kringle domains in apo(a) [1].

Apo(a) is encoded by two alleles of the Lp(a) gene [1]. 
A unique feature of apo(a) is the presence of triple-loop 
structures called kringles [1]. Kringle domains are stabilized 
by three internal disulfide bonds and are present in other 
coagulation factors (plasminogen, prothrombin, urokinase, 
and tissue-type PLG activators) [1, 4, 5]. A significant dis-
covery was that apo(a) is distinctly similar to plasminogen, 

 * Brenda Kohn 
 brenda.kohn@nyumc.org

 Aparna Alankar 
 aa2072@rwjms.rutgers.edu

 Preneet C. Brar 
 preneet.brar@nyumc.org

1 Rutgers Robert Wood Johnson Medical School, 
New Brunswick, NJ, USA

2 NYU-Langone Medical Center, NYU Grossman School 
of Medicine, New York, NY, USA

http://orcid.org/0000-0002-4179-7402
http://crossmark.crossref.org/dialog/?doi=10.1007/s11883-023-01120-3&domain=pdf


488 Current Atherosclerosis Reports (2023) 25:487–493

1 3

one of the fundamental proteins of the fibrinolytic cascade 
[1, 6]. The Lp(a) gene shares homology with PLG, the gene 
encoding plasminogen [1, 6]. Over the course of evolution, 
PLG kringle domains I, II, and III (KI, KII, KIII) were lost, 
while the KIV domain expanded and diverged to form 10 
subtypes (KIV-1 to KIV-10) in apo(a) [1, 4, 6]. Apo(a) iso-
forms are traditionally designated by the total number of 
KIV domains [7]. The KIV-2 domain is encoded by a copy 
number variation that generates over 40 distinct isoforms 
of apo(a) [8]. KV and the serine-protease domain of PLG 
remained in apo(a) [1, 4–6]. Of note, however, the serine-
protease domain in apo(a) shows replacement of the serine 
amino acid, preventing the conversion of Lp(a) into active 
protease by plasminogen activators and serine proteases [1, 
4–6].

The physiological role of Lp(a) is not yet fully under-
stood. Multiple functions of Lp(a) in humans have been 
proposed in the literature [9]. Historically, Lp(a) may have 
played a role in wound healing, facilitating wound healing 
and bleeding reduction through fibrinolysis inhibition [9, 
10]. Lp(a) binds to fibrin via its kringle domains and may 
impede bleeding after being transported to sites of injury 
[10]. Lp(a) may also provide cholesterol for cell proliferation 
during tissue repair [10]. Furthermore, Lp(a) demonstrates 
a range of effects on vascular endothelial cells, smooth 
muscle cells, and monocytes and macrophages [9]. Previ-
ous studies show Lp(a)-mediated modification of vascular 
endothelial cells in vitro [11]. Apo(a) promotes prolifera-
tion and migration of endothelial cells and is involved in 
induction of endothelial contraction [12]. Lp(a) influences 
the function of smooth muscle cells. Studies using migration 
assays demonstrate a chemorepulsion by apo(a) of smooth 
muscle cells via Cd51/CD61 and RhoA/Rho-kinase [13]. 
Lp(a) also downregulates the activity of TGFB in smooth 
muscle cells [14]. Finally, Lp(a) promotes the differentiation 
of pro-inflammatory M1-type macrophages, implicating the 
lipoprotein in inflammation-association pathology [15].

Lp(a) has been thought to compete with plasminogen for 
binding to fibrin, thus impeding the physiologic activity of 
PLG in the fibrinolytic cascade and contributing to throm-
bosis and related Lp(a) pathology [4, 7].

Genetics and Variability

Although originally described as a dichotomous trait 
(Lp+/ Lp-), the literature soon moved toward a quanti-
tative description of Lp(a) [16, 17]. Compared to other 
plasma lipoproteins, Lp(a) shows significant variation 
between individuals [18]. Substantial racial/ethnic differ-
ences exist in Lp(a) levels. For example, Black individuals 
exhibit a higher median plasma concentration of Lp(a) at 
every age than other racial groups [19, 20]. Well-designed 

prospective longitudinal data that is specific for each popu-
lation is necessary to determine risk assessment. Lp(a) 
concentrations in humans range from <0.1  mg/dL to 
200 mg/dL or higher, more than a three-fold magnitude 
of difference [18]. There is not yet a clear explanation 
why the Lp(a) gene exhibits such wide variation; however, 
some of the underlying genetic variation has been studied.

Measuring Lipoprotein(a)

Currently, lipoprotein(a) is reported either in mass units 
(mg/dL) or in molar units (nmol/L) depending on the assay 
used [21]. There have been several efforts to standardize 
Lp(a) measurement to reduce confusion in clinical prac-
tice [21, 22]. Lp(a) measurement has been described as 
potentially isoform-dependent, which creates issues relat-
ing to assays using mass measurement [21]. KIV-2 repeats 
generate the characteristic apo(a) polymorphism with a 
molecular weight ranging from 250 to 800  kDa [23]. 
Depending on the isoform, up to 70% of the apo(a) protein 
can consist of highly homologous KIV-2 repeats [21, 23]. 
This phenomenon creates issues related to antibodies and 
calibrators used in assays to quantify Lp(a) in individu-
als [21]. Antibodies against the repetitive KIV-2 repeat 
in apo(a) may underestimate the concentration of Lp(a) 
in individuals with small apo(a) isoforms and overesti-
mate the concentration of Lp(a) in individuals with larger 
apo(a) isoforms [21]. In contrast, using an antibody against 
a unique kringle domain (i.e., KV) may allow measure-
ment of Lp(a) in molar units, as each apo(a) molecule 
would only be recognized once [21]. However, there are 
still homologous repeats present in the KV domain, so 
this does not entirely solve the issue [21]. An alternative 
approach to measuring Lp(a) that avoids apo(a) sensitivity 
uses an antibody directed against the apoB component of 
Lp(a), since each Lp(a) molecule has only one apoB [21]. 
However, this approach is not used often, which may be 
due to neglect of “free” apo(a), or apo(a) unbound to LDL 
particles [21]. Some commercial assays reduce isoform-
dependent bias by using a 5-point calibrator consisting of 
a range of Lp(a) isoforms [24].

It has been recommended that the use of mg/dL (mass) 
be discontinued in the reporting of Lp(a) [25] and that 
assays and references for Lp(a) be in nmol/L. Lp(a) iso-
forms create bias in mass-based measurements and com-
plicate direct conversion between mg/dL and nmol/L 
units [25]. Standardized reporting of Lp(a) measurements 
in nmol/L would help synchronize Lp(a) assays, reduce 
confusion in clinical practice, aid comparative analyses 
in future clinical trials, and contribute to establishing 
evidence-based guidelines [25].
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Lipoprotein(a) and Cardiovascular Disease

Lp(a) promotes inflammation and atherosclerosis by mul-
tiple mechanisms [26]. The Lp(a) molecule is susceptible 
to oxidative modifications, similar to other lipoproteins, 
and thereby leads to formation of proinflammatory and 
proatherogenic oxidized phospholipids, oxysterols, and 
oxidized lipid-protein adducts or “oxidation-specific 
epitopes” (OSEs), produced in response to reactive oxy-
gen species (ROS) [26]. As previously mentioned, Lp(a) 
also promotes the differentiation of pro-inflammatory 
M1-type macrophages [26]. Other mechanisms by which 
Lp(a) promotes inflammation and atherosclerosis include 
the binding to and carrying of proinflammatory molecules 
such as the monocyte chemoattractant protein-1 (MCP-1/
CCL2) [26].

High concentrations of Lp(a) have been considered to 
be a direct cause of cardiovascular disease [27–30]. Lp(a) 
has the ability to enter into and accumulate in the intima 
of arteries and aortic valve leaflets [10, 31]. Compared to 
LDL, in vivo kinetic studies show that Lp(a) in humans 
enters the intima at a similar rate [10]. However, Lp(a) 
is considered to be more atherogenic than LDL due to 
its greater capacity to bind to fibrin and glycosaminogly-
cans [10]. Lp(a) accumulation is a primary mechanism 
by which Lp(a) causes cardiovascular disease. Other 
mechanisms include the induction of Lp(a) by circulating 
macrophages to produce foam cells [32]. Lp(a) is also a 
known risk factor for aortic valve stenosis, and genetic 
variation in Lp(a) is associated with aortic valve calcifi-
cation [10, 33]. In pediatric populations, the most exten-
sive data comes from stroke studies, which demonstrate 
strong associations between Lp(a) and incidence of arte-
rial ischemic stroke [34]. Findings from studies linking 
Lp(a) to cardiovascular disease in adults and children led 
the European Atherosclerosis Society (EAS) to publish 
a 2010 statement recommending screening for elevated 
Lp(a) in certain risk groups, including individuals at risk 
for cardiovascular disease [35].

Screening in Youth

Guidelines from the National Heart, Lung, and Blood 
Institute (NHLBI) and American Academy of Pediatrics 
(AAP) published in 2011 recommend universal cholesterol 
screening between the ages of 9 and 11 and, if normal, 
again between 17 and 21 years of age [36, 37]. Rationale 
for expanded screening was based on research showing 
early atherosclerosis in young patients with elevated cho-
lesterol, efficacy of early treatment of cardiovascular risk 

factors in youth, concurrence of lipid disorders in children 
and childhood obesity, and the fact that approximately 
30–60% of children with dyslipidemias are missed using 
traditional selective screening methods, due to under-
reported or unavailable family history of ASCVD [36, 37]. 
The expanded guidelines do not include Lp(a) in universal 
screening for youth.

Currently, the European Society of Cardiology/European 
Atherosclerosis Society (ESC/EAS) recommends meas-
uring Lp(a) at least once in an individual’s lifetime [38]. 
The National Lipid Association (NLA) recommends that 
an Lp(a) level be obtained for youth (<20 years) at high 
risk. This includes clinically suspected or genetically con-
firmed familial hypercholesterolemia (FH), presence of a 
first degree relative with premature ASCVD, unexplained 
ischemic stroke, or a parent or sibling with elevated Lp(a) 
[25, 39••, 40].

Justification to include Lp(a) in universal lipid screening 
guidelines for youth is currently being made in the litera-
ture. Lp(a) levels in youth are fully expressed by the first or 
second year of life and remain stable thereafter [41]. This is 
a unique feature of Lp(a), since other lipoproteins typically 
reach adult levels only after adolescence [41]. Furthermore, 
the 2011 NHLBI guidelines for universal lipid screening 
in youth were developed to detect youth and families with 
undisclosed FH and high LDL-C. It was recognized at that 
time that targeted screening alone based on family history 
of ASCVD would fail to identify families where the history 
is uncertain or not readily available. Unless measured, the 
burden of high Lp(a) levels would similarly remain unrec-
ognized as a causative independent risk factor of ASCVD in 
families. Although high Lp(a) is present in as many as 30% 
of patents with FH, Lp(a) testing of youth with FH or family 
history of ASCVD alone would miss many families carrying 
high Lp(a) [42]. It is anticipated that including Lp(a) as part 
of universal cholesterol screening for youth will detect many 
families with a lifelong burden of unrecognized high Lp(a) 
and with appropriate medical intervention and help to reduce 
the risk of cardiovascular disease [43, 44].

Lipoprotein(a) in Clinical Trials

Over the past decade, Lp(a) has emerged as a topic of inter-
est in clinical trials due to its association with cardiovascular 
disease [45]. To date, a variety of approaches have been inves-
tigated for their potential to lower Lp(a). Statins are widely 
used as lipid-lowering drugs to target LDL-C and prevent 
or delay ASCVD [45]. However, research has shown that 
statins do not have a similar effect on Lp(a) levels [45]. An 
analysis of six randomized controlled trials involving a total 
of 5256 patients showed that statins increased plasma Lp(a) 
levels from 11.6% to 24.2% compared to placebo [46]. Larger 
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meta-analyses showed no significant effects of statin thera-
pies on Lp(a) plasma levels [47, 48]. Non-statin lipid-lowering 
medications such as ezetimibe have shown variable effects on 
Lp(a) in plasma; however, none significant enough to clini-
cally impact ASCVD progression [49, 50]. Bempedoic acid 
is another recently approved lipid-lowering therapy that dem-
onstrates variable to no effect on Lp(a) levels in plasma [51].

Other current therapeutic approaches to Lp(a) include 
PCSK9 inhibitors. PCSK9-inhibiting monoclonal antibod-
ies alirocumab and evolocumab have undergone phase III 
clinical trials and have demonstrated significant reductions 
in Lp(a) plasma levels. Alirocumab treatment resulted in a 
median Lp(a) plasma reduction of 23% after 2.8 years of 
follow-up in 18,924 patients in the ODYSSEY (Evaluation 
of Cardiovascular Outcomes After an Acute Coronary Syn-
drome During Treatment with Alirocumab) clinical trial [52]. 
Alirocumab was shown to reduce MACE (major adverse car-
diovascular events: coronary heart disease death, nonfatal 
myocardial infarction, ischemic stroke, or hospitalization for 
unstable angina) events with a hazard ratio (HR) of 0.85 [53]. 
Evolocumab was investigated in the FOURIER (Further Car-
diovascular Outcomes Research with PCSK9 Inhibition in 
Subjects with Elevated Risk) trial comprising 27,564 patients 
[54]. A total of 25,096 patients demonstrated Lp(a) reduction 
of 27% after 2.2 years of median duration of follow-up [54]. 
The primary efficacy endpoint of the FOURIER trial was 
cardiovascular death, myocardial infarction, stroke, hospi-
talization for unstable angina, or coronary revascularization 
[54]. The secondary efficacy endpoint was cardiovascular 
death, myocardial infarction, or stroke [54]. Evolocumab sig-
nificantly reduced the risk of the primary efficacy endpoint 
with a HR of 0.85 as well as the secondary efficacy endpoint 
with a HR of 0.80 [54]. More recently, the small interfering 
RNA (siRNA) inclisiran has been shown to inhibit PCSK9 
in adults with heterozygous FH and result in profound reduc-
tions in LDL cholesterol levels across multiple genotypes of 
FH [55]. Outcome data for Lp(a) is not available yet. The 
issue with therapies targeting PCSK9 is that they do not spe-
cifically target Lp(a), thereby making it difficult to ascribe 
reductions in MACE to Lp(a) reduction alone.

Lipoprotein apheresis is used in patients with homozy-
gous FH to remove LDL and other apo B–containing lipo-
proteins [56]. Lp(a) is also an apoB lipoprotein, and stud-
ies showed that Lp(a) levels were significantly reduced 
following apheresis therapy [57]. A study of lipoprotein 
apheresis for Lp(a)-associated cardiovascular events in 
170 patients with Lp(a)-hyperlipoproteinemia (HLP) con-
cluded that Lp(a) lowering had a significant, long-term 
effect on prevention of cardiovascular events in patients 
with HLP-associated progressive cardiovascular disease 
[58]. However, lipoprotein apheresis carries a high per-
session cost which, in combination with the frequency of 
guideline-recommended treatment, results in significant 

annual costs for patients and presents a barrier to optimal 
treatment of either FH or HLP [59].

Novel therapies that aim to specifically target Lp(a) include 
nucleic acid-based molecules such as antisense oligonucleo-
tides and siRNAs [60]. Pelacarsen is an N-acetylgalactosa-
mine conjugated antisense oligonucleotide targeting apo(a) 
mRNA [61, 62••, 63]. Pelacarsen has shown promising results 
in early-phase and phase I/II clinical trials [61, 62••, 63]. A 
randomized, double-blind, placebo-controlled trial showed 
safety and good tolerance of pelacarsen in 64 participants 
while reducing Lp(a) levels in plasma [62••]. A second rand-
omized controlled trial showed a dose-dependent lowering of 
Lp(a) levels in plasma [63]. More than 90% of patients treated 
at higher levels of pelacarsen achieved Lp(a) concentrations 
below 50 mg/dL, the level above which is associated with 
increased risk of heart disease [63]. Currently, pelacarsen is 
being investigated for MACE reduction in the Lp(a) HORI-
ZON (Assessing the Impact of Lipoprotein(a) Lowering with 
Pelacarsen on Major Cardiovascular Events in Patients With 
CVD) clinical trial with an anticipated completion date of 
2025 (NCT04023552). Olpasiran, similar to inclisiran, targets 
PCSK9 and is an siRNA specifically targeting Lp(a) mRNA 
[64••]. Olpasiran significantly reduced Lp(a) up to 90% in a 
phase I trial in 65 adults [64••]. Olpasiran is currently under-
going a phase II trial in patients with ASCVD, anticipated to 
be completed in 2023 (NCT04270760). Another siRNA in 
early-phase clinical trials is SLN360, which showed a 98% 
reduction of Lp(a) in plasma in 32 participants [65]. SLN360 
is undergoing further clinical trial testing to ascertain safety 
and efficacy (NCT04606602).

Conclusions Although targeted guidelines for Lp(a) screening 
have evolved over recent years for individuals at high-risk of pre-
mature cardiovascular disease, existing guidelines for universal 
lipid screening in youth do not include measurement of Lp(a). 
This omission creates the risk of failure to identify families and 
children with high Lp(a), which if left untreated, places the 
individuals at increased risk of premature ASCVD, stroke, and 
calcific aortic stenosis. Including Lp(a) in universal cholesterol 
screening for youth, and family cascade screening for high Lp(a) 
and other inherited lipid disorders, is anticipated to improve risk 
assessment and recommendations for intervention and positively 
impact clinical decision making.
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