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Abstract

Purpose of Review Summarize the initial discovery of discoidal high-density lipoprotein (HDL) in human plasma and review
more recent innovations that span the use of reconstituted nanodisc HDL for membrane protein characterization to its use as a
drug carrier and a novel therapeutic agent for cardiovascular disease.

Recent Findings Using a wide variety of biophysical techniques, the structure and composition of endogenous discoidal HDL
have now largely been solved. This has led to the development of new methods for the in vitro reconstitution of nanodisc HDL,
which have proven to have a wide variety of biomedical applications. Nanodisc HDL has been used as a platform for mimicking
the plasma membrane for the reconstitution and investigation of the structures of several plasma membrane proteins, such as
cytochrome P450s and ABC transporters. Nanodisc HDL has also been designed as drug carriers to transport amphipathic, as
well as hydrophobic small molecules, and has potential therapeutic applications for several diseases. Finally, nanodisc HDL itself
like native discoidal HDL can mediate cholesterol efflux from cells and are currently being tested in late-stage clinical trials for
cardiovascular disease.

Summary The discovery of the characterization of native discoidal HDL has inspired a new field of synthetic nanodisc HDL,
which has offered a growing number of unanticipated biomedical applications.
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Abbreviations DLPC 1,2-Dilauroyl-sn-glycero-3-phosphocholine
ABC ATP-binding cassette DLPG 1,2-Dilauroyl-sn-glycero-3-phospho-
LCAT Lecithin:cholesterol acyl-transferase (1'-rac-glycerol)
apo Apolipoprotein NBD-PE  (N-(7-Nitrobenz-2-oxa-1,3-diazol-4-yl)
DMPC 1,2-Dimyristoyl-sn-glycero-3-phosphocholine -1,2-dihexadecanoyl-sn-glycero-3-
DMPS 1,2-Dimyristoyl-sn-glycero-3-phospho-L-serine phosphoethanolamine
POPC 1-Palmitoyl-2-oleoyl-sn-glycero-3-

phosphocholine
DHPC 1,2-Dihexanoyl-sn-glycero-3-phosphocholine Discovery of Nanodisc HDL

Nanodiscs in human plasma were first reported in 1971
by Trudy Forte when disc-shaped particles were first
5 Maki Tsujita foqnd' in plasma from patients with a genetic defect in
mtsujita@med.nagoya-cu.ac.jp lecithin:cholesterol acyltransferase (LCAT), a plasma en-

zyme that esterifies cholesterol [1]. Transmission electron
Department of Biochemistry, Nagoya City University Graduate microsopy (TEM) images Contr.aSted VYlth ‘2% sod.lum
School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, phosphotangustate revealed a series of discoidal particles
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Nagoya 467-8601, Japan stacked in a long rouleau-like formation (Fig. 1). In the
2 Lipoprotein Metabolism Laboratory, Translational Vascular same year, this group also reported that dialyzed denatured
Medicine Branch, National Heart, Lung, and Blood Institute, HDL fractions isolated from normal subjects also contained
National Institutes of Health, Bethesda, MD 20892, USA nanodiscs, with a radius of approximately 100-200 A and a
*  University of Tiibingen, 72074 Tiibingen, Germany width of 50-55 A [2]. Other groups then reported that
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Fig. 1 a Electron micrograph of
discoidal HDL stacked in
rouleau-like formation (the scale
bar: 10 nm). b Competing models
for how apoA-I is wrapped
around discoidal HDL. ¢ Model
for how CYP450s and ABC
transporters are reconstituted in
nanodisc HDL for structural
evaluation

incubation of apolipoproteins isolated from HDL with phos-
pholipids produced disc-like structures similar in size and
morphology to those observed in human plasma [3].
Incubation of purified porcine plasma apolipoproteins isolated
from HDL with large DMPC multilamellar vesicles was
shown to cause the dissolution of the vesicles, which then
spontaneously reorganized into HDL-like particles [4].
ApoA-I, the main protein component of HDL, is a tandem
array of amphipathic helices and was proposed by Jere
Segrest in 1977 to stabilize the disc structure of HDL by
wrapping around the side of disc like a “bicycle tire” [5, 6].
This model was later supported by others by the analysis
of reconstituted apoA-I and deuterated DMPC or hydro-
genated DMPC discoidal particles dissolved in D,O by a
wide variety of physical techniques, such as neutron scat-
tering and electron microscopy [7]. The majority of the
protein residues of apoA-I were located at the outer part
or edge of the complex in good agreement with the bicy-
cle tire model. Amino acids with hydrophobic side chains
were predicted to point inward to the lipid phase of the
particles, whereas polar or charged amino acids were ar-
ranged in the helix so that they point outward to the aque-
ous environment. This configuration of amino acids of
apoA-I was supported by short apoA-I mimetic peptides
that can also bind lipids and form nanodisc HDL [8§].

In 1985, a subpopulation of human HDL in plasma that
migrated slower than the major fraction of HDL during aga-
rose gel eletrophoresis was found by John Kane’s laboratory.
The majority of plasma HDL forms spheres with a radius of
90-100 A and is arranged in micellar-like configuration [9].
The surface lipids are mostly amphipathic phospho lipids,
namely phospholipids and free cholesterol, whereas the core
contains mostly hydrophobic lipids like cholesteryl ester made
by LCAT and a small amount of triglycerides. The slow-
migrating fraction of HDL, which was detected with an anti-
apoA-I antibody, migrated between HDL and LDL and hence
was named pre-3 HDL [10] and is strikingly similar to the
earlier report by Trudy Forte of discoidal HDL [11]. Others
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analyzed this HDL subfraction in normolipidemic individuals
and found that it represents between 3 and 6% of total HDL
[12]. Pre-3 HDL is also sometimes called nascent HDL, be-
cause it is thought to form when apoA-I, which is secreted by
the liver and intestine, extracts phospholipids from cell mem-
branes. When freshly harvested plasma was incubated with
skin fibroblasts labeled with [*H]cholesterol for 1 min,
[*H]cholesterol first appears in the pre- HDL fraction when
resolved by 2D gel electrophoresis [13]. One-minute incuba-
tion with a 2-min chase with non-labeled cholesterol showed
that most of the [°H]cholesterol was later transferred into oc-
migrating HDL, thus spherical forms of HDL.

In 1991, a novel concept was proposed by Shinji
Yokoyama in which lipid-free apoA-I interacts with the
plasma membrane and assembles pre-3 HDL species with
cellular phospholipids and cholesterol [14]. This reaction
can occur not only with apoA-I but with other exchange-
able type apolipoproteins like apoA-II, apoA-IV, apoE,
and apolipophorin III, which all contain amphipathic he-
lices [15, 16]. Furthermore, a classical hydrophobic
cholesterol-lowering drug, probucol, abolished this
apoA-I-mediated cellular lipid efflux and assembly of
pre-3 HDL [17]. Treating mice with probucol also mark-
edly lowered HDL in plasma, presumably by interfering
with this process [18]. In 1999, several groups discovered
that ABCA1, a member of the ATP-binding cassette trans-
porter family, was critical in this process by creating lipid
domains on the plasma membrane that can be extracted by
apolipoproteins [19-22]. It was also discovered to be the
defective gene in Tangier disease, which is a rare autoso-
mal recessive disorder of low HDL and the accumulation
of excess intracellular lipids, particularly in macrophages
[23, 24]. Altogether, these discoveries fit nicely with the
long proposed hypothesis that HDL is anti-atherogenic
because it promotes the removal of excess cellular choles-
terol from cells and then eventually returns it to the liver
for excretion by a pathway called reverse cholesterol
transport [25].
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Recent Structural Studies of Nanodisc HDL

The initial structural model for apoA-I on a unilamelar bilayer
discoidal particle (DMPC:DMPS, 9:1) was later modified by
an upgraded polarized internal reflection infrared spectrosco-
py which indicated a parallel double-belt configuration some-
times called the bicycle tire model (Fig. 1) [26]. A competing
model at the time was the picket fence model in which the
individual helices were oriented so that they were parallel to
the acyl chains in a picket fence-like configuration (Fig. 1)
[27]. Subsequently, other researchers described a more de-
tailed molecular belt model of the smallest discoidal HDL
particle containing 160 lipid molecules, surrounded by two
apoA-I molecules in antiparallel formation. The 11 amino acid
residues per 3 turns model, 11/3 model, of the amphipathic
helix seems to best fit with a predicted curved apoA-I of 105 A
in diameter in outer surface of the nanodisc and with 85 A
diameter of the inner side facing to the lipid bilayer [28]. The
structure of apoA-I on reconstituted particles was also evalu-
ated by cross-linking and also supports the antiparallel double-
belt model [29, 30]. By using a N-terminal truncated variant of
apoA-I, two strands of apolipoprotein A-I were found to wrap
around the circumference of the disc in an “antiparallel, belt-
like fashion™ as first described in the bicycle tire model [31].
An alternative structure of apoA-I on the pre-f3 HDL was then
introduced in 2007 [32], called the solar flare model. In this
model, the N-terminal globular domains were proposed to
protrude out from the lipid rim and interact with LCAT [33,
34]. The precise detailed LCAT-binding epitope of the anti-
parallel apoA-I dimers on nanodisc HDL has recently reported
[35], including the helix5/helix5 registry of the two helices of
apoA-I that are optimum for LCAT activation.

Nanodisc HDL for Structural Studies
of Membrane Proteins

Lipid nanodiscs are discoidal bilayer particles stabilized by a
membrane scaffold protein [36-38]. The use of lipid
nanodiscs for structural studies of membrane proteins is now
widely used, due to their many advantages over the classical
platforms used for this purpose, such as liposome reconstitu-
tion and detergent micelles. The isolation and analyses of
membrane-bound proteins or integral membrane proteins typ-
ically require the use of detergents, but the native configura-
tion of proteins in the lipid bilayer and their functionality may
not be accurately captured by this procedure. Nancodisc HDL
has, therefore, been explored as a novel tool to reconstitute
membrane proteins in their native form.

An early example of this approach used purified human
apoA-I [39] as nanodisc scaffold protein for investigating
the structure of cytochrome P450 proteins [40]. Because these
membrane proteins typically contain a single hydrophobic

membrane-anchoring domain, it is difficult to generate crys-
tals suitable for analysis by X-ray diffraction. It was possible,
however, to obtain some structural information on CYP2B4
by the atomic force microscopy when it was reconstituted in a
phospholipid bilayer of nanodisc HDL (Fig. 1) [40]. When
reconstituted in this nanodisc HDL, CYP2B4 was found to
project approximately 3.5 nm higher than its lipid-water
boundary. The complex was also shown to be functional in
regard to the electron transfer by its interaction with a specific
reductase [41-43]. Subsequent to these early efforts to use
nanodisc HDL containing apoA-I, specific proteins to stabi-
lize the disc called membrane scaffold proteins (MSP) have
been developed [44]. In many cases, membrane protein
nanodisc complexes can be investigated using methods al-
ready established for detergent solubilized membrane pro-
teins. For example, the N-terminal globular domain of
apoA-I was truncated and replaced with a His-tag and TEV
protease recognition sequence that can later be cleaved off
with TEV protease after the purification. Dimers of these
MSP were shown to self-assemble with cholate-suspended
DPPC into a nanodisc after a simple dialysis process [44].
Briefly, target membrane proteins of interest were solubilized
with Emulgen 913 and cholate and were mixed with mem-
brane lipids and the MSP. Detergents used in this process can
be removed by dialysis and incubation with Bio-Beads. This
method was first applied for CYP3A4 and its structure was
detected in a MSP nanodisc by small-angle X-ray scattering
(SAXS). Furthermore, it was found to be functional as re-
vealed by its high-affinity binding of testosterone and its abil-
ity to hydroxylate this substrate [45]. These MSP have been
designed to form nanodiscs with diameters between 6 and
8 nm, offering superior spectral acquisition performance in
solution-state NMR [46], while still allowing for protein-
lipid interactions that may play a key role in the correct folding
and function of the membrane protein under study [47].

In another example, human CYP17A1 was incorporated
into the nanodiscs and the function of active site residue,
Thr306, in its activity was investigated [48]. Several plant
CYPs, such as CYP79A1, and CYP71EI, and their corre-
sponding CYP reductases, have also been incorporated into
nanodiscs for functional studies [49]. In this case, the mem-
brane scaffold protein MSP1E3D1 was used along with
DLPC, DLPG, and NBD-PE [49]. MSP1E3D1 differs from
the original MSP by additional of a 3 helices (22-mer
amphipathic helix) insertion between helix4 and helix5, which
allows the formation of nanodiscs as large as 12.9 nm in di-
ameter for the analysis of larger membrane proteins [50]. In
contrast, MSP1D1AH4AHS5, which lacks helix 4 and helix 5,
can be used to generate much smaller nanodisc of 4 nm in
diameter [51].

The structure of the ABC transporters, ABCB1 (MDRI,
Pgp) and MsbA, the bacterial homolog of ABCBI, have also
been examined using nanodiscs made with MSP1E3D1 [52,
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53]. In this case, these proteins have multiple transmembrane
domains that span the nanodisc structure (Fig. 1).
Interestingly, three independent groups reported the basal
ATPase activity of MsbA in nanodiscs to be at least 7-fold
greater compared to detergent solubilized protein [52, 54,
55], while maintaining similar Km, indicating that the
nanodisc reconstitution did not adversely affect substrate
binding [52]. Furthermore, Zoghbi et al. [52] used lumines-
cence resonance energy transfer decay (LRETD) to investi-
gate the spatial separation of the catalytic nucleotide-binding
domains (NBDs). Under the near physiological conditions
afforded by nanodiscs, the NBDs exhibited two predominant
conformational states with short separations of 36 A and 47 A
between labeled Cys561 in each of the dimer forming NBDs.
Detergent-solubilized MsbA, on the other hand, showed a sin-
gle near exclusive separation of 53 A between the NBDs. By
comparison, the structure of V. cholera MsbA, crystallized in
the presence of the non-hydrolyzable ATP analogue AMP-
PNP, reveals an inward closed nucleotide bound state, with a
separation of ~ 36 A between the corresponding residues. This
observation is in line with LRETD performed on nanodisc
reconstituted and detergent solubilized MsbA, during the hy-
drolytic cycle, which in both cases leads to a marked shift to
the 36 A distance state. The close proximity of NBDs in the
nanodiscs is the likely reason for the higher basal ATPase rate,
since the catalytic cycle requires smaller conformational
changes to bind, hydrolyze, and release the ATP substrate, as
compared to the detergent-solubilized form [52]. Nanodiscs
have been successfully generated from both defined mixtures
of purified lipids, such as POPC, POPS, and cholesterol, as
well as whole tissue lipid extracts [56]. This constitutional
flexibility makes them particularly attractive since membrane
proteins have evolved to function in the defined lipid compo-
sition of their host organism and cell type, which produce a
characteristic micro-environment that detergents cannot accu-
rately mimic. Therefore, nanodiscs can be tailored to probe the
effect of specific lipids on protein function [56], without det-
rimental interference from detergents [57].

Short synthetic peptide mimetics of apoA-I have also been
used to generate nanodisc HDL for structural studies on what
was called bicelle-embeded membrane proteins. One such
peptide called 22A (PVLDLFRELLNELLEALKQKLK)
[58] was used to obtain the NMR structure of CYP2B4
[59-63]. By using a mixture of long-chain phospholipids,
DMPC, and short-chain phospholipid/detergent, DHPC
[59-63], the diameter of nanodiscs was found to depend upon
the lipid:peptide ratio. Nanodiscs made with 22A peptides
containing both CYP2B4 and CYTBS5(cytb5) were stable for
at least 10 days after preparation. Structural analysis by NMR
was consistent with previous reports and newly identified
Leu75 as a critical amino acid residue involved in the binding
interface between CYP2B4 and CYTBS. The authors con-
cluded that the conformation and catalytic activities observed
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in nanodiscs better reflect the in vivo state of CYPs and MsbA
and highlight the importance of lipid environment in the study
of membrane proteins which rectify the integral anchored do-
main, transmembrane domain, and juxtamembrane domains
of proteins.

Nanodisc HDL for Drug Delivery

Nanodisc HDL has also been exploited as drug delivery vehi-
cles with amphipathic drugs carried on the surface of the par-
ticles, whereas more hydrophobic drugs get buried in the acyl
chains of the phospholipids, which converts discoidal HDL
into a more spherical form with the drug in the hydrophobic
core of the particle. Counsell et al. [64] were the first scientists
to propose the potentially favorable characteristics of lipopro-
teins as drug delivery, but HDL was not tested for this purpose
until many years later by Schouten et al. [65] in 1993. Today,
the idea of using nanodisc HDL as drug delivery vehicles is a
rapidly growing field, because HDL possesses a number of
advantageous features that makes it an almost perfect trans-
porter of diagnostics and therapeutic agents [66, 67]. These
include its biocompatibility, payload capacity, long circulating
half-life, and selective targeting and controlled release capabil-
ity [67]. As already discussed, HDL can be easily reconstituted
in vitro from its major surface components apoA-I and phos-
pholipids [68], and during this procedure, a drug of interest can
be added and is readily incorporated into HDL, particularly if it
is amphipathic or hydrophobic. Structural and compositional
features of reconstituted forms of HDL, nanodisc HDL, are
also highly and easily customizable [69]. Moreover, besides
their capacity to deliver drugs, HDL has also been used to
deliver imaging agents and hence the term theranostics has
been often used to describe this field [70].

Some early examples of the use of discoidal nanodisc HDL
as drug carriers include poorly water-soluble drugs, like the
antifungal compound amphotericin B [71] and the strongly
neurotoxic all-trans-retinoic acid [72]. Integration of
amphotericin B into nanodisc HDL effectively solubilized this
antibiotic, which was found to have potent in vitro and in vivo
antifungal activity, with no observed toxicity at therapeutic
doses [71]. The use of nanodisc HDL for integration of all-
trans-retinoic acid showed that nanodisc HDL is a useful
vehicle for solubilization and delivery of drug to hepato-
ma cell lines [72]. Nanodisc HDL has also been utilized
as delivery agent to improve low-bioavailability drugs for
cancer [73-76] and Alzheimer’s disease [77, 78].
Formulation of nanodisc HDL with curcumin was suc-
cessfully used in targeting hepatoma, mantle cell lympho-
ma, and glioblastoma multiforme cell lines [73—75]. The use
of monocholesterylsuccinate (CHS)-modified paclitaxel-
loaded nanodisc HDL prevented its premature release and
improved its efficacy in tumor-bearing mice [76]. It has been
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recently shown that nanoparticles made from apoE3 and
nanodisc HDL (apoE3-rHDL, ANC: ApoE reconstituted
HDL nanocarrier) decreased amyloid 3 deposition, attenuated
microgliosis, ameliorated neurologic changes, and rescued
memory deficits in a mouse model for Alzheimer’s disease,
the senescence-accelerated mouse-prone 8 (SAMPS) mice
[77]. Similar results obtained from SAMPS mice treated with
apoE-rHDL nanodisc loaded with a polyphenolic agent, o~
mangostin, showed that these nanodiscs possess both amyloid
[3-targeting ability and blood-brain barrier permeability [78].
Moreover, studies on use of radiolabeled nanodisc HDL for
quantitative positron-emission tomography imaging of tumor-
associated macrophages in a breast cancer model showed its
potential for non-invasive imaging, and in this same study,
HDL was used to simultaneously deliver nucleic acids for
altering gene expression in target cells [79].

The use of HDL as a drug carrier has come a long way
since the original proposal of Schouten et al. [65], but so far it
has only been tested in animal models and much more work
still needs to be done in this area.

Nanodisc HDL for Cardiovascular Disease

Perhaps it is only fitting that nanodisc HDL has also been
harnessed for the likely physiologic role of HDL, the removal
of excess cellular cholesterol. A wide variety of different HDL
preparations made with full-length apoA-I protein or short
apoA-I mimetic peptides have been shown to reduce athero-
sclerosis in animal models and have also been tested in early-
stage clinical trials for the treatment of cardiovascular disease
[80].

This work was inspired by the pioneering studies by
Jere Segrest and G. M. Anantharamiah, who using syn-
thetic peptides, first described the structural motifs neces-
sary for lipid binding by apolipoproteins [8]. Nanodisc
HDL particles made with either apoA-I or synthetic pep-
tides were later shown to remove cholesterol and phos-
pholipid from cells in an ABCA1-dependent mechanism
[81, 82]. Similar to the situation with anti-microbial pep-
tides [83], apoA-I mimetic peptides with too high a hy-
drophobic moment are potentially cytotoxic, most likely
because of their ability to extract lipid in a non-ABCA1-
dependent pathway [81]. Efforts have, therefore, been
made to improve the specificity of these peptides for only
removing cholesterol by ABCA1 [84-86]. As described in
the structure study for membrane protein, nanodisc HDL
with 22A apoA-I mimetic peptide (22A-HDL) was also
applied for delivery of macrophage liver X receptor
(LXR) agonist. The treatment with drug carried 22A-
HDL successfully increased LXR target proteins of hepa-
tocytes and macrophages in apoE-null mice [87].

Several early-stage clinical trials, involving the intravenous
infusion of nanodisc HDL made with full-length apoA-I either
purified from plasma or recombinantly produced, have now
been completed [88—107]. The treatment appeared to be safe
and after only a few treatments appeared to markedly reduce
plaque size [92, 97], as assessed by intravascular ultrasound,
but some subsequent larger studies have failed to show a ben-
efit[91]. A large phase 3 clinical trial treating the patients with
cardiovascular disease with nanodisc HDL made with apoA-I
purified from plasma is currently underway [101, 107].
Nanodisc HDL made with synthetic peptides has also been
shown to be safe in early-stage clinical trials and peptides
made with D-amino acids have also been tested as oral agents
[108—110] but considerable more work needs to be done in
this area. Finally, the extracorporal transformation of spherical
HDL from plasma into nanodiscs by a plasmapheresis type
device has been described [111]. Nanodisc HDL produced in
this way is potent in effluxing cholesterol from cells and can
be reinfused back into patients and is being tested in early-
stage clinical trials [112].

Future Prospective

It has been a long and winding road from the first discov-
ery of nanodisc HDL to its detailed structural analysis and
now it has many structural biology and biomedical appli-
cations. Further improvements in the design of the apoA-I
mimetic peptides and the inclusion of different types of
lipids may further enhance the utility of nanodisc HDL.
Alternatively, short amphiphilic polymers, such as
styrene-maleic acid copolymer, can be a substitute for
apoA-I or mimetic peptides for reconstituting membrane
proteins in nanodisc HDL-like structures [113]. Related
polymers made with polystyrene called amphipols have
recently shown promise for structural studies of membrane
proteins and potentially can possibly be used as an alterna-
tive scaffold for nanodisc HDL [114]. Besides cardiovas-
cular disease, reconstituted nanodisc HDL has surprisingly
potent anti-inflammatory effects and has been shown in
animal models to have possible value in a wide variety of
infectious and inflammatory diseases. A new frontier for
nanodisc HDL is exploring its possible therapeutic use in a
variety of neurodegenerative diseases like Alzheimer’s dis-
ease [115]. Progress in these many areas, however, will
likely require a better understanding how the protein and
lipid composition of HDL relates to its many biological
functions, which likely inform us in how to best prepare
and use nanodisc HDL particles in the future.
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