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Abstract
Purpose of Review This review aims to discuss the existing
evidence on the link between atherosclerosis and periodontitis
by particularly presenting new findings that link the pathology
and therapy of these diseases. Acute vascular ischemic events
that can lead to stroke or myocardial infarction are initiated by
inflammatory processes leading to rupture or erosion of
plaques susceptible to thrombosis (“high risk” or “vulnera-
ble”). These are highly inflamed plaques residing in the media
and adventitia that may not be detected by angiography
measurments of luminal narrowing. Statistically significant
excess risk for atherosclerotic cardiovascular disease has been
reported in persons with periodontitis independent of
established risk factors. We hypothesized that the systemic
pathologic links also represent potential therapeutic links.
Recent Findings We recently demonstrated that periodontal in-
flammation promotes atherosclerotic plaque inflammation and
destabilization. As discrete pathological regions, these plaques
with a high susceptibility to rupture can be imaged and differ-
entiated from lower risk plaques. In cholesterol-fed rabbits with

periodontal disease, circulating inflammatory mediators were
also significantly elevated thereby contributing to “vulnerable
blood,” a systemic characteristic of high risk for cardiovascular
events. New studies show that certain lipid mediators, including
lipoxins and resolvins, are potent in preventing and possibly
treating a number of inflammation-associated diseases, includ-
ing periodontitis and vascular inflammation.
Summary The concept of the vulnerable patient and the pro-
resolving approach open new terrain for discovery of paradigm-
changing therapies for the prevention and treatment of two of
the most common diseases of man. Importantly, lipoxins and
resolvins are natural receptor agonists that do not exhibit the
same pro-atherogenic side effects attributed to anti-
inflammatory medications (e.g., NSAIDs) but rather coordinate
resolution of inflammation and a return to homeostasis.
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Introduction

Atherosclerosis and Thrombosis

Cardiovascular disease (CVD) and subsequent ischemic com-
plications, including myocardial infarction and stroke, are the
most common causes of morbidity and mortality in the USA
[1]. The underlying cause of most vascular disease is athero-
sclerosis, a chronic progressive inflammatory condition char-
acterized by vascular inflammation and sub-intimal lipid ac-
cumulation that can progress for years without symptoms [2•].
Atherosclerotic plaques may appear early in life and advance
to severe (“high risk”) plaques. An acute ischemic event (heart
attack or stroke) can occur when an atheromatous plaque dis-
rupts (thrombosis) [3, 4].
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Avery different response to thrombosis can also occur by the
body’s natural healing processes that stimulate “wound
healing,” in which the thrombus can be covered under a new
collagenous fibrous cap [5, 6]. This healing mechanism may be
life-saving; however, these plaques still remain at high risk for
future rupture. Carotid endarterectomy specimens patients with
luminal narrowing often show evidence of previous rupture and
thrombosis, even in asymptomatic persons [6]. Although thin-
cap fibrous atheromas have been identified as a risk factor, the
incidence of major cardiovascular events associated with a thin
cap fibroatheromas identified by intravascular ultrasound–virtu-
al histology is < 10% over ~ 3 years of follow-up [7, 8], sug-
gesting that other factors are important in determining plaque
rupture. In this review, we present evidence that periodontal
infection promotes systemic and arterial inflammation, which
may promote atherothrombotic cardiovascular events such as
myocardial infaction and stroke. Our hypothesis is that treat-
ment of oral inflammation with resolvins can decrease vessel
wall inflammation, mitigate atherosclerosis, and promote
healing mechanisms to limit thrombus growth and vulnerability.

Periodontitis and Cardiovascular Disease

Periodontitis is a chronic oral inflammatory disease that is
caused by bacteria that accumulate on teeth. The incidence of
severe periodontal disease in the USA is substantial (20%) [9].
Patients with periodontal disease share many of the same risk
characteristics as patients with CVD; they are older, predomi-
nantly male, and exhibit similar stress and smoking behaviors
[10]. Periodontitis clearly imparts excess risk for CVD [11] and
enhances CVD in animal models [12, 13, 14••] . However, the
determinants of plaque instability, the major cause of
atherothrombotic event, in individuals with periodontitis are
poorly understood. Previous studies have suggested positive
associations between periodontal infection and cardiovascular
disease [12] . The keystone periodontopathogen,
Porphyromonas gingivalis, and several other oral pathogens
were shown to have the ability to invade aortic tissues [15];
however, serum antibodies against these periodontopathogens
were not associated with the extent of coronary atherosclerosis
nor with coronary plaque vulnerability in human subjects [16].
The results of antibiotics in clinical trials were negative in pro-
tection against CVD events undermining the impact of infec-
tious agents [17]. Still today, the role of bacterial infection and
direct impact of bacteria in the course of CVD remains contro-
versial, and this controversy also minimizes the role of
infection-inflammation-mediated mechanisms as a determinant
of plaque instability and thrombosis. We have shown that peri-
odontal inflammation complicates the early atherosclerotic pro-
cesses and advances the atherosclerotic plaque development and
the risk for plaque instability (vulnerable to rupture) [14••]
supporting the hypothesis that inflammation initiated by

microbial infections is a major determinant of plaque rupture
in atherosclerosis [18, 19].

Resolvins and Resolution of Inflammation

To highlight the pro-resolving actions of resolvins that have a
different mechanism of action than conventional anti-
inflammatory drugs, we present detailed background below that
justifies our focus on resolution, rather than inhibition, of in-
flammation. Resolvins belong to a genus of endogenous anti-
inflammatory and pro-resolving mediators called specialized
pro-resolving mediators of inflammation, SPMs. SPMs are po-
tent therapeutics in inflammatory diseases, including periodon-
titis, and vascular inflammation [14••, 20–23]. In cardiovascular
disease, the use of statins and antihypertensives aims to control
risk factors, but there are currently no available therapies that
effectively stabilize or reverse established plaques [24•].

SPMs coordinate resolution of inflammation and return to
function without the pro-atherogenic side effects attributed to
NSAIDs [25–27]. Decreased levels of SPMs may predispose
progression of chronic vascular inflammation and vulnerabil-
ity to coronary atherosclerosis and thrombosis [28]. Studies
summarized in this review probe the hypothesis that the sys-
temic impact of bacterially induced inflammatory periodontal
disease contributes to atherosclerotic plaque vulnerability and
thrombosis. Recent evidence [14••, 29, 30] and preliminary
data suggest that local inflammation increases atherosclerosis
and the risk for thrombosis in a model of atherosclerosis and
periodontitis in rabbits, and resolvin E1 (RvE1) diminishes
this risk and advanced atherosclerotic changes. Although
resolvins are receiving increased research attention and have
demonstrated remarkable clinical effects in animal models
[20, 31, 32, 33••], the primary action of these molecules is
often mistakenly considered anti-inflammatory alone.

Here, we present a detailed background to the discovery,
chemistry, and mechanism of actions of resolvins on cellular
functions. The structural elucidation of RvE1 was first report-
ed in 2000 [34, 35]. Each enzyme in the synthetic pathway
and the complete stereochemistry as well as biosynthesis have
been elucidated in the biosynthesis of RvE1 (5,12,18R-
triEPE), a potent bioactive mediator in many disease models
[36]. Aspirin enhanced the production of this pro-resolving
mediator that was found to be produced from a novel precur-
sor released during hypoxia by human vascular endothelial
cells that release both 18R-hydroxyeicosapentaenoic acid
(18R-HEPE) and 15R-HEPE. Human neutrophils activated
with serum-treated zymosan convert these intermediates to
potent bioactive products via transcellular processing [37].
The complete stereochemistry and double-bond geometry of
RvE1 were established and its production identified in human
plasma using LC-MS-MS and MS3 [38].

RvE1 biosynthesis involves an 18-hydroperoxide interme-
diate that is rapidly converted to 5,6-epoxy-18R-EPE by 5-
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lipoxygenase (see Fig. 1). This led to the discovery of RvE2,
which also proved to be bioactive [39, 40], and to the demon-
stration that its actions are mediated by specific binding to
human leukocytes [36]. Once formed, the 5,6-epoxide 18R-
hydroxyeicosapentaenoic acid is converted by the human
LTA4 hydrolase to produce RvE1 (see Fig. 1). RvE1 acts at
two separate GPCR, both the ChemR23 receptor and the
BLT1 receptor, altering BLT1 signaling to evoke its
proresolving actions [41]. In addition to limiting or stopping
neutrophilic infiltration, RvE1 also stimulatesmacrophage up-
take of both apoptotic neutrophils and microbial debris [42].
This provides RvE1 as well as the other specialized
proresolving mediators [43, 44] and D-series resolvins [37]
the special ability to clean up an inflammatory site and prepare
for the return to homeostasis.

RvE1, given this unique ability to regulate neutrophilic infil-
tration, downregulates cytokines and prostaglandins, stimulates
macrophage-mediated phagocytosis of cellular debris and mi-
crobes [20, 45], and displays potent action in disease models
when added back as a potential therapeutic. The ability of RvE1
to promote phagocytosis has an impact in pulmonary disease
models [44, 46] and improves local inflammation in models of
periodontal disease stimulating inflammatory resolution, bone
protection, and tissue regeneration [20, 47]. Airway protection is
a potent action of RvE1, where it has a unique ability to stimu-
late other proresolving mediators such as lipoxin A4 in in vivo
models of allergic airway inflammation [46].

Additional actions of RvE1 include topical clearance of in-
flammation on mucosal surfaces [48], and its potential ability

led to clear and control of Herpes simplex virus-induced ocular
inflammation [49]. RvE1 has been used in clinical trials for
ocular inflammation. Success was reported in the treatment of
dry eye in a phase II clinical trial in humans. The results from
this study were further substantiated using animal models,
where RvE1 improved tear production and decreased inflam-
mation [50]. As a novel pro-resolving mediator [51], it also
prevents organ fibrosis and exerts antifibrotic actions [52].
RvE1 has protective actions in reperfusion injury and protects
from reflow injury in the rat heart [53] and is protective in
allograft rejection [54]. In recent studies, the precursor for
RvE1, 18-HEPE (Fig. 1), which is produced by human vascular
endothelial cells in a hypoxic environment [55], was found to
be bioactive when released by macrophages and is protective in
cardiac remodeling [56]. Together, these studies of RvE1 have
shown its proresolving actions on the innate immune response,
counter-regulation of cytokines, and have opened up a new
appreciation of the role of resolution in stimulating the clear-
ance and killing of microbes [57, 58].

Cholesterol-Fed Rabbit

Rabbits have served as models of atherosclerosis for more than
100 years [59]. Cholesterol feeding was first shown to cause
atherosclerotic plaque in 1913, and since then, rabbit studies
have been used to discover and characterize many aspects of
cardiovascular disease relevant to humans, including the discov-
ery of the role of nitric oxide, which led to a Nobel Prize in 1998
and the role of vascular inflammation [59].

A typical self-limited acute 
inflammatory time response: 
oedema; neutrophilic infiltration, 
temporal biosynthesis of SPMs; 
and non-phlogistic recruitment of 
monocytes or macrophages, which 
is required for homeostasis, and 
the repair and regeneration of 
injured tissues (Serhan 2014). 

Fig. 1 Biosynthesis of resolvin E1. The complete stereochemistry of
RvE1 is assigned as shown, as well as the total organic synthesis
confirming the potent pro-resolving biological actions [37], which limit
PMN infiltration, regulate dendritic cell migration, counter regulate
cytokine and pro-inflammatory lipid mediators, and stimulate enhanced
macrophage uptake of apoptotic cells, cellular debris, and microbes.

These actions, regulated by RvE1 in resolution, have a diverse impact
in disease models (text). The enzymes involved in RvE1 biosynthesis in
human leukocytes are established [36]. The structural elucidation,
biosynthesis, and actions of resolvin E1 led to the discovery of resolvin
E2, related D-series resolvins, and specialized proresolving mediators
(SPM) including the protectins and maresins [42]
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The New Zealand White (NZW) rabbit presents a highly
valuable model for inflammatory diseases, including cardio-
vascular diseases and periodontal disease, and does not re-
quire any genetic modification in order to compensate for
atherosclerosis development (a limitation of atherothrombotic
phenotype in mice) [60]. Periodontitis and atherosclerosis can
be simultaneously assessed in the rabbit to test the hypothesis
that the impact of local infection and inflammation on system-
ic inflammation is a determinant of cardiovascular plaque vul-
nerability and rupture.

Periodontitis with similar characteristics to human peri-
odontal disease can be established within 6 weeks with a lig-
ature and P. gingivalis challenge. After 6 weeks, the disease
progresses without further application of P. gingivalis, and the
infection persists in the periodontal pockets [47]. Unlike other
animal models, rabbits do not develop periodontitis when only
ligatures are introduced; P. gingivalis is required to induce
dysbiosis, initiating an inflammatory cascade and periodonti-
tis. In the rabbit model of periodontitis, topical lipoxins and
resolvins prevent and reverse periodontitis [20, 47].

The NZW rabbit fed a 0.5% cholesterol-supplemented diet
(Western diet) has permitted demonstration of the relationship
between periodontitis and large vessel atheroma formation

in vivo and showed that periodontitis increases large vessel
atherogenesis [13, 14••]. Figure 2a, b depicts the changes,
especially the dramatic synergistic effects on pathology, in
the gingiva of rabbits fed a 0.5% cholesterol diet with or with-
out periodontal disease induced by topical P.gingivalis appli-
cation. Dramatic effects were also seen in the aorta (Fig. 2c, e).
The animals without periodontitis developed atherogenic
changes, characterized by fatty streak lesions at the aortic arch
and patchy lesions along the thoracic aorta as a result of the
cholesterol diet. In the rabbits with P. gingivalis-induced peri-
odontal disease, atherosclerotic lesions were robustly in-
creased and extended to the thoracic and abdominal aorta
regions occupying up to 80% of the lumen area from aortic
sinus to the femoral bifurcation (Fig. 2c) [14••].

Histological assessments of the aorta confirmed that ani-
mals with periodontitis (Fig. 2a) had typical characteristics of
advanced atherosclerosis, including thickening intima along
with a medial atrophy and fibrous cap formation (Fig. 2a–d).
The quantification of plaque-covered area and intima/media
ratio clearly shows the impact of periodontitis on atheroscle-
rotic changes (Fig. 2e). Cholesterol diet resulted in a thickened
tunica intima, and this thickening was much greater with peri-
odontitis. We have also demonstrated a dose/response

Fig. 2 Periodontal disease enhances diet-induced early atherogenesis in
rabbits. a Periodontitis was induced in 0.5% cholesterol-fed NZW
Rabbits. At 13 weeks, the disease was obvious with all characteristics
of human periodontitis (red arrow). b Direct quantitative measurements
and quantitative histological sections demonstrated bone loss. c Aortic
fatty streaks were significantly increased in animals with periodontal
disease as shown in Sudan IV-stained en face aorta images. d
Periodontitis enhanced the development of atherosclerosis. The TI and
TM increased significantly beyond the increase with cholesterol feeding

alone, and a thin fibrous cap is visible (red arrow). The Tunica intima in
animals on normal diet showed is a normal thin layer consisting of
endothelial cells, subendothelial connective tissue, and a thin elastic
membrane connecting the tunica media. e Quantification of lipid
covered area revealed significant increases with periodontitis and a
higher intima/media ratio. ND: normal diet; CD: cholesterol diet; Pg: P.
gingivalis; TM: tunica media; TI: tunica intima; TA: tunica adventitia; L:
lumen
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inhibition of periodontal destruction and great reductions in
the atheromatous changes enhanced by periodontitis when
topical RvE1 (not shown) is applied preventively.
Furthermore, we observed that, in the absence of periodontal
disease, locally applied oral-topical RvE1 significantly
prevented vascular inflammation to an even greater extent
[14••], supporting the hypothesis that periodontal inflamma-
tion accelerates atherosclerosis and complicates the response
to treatment.

Constantinides Rabbit with Atherothrombosis

Periodontitis and Atherosclerosis, Plaque Rupture,
and the Impact of RvE1

The most dramatic and clinically useful development of the
rabbit model was the introduction of pharmacological triggering
of plaque disruption and thrombosis with Russell viper venom
(RVV) and histamine after atherosclerosis is developed in the
rabbit aorta. This intervention combines activation of coagula-
tion factors Xa and Va and vasoconstriction with histamine to
simulate a myocardial infarction caused by plaque rupture and
formation of a luminal thrombus [61]. The lengthy time period
for development of vulnerable plaques (2 years) was reduced to
6months by the introduction of balloon de-endothelialization by
Baumgartner and Abela et al. [62, 63]. The most recent modifi-
cation is a 3-month protocolwith 1%cholesterol diet for 2weeks
followed by balloon injury and then 6 weeks of cholesterol diet
and 4 weeks of normal chow that was developed on the
Hamilton lab [64]. The plaques have been well characterized
by histology and shown to consist of both stable and vulnerable
[early (types II and III) and advanced (types IV, Va, Vc, VI)].
Thus, the model replicates many features of human disease that
take decades to develop. Furthermore, model replicates features
of thrombosis seen in human coronary arteries [64–69], which
have not been replicated in mice or other animal models. A
major advantage of the rabbit model is that thrombosis can be
experimentally controlled, which cannot be performed in
humans, and permits studies of plaques in vivo by new ad-
vanced methods such as noninvasive MRI [70] and invasive
procedures [71]. The newest study by Stein-Merlob et al. used
a fluorescently labeled nanoparticle to demonstrate that plaque
disruption occurred at regions of high endothelial inflammation
[71], and an accompanying editorial described the rabbit model
as a “well validated model of atherosclerosis” [72].

Vulnerable plaques in the rabbit, as in humans, are associated
with an overlying thrombus [73], achieving the desired goal of
identifying the plaques at highest risk for disruption. Plaque
rupture is characterized by a necrotic core with an overlying
highly inflamed thin fibrous cap infiltrated by macrophages.
The entire vessel wall is inflamed and monocyte/macrophage
infiltration correlates with large, occlusive thrombi [73, 74].

To specifically identify the role of RvE1, the histopatho-
logical characteristics of atherosclerotic plaque and thrombus
in the Constantinides rabbits were compared those in untreat-
ed rabbits and cholesterol-fed rabbits with and without
P. gingivalis (unpubished data). The total lesion area was sig-
nificantly reduced in RvE1-treated animals (Fig. 3a, b); fur-
thermore, in plaques that did develop, histological analysis
demonstrated a significant reduction in foam cell formation
(Fig. 3c, d), collagen deposition, and the amount of RAM11-
positive cells (depicting macrophages) (Fig. 3e). Extensive
collagen deposition in plaques from untreated animals were
associated with significant RAM11+ staining and platelet ag-
gregation at the fibrous cap site indicating a vulnerable phe-
notype (Fig. 3c, e). Collectively, histopathological and MRI
analyses (Fig. 3c, e, f) indicate that RvE1 prevents the pro-
gression to a more complex lesion. These results suggest that
control of systemic inflammation with a resolution agonist
may offer protection from cardiovascular events.

Systemic Inflammation and the Vulnerable Patient

The studies reported in this review support the concept that
systemic inflammation involving remote sites in the body and
different organs has systemic vascular actions impacting ath-
erosclerosis. This concept gives rise to the idea that excess
inflammation becomes a risk factor for atherosclerosis and
other diseases and supports the concept of “the vulnerable
patient” presented more than a decade ago by numerous car-
diologists [75, 76]. The cardiovascular vulnerable patient is
susceptible to acute coronary syndrome based on plaque,
blood, or myocardial vulnerability [75, 77]. This concept is
further supported by our findings.

Vulnerable blood may comprise numerous atherosclerosis-
promotingmolecules such as cytokines and provide a stimulus
from sites distant from the atherosclerotic plaque [78]. For
example, C-reactive protein (CRP) is a nonspecific marker
of systemic inflammation and can originate from multiple
sites. With acute inflammation, CRP levels can increase by
up to 2 orders of magnitude and activate endothelium and
accumulate within the plaque [79, 80]. Other markers of sys-
temic inflammation, such as soluble adhesion molecules, cir-
culating bacterial endotoxin, soluble human heat-shock pro-
tein 60, and antibodies to mycobacterial heat-shock protein
65, may predict an increased risk of atherosclerosis [81].
Inflammation is a major determinant of plaque rupture [24•,
82]. Elevated systemic inflammation predicts CVD events and
local inflammatory foci both coincide with and induce system-
ic inflammation [30, 83, 84]. Atherosclerosis was originally
recognized as infiltration of lipids into the vessel wall, primar-
ily from LDL in the circulation and later as a local pathology
that was accelerated by local inflammation [85]. Extensive
evidence from human atherosclerosis and animal models
[86, 87], especially the pig model [88] and rabbit model in
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our studies [64, 89], emphasizes that inflammation affects all
regions of a vulnerable plaque (intima, media, and adventitia).
However, for vulnerable plaque, inflammation in the endothe-
lium is especially important as it stimulates exposure to
thrombus-promoting molecules both in the blood and in the
plaque [2•]. As discrete pathological regions, these high-risk
plaques can be imaged and differentiated from lower risk
plaques, which are considered “normal vessel wall.”

Conclusion

Our new results clearly demonstrate a molecular connection
between widely separated sites of vascular inflammation and
oral inflammation, as well as increased generalized inflamma-
tion in the vessel wall. We propose that this leads to increased
risk for thrombosis and also to growth and propagation of the
thrombus. Our new studies also show that the systemic nature

of these diseases presents a valuable therapeutic ap-
proach. Omega-3 polyunsaturated fatty acids (n-3 PUFA)
found in marine oils (eicosapentaenoic acid, EPA, and
docosahexaenoic acid, DHA) in the diet are converted to
resolvins to mitigate and control inflammation in localized
sites (Fig. 1). The products are also transmitted through the
circulation to distal sites to have beneficial effects beyond
their initial cellular origin. We have shown that application
of resolvin in the oral cavity effectively reduces local inflam-
mation in the periodontal tissues and also demonstrates distal
and beneficial systemic effects on atherosclerosis. Current
therapies for thrombosis are inadequate and often carry high
risks, and the resolvin/omega-3 fish oil therapy could provide
a very effective and safe therapy that can be taken chronically,
which will also serve as a preventive approach for plaque
inflammation and rupture long term. Our results and ongoing
work provide support for the concept of the “vulnerable” pa-
tient [75, 76] and a molecular mechanism of inflammation in

Fig. 3 RvE1 treatment in rabbits with advanced atherosclerosis and
thrombosis. a Selected images of en face aortas stained with Su-dan IV.
Rabbits fed 1.0% cholesterol (Constantinides model) and oral topical
treatment applied between 2 and 3 months. b Mean lipid covered area
(p = 0.097). c Selected histological sections stained with H&E. Arrow
depicts platelet aggregation at the fibrous cap indicating vulnerability of
the plaque in the untreated. Dotted lines reveal that resolvin treatment has
the potential to dramatically reduce the vulnerability and regresses

plaque. d Mean intima/media ratio (*p = 0.03). e Selected
immunohistochemical staining for macrophages in the intima using
RAM11 monoclonal mouse anti-body specific to rabbit macrophages
(black arrow). Resolvin treatment (1 mg/ml) reduced macrophage
infiltration. f Percent of animals that had plaque rupture after triggering
with RVV and histamine detected by MRI and confirmed by histology
(n = 5/group)
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the vessel wall [90]. Uncontrolled or chronic systemic inflam-
mation, prevalent in obesity and type 2 diabetes, sets people at
high risk for cardiovascular disease.
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