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Abstract Hyperlipoproteinemia type 3 (HLP3) is caused by
impaired removal of triglyceride-rich lipoproteins (TGRL)
leading to accumulation of TGRL remnants with abnormal
composition. High levels of these remnants, called β-VLDL,
promote lipid deposition in tuberous xanthomas, atheroscle-
rosis, premature coronary artery disease, and early myocardial
infarction. Recent genetic and molecular studies suggest more
genes than previously appreciated may contribute to the ex-
pression of HLP3, both through impaired hepatic TGRL pro-
cessing or removal and increased TGRL production. HLP3 is
often highly amenable to appropriate treatment. Nevertheless,
most HLP3 probably goes undiagnosed, in part because of
lack of awareness of the relatively high prevalence (about
0.2 % in women and 0.4–0.5 % in men older than 20 years)
and largely because of infrequent use of definitive diagnostic
methods.
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Introduction

Triglyceride (TG)-rich lipoproteins (TGRL) are a complex
array of particles having divergent associations with

atherosclerosis and coronary artery disease (CAD). Among
high TGRL phenotypes, hyperlipoproteinemia type 3 (HLP3)
carries the highest CAD risk. It is characterized by the pres-
ence of abnormal beta-migrating very low density lipoprotein
(β-VLDL) particles. HLP3 (also known as type III hyperlip-
idemia or familial dysbetalipoproteinemia) is an extreme case
of TGRL remnant accumulation due to impaired removal or
processing of TGRL remnants, often together with excess
TGRL production.

Although HLP3 patients have increased concentrations of
all TGRL remnants, the excess of β-VLDL alone is diagnos-
tic. The standard or basic lipid panel cannot distinguish HLP3
from other dyslipidemias. Several extended lipid profiles may
also have poor ability to identify patients with HLP3. This,
together with lack of appreciation for the frequency of HLP3,
has likely led to substantial underdiagnosis and inadequate
treatment of this important lipid disorder.

Diagnosis of HLP3

Definitive diagnosis of HLP3 has traditionally relied on ultra-
centrifugation to equilibrium of plasma at its native density
(d=1.006 g/ml). The supernatant fraction contains chy-
lomicrons, the full spectrum of VLDL, larger physiologic
TGRL remnants, and, if present, abnormal cholesterol-
enriched β-VLDL (see Table 1 for composition of lipopro-
tein). β-VLDL particles are so named because they have “β”
mobility on paper or agarose gel electrophoresis rather than
the “pre-β” mobility of normal VLDL particles (see Fig. 1).
β-VLDL are derived from both the liver [with apolipoprotein
B (APOB)-100] and the intestine (with APOB-48) and differ
widely in size (22-212 nm), with particles bearing APOB-48
found predominantly in the larger fractions [1]. β-VLDL are
the predominant lipoprotein type that accumulates in the plas-
ma of cholesterol-fed dogs and rabbits, as well as in apolipo-
protein E (APOE)-deficient mice.
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Electrophoresis of whole plasma followed by neutral lipid
staining yields bands at the origin (if chylomicrons are present),
followed by the β band, which normally represents only low-
density lipoprotein (LDL), a pre-β band corresponding to
VLDL, and an α band representing high-density lipoproteins
(HDL). Classically, HLP3 has been defined by ultracentri-
fugation followed by electrophoresis and staining of the d
<1.006 g/ml or “top” fraction. If a β band is visible
(representing β-VLDL particles), or a continuous band
is present from the β to the pre-β position (a so-called
broad-β band), then HLP3 is diagnosed. By definition,
intermediate-density lipoproteins (IDL) are not found in
the d <1.006 g/ml fraction (having density in the range 1.006 g/

ml<d<1.019 g/ml) but are rather found in the d >1.006 g/ml
infranatant fraction, together with LDL (1.019 g/ml<d<
1.063 g/ml) and HDL (d>1.063 g/ml). Electrophoresis of
whole plasma is inadequate for identification ofβ-VLDL since
normal LDL is also found in the β position (although a clear
broad β band with whole plasma is suggestive).

In traditional “beta-quantification,” ultracentrifugation is
performed onwhole plasma and the d <1.006 g/ml top fraction
is separated (e.g., by tube slicing at the upper one third of the
sample). Cholesterol is measured in the isolated top fraction
and is called “VLDL-C,” recognizing that it actually repre-
sents cholesterol from chylomicrons and all other TGRL with
d <1.006 g/ml. The triglyceride (TG) content of this top
fraction can also be measured as VLDL-TG. The ratios of
VLDL-C to total plasma TG (VC/TG) or VLDL-C/VLDL-TG
(VC/VT) are indices of TGRL composition. This composition
is not provided by the NMR lipoprotein quantification
(offered by LipoScience, Raleigh, NC, USA), which provides
estimated particle concentrations, although lipid compositions
of VLDL and other subfractions have been reported by newer
NMR methods [2•].

When acted on by lipoprotein lipase (LPL), cholesteryl
ester transfer protein, and possibly lecithin–cholesterol acyl-
transferase, TGRL invariably become cholesterol-enriched
during their sojourn through the plasma compartment [3]. In
contrast, VC/TG is reduced when there are excess chylomi-
crons and/or very large VLDL.

Several studies have been performed to establish composi-
tional cutpoints that reliably predicted the presence of β-
VLDL particles. These studies found that when VLDL-C is
measured by ultracentrifugation, VC/TG≥0.30 or VC/VT≥
0.35 reliably identified patients with HLP3 when the total TG
concentration was 150-1,000 mg/dl [4, 5]. VC/TG or VC/VT
ratios do not dependably detect β-VLDL that are present by
electrophoresis when the TG concentration is less than
150 mg/dl (relatively nonspecific) or greater than 1,000 mg/
dl (insensitive owing to masking by chylomicronemia) [6].

Sniderman et al. [7] suggested using an observed altered
relationship between total cholesterol (TC), TG, and APOB as
a means to diagnose HLP3. A TC/APOB ratio greater than
6.2, together with a TG/APOB ratio below 10 (with TC and
TG expressed as millimoles per liter and APOB in grams per
liter) in persons with plasma TG concentration above the 75th
percentile (about 150 mg/dl) successfully identified all 38
patients with HLP3 among 1,771 consecutive patients pre-
senting at a tertiary referral lipid clinic. They pointed out that
the TC/APOB ratio alone does not distinguish between
hyperlipoproteinemia type 1, HPL3, or hyperlipoproteinemia
type 5.

Clinical manifestations of HLP3 can include tuberous
xanthomas (see Fig. 2), and yellowish discoloration of
the palmar creases (palmar striae), as well as early-onset
CAD (37 % of 49 HLP3 patients referred to an NIH

Fig. 1 Agarose gel electrophoresis of the ultracentrifugal top fraction
[d <1.006 g/ml, very low density lipoprotein (VLDL)] and bottom
fraction (d >1.006 g/ml, containing low-density lipoprotein (LDL) and
high-density lipoprotein (HDL)] followed by Sudan black staining. Shown
is a gel prepared from plasma of a patient with hyperlipoproteinemia type 3
(HLP3) before and after treatment with simvastatin at 80mg. Note the near
disappearance of the β-VLDL band after simvastatin treatment

Table 1 Size, percent particle mass, and lipid mass ratio of major
lipoprotein classes. Percent mass contributions from protein can be cal-
culated as the difference of 100 % and the lipid percent mass shown

Particle Diameter (nm) Percent particle mass TG/TC mass ratio

TG CE FC PL

Chylomicron >100 88 3 1 5 29.3

VLDL 30-70 59 12 5 16 4.92

β-VLDL 22-212 41 29 7 17 1.71

IDL 29-33 20 34 9 20 0.69

LDL 24-27 4 41 11 21 0.11

HDL 7-28 4 14 4 27 0.30a

Adapted from Hopkins et al. [119]

CE cholesteryl ester, FC free cholesterol, HDL high-density lipoprotein,
IDL intermediate-density lipoprotein, LDL low-density lipoprotein, PL
phospholipid, TC total cholesterol (as cholesterol mass only), TG triglyc-
eride, VLDL very low density lipoprotein
a Assumes a 2:1 ratio for HDL3 to HDL2
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lipid clinic had CAD with mean age of onset of
39 years!) [4, 8]. The frequency of tuberous xanthomas
or palmar striae among HLP3 patients was estimated to be
only about 20 % in one series [9], but may be considerably
lower [6].

Epidemiology of HLP3 and Association with CAD

The Lipid Research Clinics Prevalence Study was the only
study to apply classic criteria to define HLP3 in a large,
representative general population. HLP3 was defined as the
presence of a β-VLDL band on electrophoresis of the d
<1.006 g/ml fraction separated by initial ultracentrifugation
(performed in all participants), with the additional requirement
of VC/TG≥0.30 in those with TG concentration of 150-
1,000 mg/dl. HLP3 was found in 0.4 % of men aged 20 years
and older in the general population, and at half that rate
(0.2 %) in similarly aged women not using hormones [6]. In
the only other study of which we are aware to implement
measurement of lipid fractions by ultracentrifugation in all
subjects from a large, representative population (more than
1,700 controls), the prevalence of HLP3 (VC/TG≥0.30,
TG concentration above 150 mg/dl) was 0.68 %, with
most subjects having TG concentration below 300 mg/dl
[10, 11].

Only after the above-mentioned ultracentrifugation-
based diagnostic criteria were established was a role
for APOE in HLP3 identified. Several families were
identified in which HLP3 subjects had APOE 2-2,
whereas other family members without APOE 2-2

frequently had what appeared to be dominantly transmit-
ted familial combined hyperlipidemia [12, 13]. It was
hypothesized that HLP3 resulted from two inherited
defects, APOE 2-2 causing impaired removal of TGRL
remnants, and a second condition which increased pro-
duction of VLDL. Obesity also clearly contributed to
increased expression of HLP3, whereas weight loss
could markedly decrease the levels of plasma lipids,
often with equally marked elevation in the levels of
lipids up on regaining weight [14]. Hypothyroidism
and estrogen deficiency, as in menopause, were also
seen to greatly increase HLP3 expression or severity
[15]. Because the APOE 2-2 genotype occurs at a fre-
quency of about 1 % and familial combined hyperlipid-
emia has a similar frequency, the prevalence of HLP3 is
often calculated to be about one in 10,000 [16]. How-
ever, this indirect estimate should not take precedent
over the direct observation (Table 1).

A recent study of a large lipid clinic population in Germany
(3,272 consecutive patients) identified 350 cases of HLP3
using the criteria of Sniderman et al. mentioned above
[17••]. Remarkably, although those with the APOE 2-2 geno-
type showed the highest likelihood of having HLP3, they
accounted for only 16 % of patients with HLP3 (see Table 2).
Clearly, HLP3 was not restricted to those with APOE 2-2; in
fact, most HLP3 patients did not have the APOE 2-2 geno-
type. These observations are in accord with our own prior
findings [108], and provide an explanation for the large
discrepancy between prevalence estimates using classic
criteria versus adding a requirement for APOE 2-2. Rare
APOE mutations accounted for only a couple of these

Fig. 2 a Tuberous xanthomas on
the elbows of a patient with
HLP3. b Tuberous xanthomas on
the elbows on a patient with both
familial hypercholesterolemia and
HLP3. c Tuberous xanthomas on
the knee of the patient in b
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German patients with HLP3 but without APOE 2-2
[17••]. A few more instances of rare APOE variants
caused HLP3 in a Spanish population, but again ex-
plained only a small percentage of cases [18•].

Although markedly increased risk of atherosclerotic dis-
ease has long been appreciated for patients with severe
HLP3, a population-based estimate of risk was not avail-
able until relatively recently [10, 11]. In these studies we
reported a fivefold to eightfold increase in CAD risk
among HLP3 patients. Considerably higher risk was asso-
ciated with severer HLP3. The more recent of these two
studies included 1,759 population-based controls and 1,170
case patients with onset of clinical CAD by age 60 years
in men and age 70 years in women. The prevalence of
HLP3 (0.68 %) in the control population was very similar
to the Lipid Research Clinics Prevalence Study estimate
[6]. The prevalence of HLP3 among CAD case patients
was 2.7 %, almost identical to that reported by Hazzard
et al. [19].

Owing to increasing interest in non-HDL cholesterol
(non-HDL-C), we utilized data from the more recent of
our CAD case–control studies[10] to examined the
CAD risk associated with categories of non-HDL-C in
persons with and without HLP3. When we graded the
severity of HLP3 by non-HDL-C concentration and
compared these risks with those for persons without
HLP3 but with similar non-HDL-C concentration, we
found widely overlapping risk estimates as shown in
Fig. 3 (previously unpublished results). There were no
individuals who met the criteria for HLP3 with a non-
HDL-C concentration under 160 mg/dl. However, the
risk estimate for HLP3 in those with non-HDL-C

concentration of 220 mg/dl or higher was approximate-
ly twofold higher than in those with similarly elevated
non-HDL-C concentration but without HLP3 (although
these risks were not significantly different). In another
model, if non-HDL-C concentration was simply entered as a
continuous variable and allowed to apply to all persons with or
without HLP3, then the CAD risk associated with HLP3
became nonsignificant (odds ratio 1.2, p=0.62 for all
HLP3), even for the severest HLP3 category (odds ratio 3.2,
95 % confidence interval 0.4-27, p=0.29). These results sug-
gest that, to a large extent, reduction of non-HDL-C concen-
tration to current treatment goals is a reasonable guide for
treatment of HLP3 patients, whether or not HLP3 is recog-
nized. However, the data also suggest that severer HLP3 may
carry excess risk beyond what is predicted by non-HDL-C
concentration alone.

Several other laboratory methods, such as levels of
IDL, remnant-like particle (RLP) cholesterol (RLP-C),
and apolipoprotein C (APOC) 3 in VLDL, have been used
to assess CAD risk associated with TGRL remnants. The-
se risk estimates can vary substantially, depending on the
method or parameter used, but most show significantly
increased CAD risk associated with higher levels of
TGRL remnants [3, 20•].
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Fig. 3 Risk of premature coronary artery disease (CAD; myocardial
infarction, coronary artery bypass graft, or percutaneous transluminal
coronary angioplasty by the age of 60 years in men or 70 years in women)
associated with HLP3 among 1,170 premature CAD cases and 1,759
population-based controls. HLP3 was defined as a measured VLDL
cholesterol (VLDL-C) to total triglycerides (VC/TG) ratio of 0.30 or
higher with a concentration of total triglycerides above 150 mg/dl. Those
with HLP3 were further broken down as having mild, moderate, and
severe HLP3, defined as shown according to non-HDL cholesterol (non-
HDL-C) categories. Risks are compared in those with and without HLP3
according to the non-HDL-C category. Logistic regressionwas performed
with adjustment for age, gender, hypertension, diabetes, history of ciga-
rette smoking, HDL-C level, and non-HDL-C category (with or without
HLP3). CI confidence interval, OR odds ratio

Table 2 Apolipoprotein E (APOE) genotyping of 3,272 consecutive
patients seen at a lipid clinic in Germany. Hyperlipoproteinemia type
3(HLP3) was diagnosed in 350 patients using the criteria plasma TC/
apolipoprotein B (APOB)>6.2 and TG/APOB<10 (with TC and TG
expressed as millimoles per liter and APOB in grams per liter). Surpris-
ingly, only 16 % of patients had the classic APOE 2-2 genotype. Those
with HLP3 not related to APOE 2-2 underwent sequencing of APOE in
search of possible rare mutants, but only two or three such cases were
found to explain non-APOE 2-2 HLP3 [17••]

APOE
genotype

No. of
patients

HLP3
patients (350)

Percentage of
APOE genotype

Percentage of all
HLP3 patients

2-2 108 55 50.9 15.7

2-3 338 53 15.7 15.1

2-4 105 20 19.0 5.7

3-3 1,701 141 8.3 40.3

3-4 903 72 8.0 20.6

4-4 110 6 5.5 1.7

Abnormala 7 3 42.9 0.9

a Refers to atypical APOE gel pattern
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Atherogenicity of β-VLDL

Several classes of cholesterol-enriched TGRL remnants ap-
pear to be atherogenic [21••]. β-VLDL are arguably the most
atherogenic of these given the very high CAD risk of HLP3
patients and the rapid atherosclerosis progression seen in
APOE knockout mice fed a Western diet. It appears that it is
the cholesteryl ester component of TGRL in these mice that is
atherogenic, rather than the TG. This was demonstrated by
showing that deficiency of acyl-CoA:cholesterol acyltransfer-
ase 2, which resulted in TGRL with normal or high TG levels
but very little cholesteryl ester, almost entirely abrogated
atherosclerosis in APOE null mice despite similarly high
APOB-48 and APOB-100 particle concentration [22].

In now-classic studies, incubation of macrophages with
native LDL did not cause foam cell formation owing to
downregulation of the LDL receptor (LDLR) [23–25]. How-
ever, after LDL were modified by oxidation or acetylation,
they were avidly taken up bymacrophages, with conversion to
foam cells. In these same studies, β-VLDL from cholesterol-
fed rabbits or dogs needed no modification to promote foam
cell formation. Some uptake of β-VLDL into macrophages
was found to be mediated by the LDLR, but also by other
pathways such as the SR-B1 scavenger receptor as shown in
macrophages from LDLR-/- mice [26].

Endothelial activation, as measured by expression of the
chemokines monocyte chemoattractant protein 1, intercellular
adhesionmolecule 1, and vascular cell adhesionmolecule 1, is
enhanced by incubation with so-called RLP obtained from
hyperlipidemic, diabetic human subjects [27]. Incubation of
monocytes with RLP also promotes their adhesion to endo-
thelial cells [28]. RLP can also induce a strong inflammatory
response with vigorous NADPH oxidase activation and
superoxide formation followed by apoptosis in endothe-
lial cells through activation of lectin-like oxidized-LDL
receptor 1 [29].

Although β-VLDL and some other TGRL remnants can
promote foam cell formation without a need for modification
[21••], they must first enter the subendothelial space to do so.
Most TGRL remnants are small enough to enter this space, in
which they are avidly retained [30]. Once in the
subendothelium, VLDL and IDL can be altered by
sphingomyelinase, causing them to aggregate, fuse, and in-
crease in binding affinity to proteoglycans [31]. Not surpris-
ingly, this sphingomyelinase-induced aggregation of TGRL
appears to promote avid macrophage uptake and foam cell
formation [32]. Importantly, TGRL remnants carry many
cholesteryl ester molecules per particle. For example, a chy-
lomicron remnant with a diameter of 100 nm has been esti-
mated to carry 40 times more cholesteryl ester than an LDL
particle [33].

In one study, lipoproteins were eluted from thoracic and
abdominal aortic tissue at autopsy, and TGRL and LDL

fractions were then separated by density gradient ultracentri-
fugation. When these fractions were incubated with mouse
peritoneal macrophages, the TGRL increased incorporation of
radioactive oleate into cholesteryl esters by 10-20-fold versus
only threefold to fourfold for LDL [34]. Oxidized β-
VLDL or VLDL remnants isolated from patients with
HLP3 or type IV hyperlipidemia were found to cause
greater macrophage cholesteryl ester accumulation than
did oxidized LDL [35, 36].

Pathophysiology of β-VLDL Accumulation
inHLP3—New Insights fromMouse andHumanGenetics

Impaired Hepatic Processing of TGRL is the Hallmark
of HLP3

Fundamental to understanding the basis of HLP3 is recogniz-
ing the normal, physiological role of the liver in both direct
removal from the bloodstream of some TGRL remnants and
the conversion of other TGRL remnants to LDL (see Fig. 4).
When VLDL or chylomicrons are infused into animals whose
liver has been removed or who have had a “functional”
hepatectomy, TGRL remnants accumulate and production of
true LDL is almost entirely eliminated [37]. In vitro, incuba-
tion of TGRL with purified LPL, with or without added
hepatic lipase (HL), causes lipolysis but does not generate
normal LDL [38]. Probably little or no LDL is generated from
TGRL outside the liver. The highly impaired hepatic conver-
sion of small VLDL and IDL to LDL in patients with HLP3 is
illustrated in Fig. 5 [39]. This impaired processing of TGRL in
HLP3 patients leads both to accumulation of remnants and
frequently to reduced LDL cholesterol (LDL-C) levels.

Recognition that LDLR binding by the APOE 2 variant is
markedly deficient (less than 2 % of the common APOE 3
variant’s affinity) provided a model system for impaired he-
patic removal of TGRL remnants in HLP3 [40]. β-VLDL
particles from APOE 2-2 HLP3 patients were directly shown
to have very poor affinity for the LDLR [41]. In one study, β-
VLDL was found to be absent from patients with
hyperlipoproteinemia type 5 despite very high total TG and
chylomicron levels, but accumulation of β-VLDL could be
induced by rapid administration of heparin, which causes
activation of LPL and HL, but apparently also led to inhibition
of further processing of the remnants produced [41].

Soon after recognition of APOE and its interactions with
LDLR, another receptor of the LDLR family, LDLR-related
protein 1 (LRP1), was found to play a role in liver-mediated
removal of remnants. LRP1 also has somewhat decreased
affinity for APOE2 compared with APOE3 [42, 43]. Impaired
endocytosis of LRP1 due to a mutation in the intracellular tail
of the receptor resulted in increased remnant accumulation in
LDLR-deficient mice [44]. In vitro, APOC1 and less so
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APOC2 were found to inhibit binding of TGRL remnants to
LRP1. However, an abundance of APOE was able to displace
APOC1 and allow LRP1 binding [45]. Transgenic overex-
pression of APOC1 in APOE-/- mice markedly increased
hyperlipidemia [46].

Although APOC3 on VLDL may inhibit LPL, a more
important effect may be to delay VLDL uptake and catabo-
lism, thus further enhancing cholesteryl ester enrichment of
VLDL [47, 48]. Transgenic overexpression of APOC3 in-
creases plasma TG levels and atherosclerosis in LDLR-/- mice
[49]. More importantly, excess APOC3 in LDL and/or VLDL
is associated with increased CAD risk in humans [50, 51].

although this is mitigated somewhat by the presence of APOE
on particles with APOC3 [20•]. The presence of APOE on
VLDL appears to promote their removal by the liver, thus
overcoming the inhibitory effect of APOC3 [52].

Another receptor of the LDLR family is the VLDL recep-
tor. Unlike LRP1, however, it is principally found in periph-
eral tissues active in lipolysis and fatty acid uptake, such as
adipose, heart, and skeletal muscle. Its deficiency promotes
accumulation of VLDL remnants in knockout mice when the
flux of TGRL is high [53]. The scavenger receptor SR-B1 is
also expressed on hepatocytes and may mediate uptake of β-
VLDL, particularly in the absence of the LDLR [26].

Heparan sulfate proteoglycans (HSPG) also bind APOE on
TGRL remnants, with different APOE variants having differ-
ent affinities. APOE2 has low binding affinity for HSPG, and
APOE Leiden apparently shows no binding to HSPG at all
[54]. A “secretion–capture” mechanism has been reported in
which hepatocytes secrete APOE at high concentrations into
the space of Disse, causing localized enrichment of TGRL
remnants with APOE (and perhaps displacement of APOC
apoproteins) and capture of these TGRL by HSPG as well as
by LRP1 and the LDLR [55].

Syndecan 1 (SDC1) is the main backbone protein of HSPG
found on basal microvilli of hepatocytes which project into the
space of Disse. SDC1 is decorated by three heparan sulfate
chains with specific sulfation patterns required for normal
binding of TGRL remnants. In addition, these HSPG bind
HL and LPL. Knockout of SDC1 in mice leads to TGRL

Fig. 4 Kinetic basis of HLP3.
Heavy purple lines suggest
increased production of VLDL,
and red X’s denote impaired
removal or processing of the
triglyceride-rich lipoprotein
remnants. apo apolipoprotein, CE
cholesteryl ester, CETP cholesteryl
ester transfer protein, CHOL
cholesterol, HMG high mobility
group, IDL intermediate-density
lipoprotein, LCAT lecithin–
cholesterol acyltransferase, LDL
low-density lipoprotein, LDLR
low-density lipoprotein receptor,
TG triglycerides, TRIG
triglycerides, PLTP phospholipid
transfer protein, LRP1 LDL
receptor-like protein 1, HL hepatic
lipase, LPL lipoprotein lipase,
APOE apolipoprotein E, SDC1
syndecan 1, NDST1 GlcNAc N-
deacetylase/N-sulfotransferase 1,
HS2ST hepatic uronyl 2-O-
sulfotransferase, SR-B1 scavenger
receptor B1, SULF2 heparan sulfate
glucosamine-6-O-endosulfatase-2

Fig. 5 Human hepatic arteries and veins were cannulated to measure
conversion of infused, radiolabelled, small VLDL and IDL to LDL in
liver. (Adapted from Turner et al. [39])
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remnant accumulation [56]. Furthermore, heparin was shown
to compete with HSPG for remnant binding, possibly
explaining the above observation that heparinization of
hyperlipoproteinemia type 5 patients could induce the appear-
ance ofβ-VLDL. Liver-specific deletion of glucosoaminyl N-
deacetylase/N-sulfotransferase 1, one of the enzymes required
for normal sulfation of HSPG, also led to remnant accumula-
tion in mice. The phenotype was exacerbated in the face of
background LDLR deficiency [57]. Similarly, hepatic uronyl
2-O-sulfotransferase was required for normal remnant pro-
cessing, whereas glucosaminyl 6-O-sulfotransferase 1 was
not, suggesting a critical role of 2-O sulfation of heparan
sulfate [58]. Nevertheless, 6-O-sulfate removal by heparan
sulfate glucosamine-6-O-endosulfatase 2 (SULF2) apparently
leads to HSPG degradation. SULF2 activity is markedly up-
regulated in diabetic db/db obese mice, resulting in impaired
remnant removal. Notably, SULF2 is induced tenfold in he-
patocytes by advanced glycosylation end products [59].

L P L c a n b e s e p a r a t e d f r o m i t s a n c h o r
glycosylphosphatidylinositol-anchored HDL-binding protein
1 on the surface of endothelial cells and become bound instead
to TGRL. LPL thus bound to TGRL remnants can then
promote interaction with hepatic HSPG. HL may be similarly
loosed, bound to TGRL, and promote binding of TGRL
remnants to hepatic HSPG. Both LPL and HL thus appear to
promote TGRL uptake and clearance from plasma. Rare
homozygous HL deficiency with absence of HL protein
results in accumulation of β-VLDL and probably in-
creased CAD risk [60], whereas mutations that cause
loss of HL activity with preservation of HL protein result
only in TG enrichment of most lipoproteins but not
accumulation of β-VLDL [61, 62].

A number of other APOE variants other than APOE-2,
mostly rare, were identified that can cause HLP3, and many
do so in a dominant fashion (see Table 3) [63]. All these
mutations have in common impaired binding to the LDLR,
LRP1, and/or HSPG. Several of the less common APOE
variants appear to predominate in certain racial or ethnic
groups [64, 65]. For example, the R136S APOE variant, com-
moner in a Spanish population and among certain Africans,
was shown to cause an incomplete dominant transmission, with

more frequent expression of VC/TG>0.30 in those with higher
BMI and in males [66].

Why and how some TGRL remnants undergo hepatocel-
lular uptake and degradation whereas others are processed to
LDL remains unanswered. Apparently, HSPG is more active-
ly involved in uptake or processing of smaller particles,
whereas LRP1 and LDLRmediate processing of larger TGRL
remnants [67]. Inducible deficiency of LRP1 in mice primar-
ily led to the appearance of chylomicron remnants if the mice
were also LDLR deficient; however, in the presence of a
functioning LDLR, LRP1 deficiency led to LDLR upregula-
tion and little phenotypic effect [42]. Nevertheless, internali-
zation of the LDLR is not necessary for it to function in TGRL
processing since murine deficiency of LDLR adaptor protein
1, an intracellular adapter required for internalization of
LDLR into clathrin-coated pits, causes impaired catabolism
of LDL but not accumulation ofβ-VLDL [68]. About 25% of
heterozygous familial hypercholesterolemia (FH) patients
with a single APOE2 allele expressed HLP3, whereas nearly
all those with APOE 2-2 have HLP3 [69]. Surprisingly, these
FH patients do not appear to be at greater risk of CAD than
other FH patients, presumably because of a concomitant re-
duction in LDL-C levels [70, 71].

Increased VLDL Production Aggravates HLP3

Both the quantity and the nature of VLDL produced by the
liver may greatly affect HLP3 expression. For example, obe-
sity is associated with markedly increased VLDL production
(particularly APOC3-containing VLDL1)[47] and severer
HLP3.

APOB is constitutively synthesized, inserted into the lu-
men of the endoplasmic reticulum (ER) as it is translated, and
then almost immediately acquires lipid through a poorly un-
derstood process mediated by microsomal TG transport pro-
tein. Without lipid, the highly hydrophobic APOB protein
rapidly misfolds and is degraded by ER-associated degrada-
tion, a proteasome dependent process. Lipid droplets in hepa-
tocytes, which are found near the ER and Golgi apparatus, are
not composed simply of lipid, but contain numerous proteins,
including APOA5 and APOC3. They behave as complex
organelles with machinery akin to vesicles for fusion and
transport [72, 73]. After emerging from the ER, the newly
formed VLDL has the approximate TG content of a smaller
VLDL2 particle. These nascent VLDL2 particles are
transported to the Golgi apparatus prior to secretion. In per-
sons with normal or low plasma TG levels, little or no addi-
tional TG appears to be added in the Golgi apparatus and
primarily VLDL2 particles are secreted.

Under conditions of nutrient abundance (particularly high
fructose or sucrose consumption), elevated plasma glucose
concentration, or impaired insulin signaling, and especially
with excess intrahepatic TG, VLDL2 particles in the Golgi

Table 3 APOE variants associated with HLP3 besides APOE 2

E3K R136S K146Q R224Q in E2

E3K + E13K R136C K146E V236E in E2

G13K + R145C R142L K146N, R147W R251G in E4

L28P in E4 R142C in E4 R147W

C112R, R142C R145C K164E Dup121-127
(APOE Leiden)G127D, R158C R145H E244K + E245K

From OMIM and Matsunaga et al. [63]

E2 is (112C, 158C), E3 is (112C, 158R), and E4 is (112R, 158R)
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apparatus acquire additional TG and apoproteins, including
APOC3, to become larger VLDL1 particles prior to secretion
[72, 73, 74•]. APOC3 appears to promote the formation of
both cytoplasmic and luminal lipid droplets and transfer of
this lipid to nascent VLDL particles, leading to increased
secretion of the larger, more TG-rich VLDL1 [73, 75•].
APOC3 synthesis can be induced in cultured hepatocytes by
high glucose content in the medium, suggesting a possible
mechanism for the increased plasma APOC3 and VLDL1
levels commonly seen in diabetic dyslipidemia [76•]. In
HLP3, increased APOC3 production and impaired hepatic
removal of VLDL-associated APOC3 leads to plasma levels
of VLDL APOC3 nearly ten times greater than in normal
individuals and more than two times higher than those of
subjects with hyperlipoproteinemia type 2b [77, 78].

Intrahepatic APOA4 appears to have a role similar to that
of APOC3 in promoting VLDL1 production and secretion
[79•]. In contrast, APOA5 has an inhibitory effect on VLDL1
production within hepatocytes [80]. Overexpression of human
APOA5 in APOE-deficient mice reduced both plasma lipid
levels and atherosclerosis [81•].

Oxidation of fatty acids in nascent VLDL in the Golgi
apparatus leads to misfolding and autophagy-dependent
degradation of these deformed VLDL1 particles, a process
termed post-ER, presecretory proteolysis. Post-ER,
presecretory proteolysis of VLDL is enhanced by intake
of omega-3 fatty acids (which are particularly prone to
oxidation) and also by normal acute insulin signaling
through activation of a type II phosphatidylinositol kinase
[82•, 83•]. VLDL1 levels are increased by insulin resis-
tance even in the absence of frank TG level elevation
[84]. In addition, VLDL1 synthesis is directly stimulated

by increasing glucose levels in cell culture [85, 86].
Statins appear to specifically decrease VLDL1 production
by as yet unclear mechanisms [87].

Larger VLDL1 particles have more TG, a lower VC/VT
ratio, and more APOC3 than VLDL2 particles [88]. Only
about 10 % of large VLDL1 particles (100–400 Svedberg
floatation units) are converted to LDL, even in normal indi-
viduals, whereas more than 40 % of smaller VLDL2 particles
(20–100 Svedberg floatation units) are converted to LDL in
normal subjects [89]. Thus, VLDL1 might be expected to be
more likely precursors of β-VLDL in HLP3. Furthermore,

Fig. 6 Comparison of our
previously published
ultracentrifugation micromethod
for VLDL-C (“no-wash”, tube-
slicing, and lipid analysis in the
d >1.006 g/ml fraction) with our
improved procedure
(underlayering, supernatant
aspiration followed by weighing
and lipid analysis of the
d <1.006 g/ml fraction). The
buffer used for the 750-μl
overlayer contains 150 mMNaCl,
Na2EDTA at 1 mg/mL, NaN3 at
1 mg/mL, pH 7.4, d=1.006 g/ml

Table 4 Agreement between our published “no-wash” beta-quantification
micromethod [101] and our improved underlayering technique among 272
subjects, 112 having HLP3 diagnosed by the older method. The sensitivity
of the “wash”methodwith a VLDL cholesterol (VLDL-C)/VLDL-TG ratio
cutpoint of 0.30 or greater rose to 90 % among subjects with a plasma TC
concentration of 250 mg/dl or higher and a TG concentration of 250 mg/dl
or higher. We calculated sensitivity and specificity for the “wash” method
using the “no-wash” method as the standard. However, we believe the
VLDL-C/VLDL-TG ratio method utilizing data generated by floating the
triglyceride-rich lipoprotein remnants (TGRL) through the saline layer
provides more specific results, representing a more accurate assessment
of TGRL free from contamination from denser lipoproteins

Improved “wash”
method VLDL-C/
VLDL-TG

Compared with
standard “no-wash”
beta quantification

κ (95 % CI)

Sensitivity (%) Specificity (%)

≥0.30 82.1 94.4 0.78 (0.70-0.85)

≥0.35 67.9 97.5 0.68 (0.60-0.77)

≥0.40 46.4 99.4 0.50 (0.40-0.59)

CI confidence interval
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larger, TG-rich VLDL1 particles appear to be more athero-
genic than the smaller VLDL2 particles in that they are taken
up more avidly by macrophages [90] and fibroblasts [91], and
may activate endothelial cells [92] more than VLDL2 parti-
cles. The greater APOC3 content of VLDL1 may cause this
greater uptake and/or activation [92]. Indeed, APOC3 was
shown to directly bind Toll-like receptor 2 on human
monocytoid THP-1 cells, resulting in increased production
of nuclear factor κB and activation with greater adhesion to
endothelial cells [93].

Direct evidence of increased VLDL1 production in HLP3
is limited. In two subjects with APOE 2-2 and mild HLP3,
VLDL1 production was apparently not increased, but conver-
sion of VLDL2 to LDL was impaired [94]. Other studies
reported no clear increase in VLDL APOB production in
patients with HLP3, although secretion of VLDL containing
APOC3 appeared to be increased in one study [95], and
increased VLDL production seemed to correlate with greater
severity among HLP3 patients in another study [96]. Never-
theless, in HLP3, VLDL1 particles undergo rapid, normal
lipolysis, but then their remnants undergo hepatic uptake and
catabolism only very slowly, a kinetic feature that has no
parallel in normolipidemic individuals or persons with type
IV hyperlipidemia (characterized by excess accumulation of
VLDL of relatively normal size and composition). At least a
portion of the smaller VLDL2 particles in HLP3 patients
appear to be converted relatively rapidly to LDL; however,
some VLDL2 particles have prolonged plasma residence [89].
Intestinally derived TGRL remnants also have delayed catab-
olism from plasma and accumulate in HLP3. Even after a 14-h
fast, β-VLDL of both intestinal and hepatic origin remain in
HLP3 [1].

Lipolysis generally appears to be normal in HLP3 patients.
Thus, loss-of-function mutations of LPL are relatively com-
mon in hypertriglyceridemia types IV and V but are rare in
HLP3 [97]. Concordantly, LPL activity measured in post-
heparin plasma of Japanese HLP3 patients was normal, al-
though HL activity was moderately reduced [98].

The above observations are generally consistent with the
findings of recent human genetic studies. Comparing HLP3
patients with APOE 2-2 with normolipidemic APOE 2-2
carriers, Henneman et al. [99] found increased frequency of
APOC3 3238 G>C and APOA5 -1131 T>C mutations (which
are in linkage disequilibrium with each other) among HLP3
patients, with some evidence of an APOA5 variant and an LPL
rare variant being associated as well. Johansen et al. [100••]
examined association of recently identified lipid gene markers
with specific lipid phenotypes. Markers associated with HLP3
in 37 patients included APOE (with the 2 allele explaining
34.6 % of the total variance), APOA5 (with the second stron-
gest association), KLHL8 (part of an E3 ubiquitin ligase
complex),COBLL1 (unknown function), andNAT2 (encoding
an N-acetyl transferase, involved in drug metabolism).

Interestingly, variants of LRP1 were not associated. Given
the complexity of lipoprotein secretion and processing, in-
volvement of unfamiliar genes in HLP3 should not be
surprising.

Laboratory Diagnosis of HLP3

Approximately 25 years ago, our lipid laboratory developed
and standardized a micro method for ultracentrifugation to

Fig. 7 a Comparison of measured VLDL-C concentration obtained by
ultracentrifugation (older tube-slicing method) with the concentrations
obtained with five different direct LDL methods. Note the widely differ-
ing results. Most direct methods underestimated VLDL-C concentration,
although methods 3 and 5 were close. The values for the highest two
VLDL-C concentrations were virtually superimposable for methods 3
and 5. The methods were as follows: 1 Roche/Kyowa first generation, 2
Roche/Kyowa second generation, 3 Genzyme/Daiichi, 4 Sigma/Wako,
and 5 Polymedco/Denka. Analyses were performed by Pacific Biometrics
in January 2002. b Again there was general underestimation of the VC/
TG ratio with several direct LDL methods but good approximation with
methods 3 and 5
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measure lipid levels [101]. This method involved ultracentri-
fugation of untreated whole plasma, tube slicing to separate
the top one third of the sample from the bottom two thirds, and
quantitation of cholesterol in the d >1.006 g/ml and d
<1.006 g/ml fractions. Approximately 8 years ago we changed
to a method that involves layering a 200-μl sample of
plasma beneath 750 μl of buffered saline solution of d=
1.006 g/ml. After ultracentrifugation, the top layer is removed
by aspiration, weighed (for accurate volume determination),
and lipids are quantified using intensely chromogenic enzy-
matic reactions. The protocols are compared in Fig. 6. The
rationale for the underlayering involves recognition that (1)
lower-density lipoproteins generally take less time to float
than the time it takes denser lipoproteins (including IDL,
LDL, and HDL) to sink [102], (2) as TGRL float through
the saline overlayer, they are “washed,” providing a cleaner
TGRL preparation, and (3) blanking for endogenous free
glycerol is unnecessary in order to obtain accurate TG con-
centrations in the d <1.006 g/ml fraction.

In previously unpublished work, we compared results from
the two ultracentrifugation methods in a series of 272 subjects,
112 having HLP3 on the basis of the older, standard beta-
quantification method with tube slicing. Correlation between
the two methods for VLDL-C was high (r=0.97, p<0.0001),
but with a slope different from 1, namely,

VLDL�C “wash”ð Þ ¼ 0:748 VLDL “no�wash”ð Þ þ 1:18:

The intercept was not significantly different from 0. These
results are consistent with the concept of less nonspecific
contamination of the VLDL layer using the improved

underlayering method. The concordance of HLP3 diagnosis
between the two methods is shown in Table 4.

Homogeneous assays of LDL (generally referred to as
“direct LDL”) are often used instead of the Friedewald calcu-
lation for LDL-C in hypertriglyceridemia. However, these
direct LDL assays can lack specificity towards abnormal
lipoproteins and often provide divergent results from “gold-
standard” ultracentrifugation methods, particularly among
hypertriglyceridemic patients (including HLP3 patients)
[103]. β-VLDL from HLP3 patients were found to directly
interfere with direct HDL assays [104]. We sent 50 plasma
samples to a reference lipid laboratory (Pacific Biometrics,

Table 5 Comparison of several
commercial advanced lipid
methods with ultracentrifugation
for diagnosis of HLP3 (unpub-
lished data). Shown are the means
(SD). The HLP3 patients had
similar age and gender distribu-
tions when compared with the
other patients

HLP3 patients (n=7) Others (n=37) p r vs ultracentrifugation

“No-wash” ultracentrifugation

TC (mg/dl) 278 (137) 192 (44) 0.15 -

Total TG (mg/dl) 452 (435) 194 (237) 0.17 -

VLDL-C (mg/dl) 185 (146) 29 (21) 0.030 -

VLDL-C/total TG 0.45 (0.08) 0.16 (0.06) <0.0001 -

Estimated β-VLDL-C (mg/dl) 184 (147) 6.0 (10.0) 0.018 -

Vertical spin auto-profile (Atherotech, VAP)

TC (mg/dl) 186 (33) 181 (32) 0.69 0.48

TG (mg/dl) 433 (445) 184 (220) 0.19 0.76

VLDL-C (mg/dl) 50 (12) 25 (16) 0.0003 0.97

IDL1 cholesterol (mg/dl) 14.5 (3.5) 3.5 (3.4) <0.0001 -

VLDL-C/total TG 0.17 (0.09) 0.17 (0.04) 0.86 -

Nuclear magnetic resonance (LipoScience)

Total TG (mg/dl) 215 (47) 141 (71) 0.011 0.72

VLDL-C (mg/dl) 123 (30) 77 (33) 0.0017

Polyacrylamide gradient gel electrophoresis (Lipoprint)

VLDL (relative absorbance) 13.7 (2.7) 3.9 (3.9) <0.0001 0.88

Fig. 8 VLDL-C concentration obtained by our improved micromethod
of ultracentrifugation with saline overlayering compared with VLDL-C
concentration from VAP-II as a function of th concentration of total
triglycerides
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Seattle, WA, USA) which measured “direct” LDL by five
different homogenous methods. Among these samples
were samples from four definite HLP3 patients and
one subject with borderline HLP3. As shown in Fig. 7
(previously unpublished results), the results from the direct
LDL methods differed widely, with only two of the five
methods (methods 3 and 5) providing reasonable estimates of
VLDL-C concentration and VC/TG ratio determined by ultra-
centrifugation. Thus, not all direct LDL methods are useful for
diagnosis of HLP3.

We have compared our original beta-quantification ultra-
centrifugation method with several other commercially avail-
able lipid tests in 44 patient samples, including seven patients
with HLP3. As shown in Table 5, although all the methods
showed differences between HLP3 patients and other patients
in some measures, there were clear and often marked differ-
ences. In particular, we were surprised to find much lower
reported VLDL-C concentration when using the vertical spin
auto-profile (VAP; provided by Atherotech, Birmingham, AL,
USA). VAP showed no difference in the composition of
VLDL in patients with and without HLP3 and would have
missed all seven patients in this small cohort using the VC/TG
ratio. Examination of the literature discloses a clear limitation
of VAP if chylomicrons and possibly other large TGRL are
present owing to adherence of these lipoproteins to uncoated
ultracentrifuge tube walls [105].

To examine this issue further, we performed our
“underlayering” ultracentrifugation method on plasma samples
from 75 consecutive participants who also had VAP-II mea-
surements (none had HLP3). We found a markedly different
slope between VLDL-C concentration obtained by the two
methods and plasma TG concentration, with VAP-II producing
higher VLDL-C levels at low TG concentrations and lower
VLDL-C levels at high TG concentrations (see Fig. 8). These
differences led to a relatively low correlation between the two
methods for VC/TG (r=0.47, p<0.001) and almost no correla-
tion between our improved VC/VT and the VAP-II VC/TG
(r=0.07, p=0.56). Among the 25 subjects with TG concen-
tration above 150 mg/dl, the correlation between our VC/VT
and VAP-II VC/TG was much improved (r=0.70, p<0.0001)
although correlation for VC/TG between the two methods
remained poor (r=0.35, p=0.082). Certainly, further investi-
gation into this issue is warranted.

To assess the severity of HLP3, we have developed an
algebraic estimate of β-VLDL-C [69]. Starting with two
equations,

Total TG ¼ “real”VLDL�TGþ β�VLDL�TG
þ “measured LDL�TG”þ HDL�TG

and

Measured VLDL�C ¼ β�VLDL�Cþ “real”VLDL�C

Fig. 9 a Effect of simvastatin at
80 mg daily in eight HLP3
patients as measured by
densitometric scanning of agarose
gels after electrophoresis of the
ultracentrifugally isolated d
<1.006 g/ml fraction (VLDL) and
d >1.006 g/ml fraction (LDL and
HDL) and staining with Sudan
black. bβ-VLDL-C concentration
estimated by an algebraically
derived equation (see the text)
compared with densitometric
scanning of the β band after
agarose gel electrophoresis
(same subjects as in a)
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Fig. 10 Estimated β-VLDL-C
concentration by algebraic
calculation (see the text) versus
remnant-like particle (RLP)
cholesterol in subjects with
APOE 2-2 (top), APOE 3-2 and
4-2 (middle), and APOE 3-3, 4-3,
and 4-4 (bottom)
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together with the compositional ratios in Table 1 and the
assumption that there is no chylomicron contribution in
fasting plasma, we can derive the equation

β�VLDL�C ¼ 1:53 measured VLDL�Cð Þ þ 0:034 mLDL�Cð Þ
þ 0:093 HDL�Cð Þ�0:312 total TGð Þ;

where mLDL-C refers to LDL-C concentration measured by
ultracentrifugation. Alternatively, if VLDL-TG is available,
the above equation simplifies to

β�VLDL�C ¼ 1:53 measured VLDL�Cð Þ
�0:312 measured VLDL�TGð Þ:

We compared this estimated β-VLDL-C concentration
with that obtained by densitometric scanning of the β band
from agarose gels stained with Sudan black after electropho-
resis of the d <1.006 g/ml fraction in a small series of HLP3
subjects before and after treatment with simvastatin a 80 mg.
The results are shown in Fig. 9. We also used the RLP-C assay
(marketed by Japan Immunoresearch Laboratories) to quantify
remnant particles among HLP3 patients [106, 107]. We found
a strong correlation between our estimated β-VLDL-C con-
centration and RLP-C concentration not only among HLP3
patients with APOE 2-2 but also in HLP3 patients with other
APOE genotypes (see Fig. 10), providing evidence for both the
validity of our semiquantitative estimate ofβ-VLDL-C and the

Table 6 Case history 1: Caucasian male with coronary artery disease related to “classic” HLP3. All lipids are mg/dl

Age (years) Cholesterol TG HDL Comments

31 215 328 34 1st MI

40 461 688 28 Still on no diet or lipid medications. MIs at 38
and 40 years, CABG at 40 years

40.5 377 395 33 Low-fat diet

41 371 503 30 Low-fat diet

42 256 418 35 Taking lovastatin 20 mg twice daily

43.1a 233 333 32 Taking lovastatin 20 mg twice daily. (outside laboratory)

43.4 176 209 35 APOE 2-2, measured LDL-C 45, VLDL-C 93, VLDL-C/TG 0.44.
Lost 20 lb, and taking lovastatin 20 mg every night at bedtime

43.6 142 119 40 Gradually uptitrated niacin to 2,000 mg/day. Subsequently lipid
concentrations remained as low or lower

CABG coronary artery bypass graft, LDL-C LDL cholesterol,MI myocardial infarction
a Time of initial referral. Prior values are for historical lipids.

Table 7 Case history 2: Caucasian male with premature MIs and cardiovascular death. All lipids are mg/dl

Age (years) Cholesterol TG HDL Comments

28.9 354 447 34 Historical lipids. All untreated. Intolerant to simvastatin. BMI 33–36 kg/m2

31.4 341 468 23

34.6 370 550 36

35.1 478 508 45

37.8 309 371 28 MI

38.0 333 503 40 Ezetimibe 10 mg every day

38.7a 329 634 31 LDL 171 by calculation, measured LDL 39, VLDL 259, VLDL-C/TG 0.41.
No APOE genotype

38.9 167 255 38 Ezetimibe 10 mg, fish oil 9 g, niacin 1,000 mg

39.9 121 167 35 Ezetimibe 10 mg, fish oil 1 g, niacin 2,500 mg, rosuvastatin 5 mg

42.3 290 309 39 Stopped therapy

42.5 240 101 46 1 day after major MI

42.8 108 116 38 Receiving therapy again. CHF death 3 months later

CHF congestive heart failure
a Time of initial referral. Prior values are for historical lipids.
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frequent occurrence of HLP3 in persons other than those with
APOE 2-2 [108]. The RLP-C assay does not, however, directly
measure β-VLDL particles and can instead correlate strongly
with total plasma TG concentration in persons with other lipid
phenotypes [108, 109].

Finally, we have begun to compare a traditional definition
of HLP3 using our current “wash” ultracentrifugation method
(namely, VC/VT≥0.35, TG level above 150 mg/dl) with the
definition of Sniderman et al. [7] (TC/APOB>6.2 and TG/
APOB<10 with units of millimoles per liter for TC and TG
and grams er liter for APOB, together with TG concentration
above the 75t percentile, equivalent to 160 mg/dl in our
population). Among 3,695 consecutive individuals, we found
16 with HLP3 using the ultracentrifugation-based definition
(0.43 % prevalence) compared with 53 (1.43 % prevalence)
using the method of Sniderman et al. This high prevalence
suggests that the method of Sniderman et al. is somewhat
nonspecific. There were 13 concordant cases (κ=0.37 with
81 % sensitivity for the approach of Sniderman et al.). There

was considerably better agreement between the two methods
using a TG cutpoint of 200 mg/dl, with the κ coefficient rising
to 0.58; 13 cases remaining concordant, with 14 total cases
identified by the ultracentrifugation method and 31 by the
method of Sniderman et al. (93 % sensitivity, 99.5 % speci-
ficity versus ultracentrifugation).

Treatment of HLP3

Initial hygienicmeasures are of key importance in treatment of
HLP3. These include treatment of hypothyroidism if present
and discontinuation of offending drugs (which may include
isotretinoin, excess alcohol intake, or oral estrogens or
estrogen-like agonists). Ironically, estrogen deficiency
also tends to cause or aggravate HLP3, and menopausal
replacement hormone therapy may be considered for
appropriate candidates (particularly women near meno-
pause with symptoms of estrogen withdrawal such as

Table 8 Case history 3. Caucasian fastidious male, no history of CAD, BMI 23 kg/m2, and APOE 3-3. All lipids are mg/dl

Age (years) Cholesterol TG HDL LDL VLDL-C VLDL-C/TG Therapy, daily doses

45.2 270 276 31 104 134 0.49 No therapy

45.4 128 181 37 35 57 0.31 Simvastatin 80 mg

45.5 150 177 38 44 68 0.38 Simvastatin 40 mg

45.7 190 224 29 67 94 0.42 Placebo

45.8 152 133 38 58 54 0.41 Fenofibrate 200 mg

48.7 123 66 54 55 14 0.21 Niacin 1500 mg, fenofibrate 160 mg

VLDL-C and LDL-C values were all measured by ultracentrifugation

Fig. 11 Case history 4. White
woman with HLP3, aged 56 years
at the 25th month of observation.
Shown are the plasma total
cholesterol concentration, the
concentration of total
triglycerides, and β-VLDL-C
concentration estimated by our
improved “wash” method of
ultracentrifugation including
measured VLDL-C concentration
and measured concentration of
VLDL triglycerides
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hot flashes). Weight loss is often central to HLP3 man-
agement, and long-term use of appetite suppressants
(such as phentermine) may be considered.

Traditionally, a fibrate is the drug of first choice in
treating patients with HLP3 [110, 111•]. Niacin has
similar efficacy at a total dosage of at least 2,000 mg/
day (as extended release once daily, or as immediate
release 1,000 mg twice daily), but is generally harder to
administer. Both drugs may suppress transcription of
APOC3 and reduce VLDL production, particularly
VLDL1 [112, 113]. Statins are also effective in treating
HLP3, both by reducing VLDL1 production and by
upregulation of the LDLR [87, 110, 111•, 114–116].
High-dose fish oil (6 g of omega-3 per day) improved
HLP3 (50 % reductions in both TC and TG levels) but
did not eliminate β-VLDL [117].

One of the hallmarks of HLP3 is the dramatic responsive-
ness of both plasma TC and total TG levels to appropriate
treatment. Indeed, a history of marked and parallel increases
and/or decreases in plasma cholesterol and TG levels (with
similar absolute levels when expressed in milligrams per
deciliter) is a strong indicator of HLP3, as illustrated by all
the cases (Tables 6, 7 and 8, Fig. 11). Combination lipid
therapy is often needed.

The most important goal in treating HLP3 is to pre-
vent atherosclerotic disease. HLP3 patients may have
CAD events at a young age, as shown by cases 1 and
2 (see Tables 6 and 7). Aggressive treatment of HLP3
can also reduce xanthomas and other clinical manifesta-
tions of the excess cholesterol deposition. For example,
after 1 year of treatment with fenofibrate and atorvastat-
in, a Korean patient with HLP3 showed near complete
regression of xanthomas, including palmar striae, dramat-
ic regression of stenotic coronary atherosclerosis with no
lesions seen on CT angiography after follow-up, and
concurrent relief of angina pectoris [118•].

Conclusion

HLP3 is a discrete dyslipidemia phenotype caused by im-
paired TGRL remnant processing. It is much commoner than
is often appreciated. CAD risk can be dramatically increased,
especially in more severe cases. Not only a basic lipid profile
but also newer “advanced” lipoprotein testing modalities ap-
pear to be surprisingly insensitive to the presence of HLP3
and, as a result, most HLP3 patients are probably undi-
agnosed, and therefore inadequately treated. In the fu-
ture, simpler, less costly, and more widely available
methods of accurate detection of HLP3 should be de-
veloped and validated. In the meantime, traditional
methods, including ultracentrifugation, will continue to

be needed to appropriately diagnose and manage this
frequently unrecognized, but often severe disease.

Compliance with Ethics Guidelines All procedures performed in
human subjects were approved by the University of Utah Institutional
Review Board.

Human and Animal Rights and Informed Consent All human sub-
jects provided informed consent. This article does not contain any studies
using animals performed by any of the authors.
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