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Abstract This review examines the emerging role of endothe-
lial shear stress (ESS) and blood viscosity on the initiation and
progression of atherosclerosis in peripheral arterial disease.
Among the variables determining ESS, blood viscosity has to
date been the most overlooked by clinical researchers. Blood
viscosity is a laboratory assessment that is minimally invasive
and modifiable using pharmacologic therapy as well as by
hemodilution. Monitoring and controlling blood viscosity not
only modulates ESS, but also reduces peripheral vascular re-
sistance and increases blood flow to the lower extremities.
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Introduction

Lower extremity peripheral arterial disease (PAD) is an
atherothrombotic disease state affecting 5 to 12 million in

the USA [1]. Progressive arterial narrowing in the arteries that
deliver blood to the lower extremities impedes blood flow that
may result in ischemic pain, injury or limb loss. The ischemic
pain usually manifests as intermittent claudication with pain
during ambulation in the calf muscles or other lower extrem-
ities that resolves with rest [2]. Claudication occurs when
blood flow to the lower extremities fails to meet the metabolic
demands of skeletal muscle during exercise such as walking.
Symptom relief is possible with exercise training, pharmaco-
therapy, and cessation of smoking. The risk of limb-loss
becomes substantial when there is resting pain, ischemic
ulceration, or gangrene [2]. The risk of lower extremity am-
putation, however, is often overshadowed by the risk of mor-
tality from coexistent coronary artery and cerebrovascular
atherosclerosis. The relative risk of cardiovascular disease
(CVD) events and death for patients with PAD is comparable
with those having coronary or cerebrovascular disease [3].
Patients with PAD are at high risk for myocardial infarction
and ischemic stroke, and those with critical limb ischemia
have greater than a threefold increased risk for all-cause and
CVD mortality compared with patients with only intermittent
claudication, even after adjustment for traditional major risk
factors such as age, established CVD, smoking, systemic
hypertension, diabetes and serum cholesterol [4, 5, 6•].

Non-invasive testing is conventionally used for the screen-
ing and diagnosis of PAD. Ankle-brachial index (ABI) is used
to screen for PAD and assess the risk of CVD, and the link
between lower ABI measurements and CVD events is well-
established [5]. Despite widespread use however, the accuracy
of ABI as a screening methodology for PAD is not firmly
established, and ABI measurements are not reliable when
arteries are incompressible as for instance in diabetes. In
patients with non-compressible arteries, the toe-brachial index
(TBI) is often used. In addition, ABI is not recommended for
asymptomatic adults who do not have a prior diagnosis of
PAD, CVD, severe chronic kidney disease or diabetes [7•].
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Analogous to ABI, blood viscosity is a quantifiable hemo-
dynamic parameter that is physiologically related to blood
flow and blood pressure. Site-specific lesions have long pro-
vided pathological support for the critical involvement of
hemodynamic forces in the initiation and progression of ath-
erosclerotic lesions. Among several hemodynamic forces that
have been studied extensively, one in particular—endothelial
shear stress—has emerged as a key link in the localization of
atherosclerotic plaques.

Hemodynamic Endothelial Shear Stress in Peripheral
Arterial Disease

Endothelial shear stress (ESS) is the tangential frictional force
per unit area [N/m2 or Pa] applied by blood flow upon the
endothelial wall and, for decades, has been implicated as a
factor in the development of atherosclerosis or atherothrom-
bosis [8••, 9–12]. A number of researchers have previously
reported that in order to preserve endothelial function, blood
flow should maintain a steady laminar ESS within a physio-
logic range of between 10 dyne/cm2 to 70 dyne/cm2 [8••].
Outside the physiologic range under turbulent oscillatory ESS
or low ESS below 4 dyne/cm2 at arterial bifurcations or distal
segments of plaques, endothelial cell integrity is compromised
with an apoptosis rate in endothelial cells that increased as
much as sevenfold [13]. Oscillatory ESS can be quantified in
terms of shear stress gradients over time (i.e., ddt τw ), which, if
outside the physiologic range, can induce adverse morpholog-
ical and functional changes in the endothelium in regions of
disturbed flow, contributing to the formation and disruption of
atherosclerotic lesions [14, 15]. Endothelial cells exposed to
low ESS lose their elongated phalanx structure, adopting a
rounder profile associated with augmented expression of in-
flammatory genes responsible for increased synthesis of
endothelial-localized adhesion molecules, transmigration of
mononuclear cells into subendothelial space, and intrusion
and incorporation of lipoproteins into tissue macrophages
[16–23]. Using coronary intravascular ultrasound (IVUS) to
characterize atherosclerotic plaque volume in humans, low
ESS predicted histopathological features of inflammation, thin
fibrous cap and development of other vulnerable plaque attri-
butes associated with ischemic events [24]. Importantly, it has
been observed that atherosclerotic plaques, which have begun
to intrude into the lumen, are exposed to high ESS especially
at the proximal neck of plaque, playing a role in plaque
rupture [25, 26••] (see Fig. 1).

Mathematically, ESS is defined as the product of blood
viscosity and shear rate, where the shear rate is essentially the
ratio of flow velocity to lumen diameter, 4 V/d. As such, ESS,
τw, can be determined as the product of blood viscosity, μ, and
shear rate, 4 V/d, as

τw ¼ μ⋅ 4
V

d

� �
;

where V is the maximum velocity at the center, and d is the
lumen diameter. Changes in viscosity directly modulate ESS
(i.e., friction at the vascular wall). In PAD, the combined effect
of the narrowed lumen and an abnormally increased blood
viscosity could profoundly impair blood flow to the extremities.

The localization of atherosclerotic plaques at arterial seg-
ments subjected to disturbed blood flow and low ESS has
been reported for several decades [9, 27]. More recently
however, using magnetic resonance angiography (MRA) and
IVUS data, various researchers have reconstructed coronary
and carotid arteries in 3D to demonstrate linkages between
low ESS and plaque progression as well as new plaque for-
mation [24, 26••, 28]. In these investigations and many others,
ESS is calculated using an idealized Newtonian blood viscos-
ity model, and only a select few studies used non-Newtonian
blood viscosity models to account for the high variability of
viscosity as a function of shear rate [15, 28, 29•, 30–35]. None
measured the patients’ own blood viscosity profiles nor incor-
porated patient-specific blood viscosity measurements into the
calculation of ESS values. The vast majority of studies in the
role of ESS in atherosclerosis have been focused on coronary
and carotid arteries with only a select few directed to the
femoral arteries.

In a preliminary study of 44 patients with PAD, having
ABI<0.9, using 2D phase-contrast magnetic resonance imag-
ing of femoral arteries, patients with femoral plaques showed
significant increases in peak systolic ESS when compared
with patients with neither wall thickening nor signs of plaque.
Greater eccentricity in systolic ESS distribution was observed
in patients with loose matrix / necrotic core and calcified
plaques as compared with PAD patients without femoral wall
abnormalities, reflecting deranged blood flow profiles likely
due to asymmetric narrowing of the lumen [36•]. Earlier
studies using angiography to characterize femoral artery ath-
erosclerosis have also implicated disturbed blood flow re-
gimes in curved arterial segments in the promotion of plaque
growth [37, 38].

Fig. 1 Differential distribution of shear stress in an arterial segment with
lumen-protruding plaque with necrotic core (NC). Modified from [26••]

404, Page 2 of 10 Curr Atheroscler Rep (2014) 16:404



Tortuosity and curvature in the femoral artery have been
previously linked to the development of atherosclerosis [39].
Using 3D reconstruction of MRA from 18 apparently healthy
young adults, mean ESS was demonstrated to be lower in
males than in females. Both ESS and blood viscosity values
are velocity and lumen-diameter dependent, varying widely
through a single cardiac cycle. In this study, pulsatile flow
simulation revealed greater spatial variations in men than in
women, indicating greater variation in ESS in the male and
exposure to a wider range of hemodynamic frictional forces
[40]. These data indicate that sex differences related to body
size and the anatomical course of the femoral artery may
contribute to increased risk of focal atherosclerosis in the
adductor canal. Both tortuosity and curvature of femoral ar-
teries were reported to be significantly greater for men than
women. In both sexes, tortuosity increased from mid-thigh to
the popliteal fossa. The greatest curvature was found within
the distal quarter of the superficial femoral artery (SFA).

The flow in the vessels at the lower extremities has strong
spiral flow patterns due to tortuosity and curvature, categori-
cally different from separated disturbed flow in the region of
carotid sinus [41]. Tortuosity in the adductor region induces a
helical flow pattern with highly non-uniform, helical distribu-
tion of flow and, consequently, low ESS. Spiral patterns of
early atheroma in the femoral artery may be directly related to
spiral blood flow regimes [40, 42]. Common features of flow
in the SFA include the occurrence of skewed velocity profiles
toward the outer wall of curved regions, with marked sex
differences in ESS patterns and the degree of development
of spiral flow along the vessel.

Endothelial shear stress is a hemodynamic parameter with
the potential to link tortuosity and blood flow regimes specific
to PAD on one hand, together with endothelial function and
permeability in atherosclerotic plaque development, on the
other [43]. Regions of low ESS in the femoral arteries are
prone to atherogenesis and progression of atherosclerotic le-
sions. Furthermore, they may account for increased preva-
lence of stenoses in the adductor region of the SFA [44] and
sex differences in PAD. Oscillatory ESS and flow separation
may not be the only hemodynamic factors implicated in the
etiology of focal atherosclerosis. Increased cyclical variation
in ESS or wider ranges of ESS variation within a cardiac cycle
may also provide increased mechanical stimulus for localized
plaque generation [41] as well as plaque erosion [13, 45] and
thrombosis.

Blood Viscosity

The viscosity of a fluid represents the frictional resistance
between a moving fluid and a stationary wall [46]. Blood
viscosity represents the thickness and stickiness of blood
and is defined as its inherent resistance to flow. Since about

45 % of blood volume is made up of suspended cellular
particles, primarily erythrocytes, the blood behaves as a non-
Newtonian fluid, meaning its viscosity varies with shear rate.
The dynamic range of blood viscosity is relatively large—as
wide as 4-45 cP during a single cardiac cycle from peak-
systole to end-diastole [47, 48].

When blood moves at high velocity during systole through
any large artery having a diameter greater than about 3 mm
(with the exception of the left coronary), erythrocytes are well-
dispersed and maximally deformed to an elliptical shape for
minimal flow resistance [47, 49]. Under such conditions,
blood is less viscous. The apparent blood viscosity corre-
sponding to this high shear rate (i.e., ≥300 s-1) is approximate-
ly 3-5 times that of water [47]. When blood moves slowly
(e.g., <0.01 cm/s), it is significantly more viscous as erythro-
cytes tend to aggregate. Under such low shear rate flow
regimes, the apparent blood viscosity increases to 10-40 times
that of water depending on the aggregation behavior of red
blood cells [50•].

Blood viscosity is a dynamic property varying as a function
of lumen diameter and flow velocity. The principal determi-
nants of blood viscosity are hematocrit, plasma protein con-
centrations, erythrocyte aggregation and deformability (i.e.,
the structural responsiveness of red cells to applied forces),
and plasma viscosity as depicted in Fig. 2 [48, 49, 50•, 51]. Of
these, hematocrit has the greatest effect on blood viscosity: a
10 % increase of hematocrit increases high-shear blood vis-
cosity by around 5 % [52], whereas the same increase in
hematocrit increases low-shear blood viscosity by approxi-
mately 30 % [53]. It is important to note that although oxygen
molecules are transported by hemoglobin within erythrocytes,
an increase in hematocrit does not necessarily increase oxygen
delivery, particularly at the tissue level, because higher hemat-
ocrit simultaneously increases peripheral vascular resistance
via elevations in blood viscosity, which in some cases out-
weighs the increase in hemoglobin [53].

Plasma proteins such as fibrinogen and immunoglobulins
are also important determinants of viscosity. These proteins are
instrumental in erythrocyte aggregation in the microcirculation

Fig. 2 Blood viscosity profile as a function of shear rate. Viscosity unit:
10 mP=1 cP=1 mPa.s
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and Rouleaux formation [48, 50•, 54, 55]. Both fibrinogen and
immunoglobulins are relatively long chain molecules that
promote aggregation [50•, 54, 56]. In contrast, albumin has
been reported to suppress aggregation [57]. Low-density
lipoprotein (LDL) molecules have also been shown to promote
erythrocyte aggregation, increasing blood viscosity at low
shear rates, whereas HDL molecules have been reported to
suppress aggregation [48, 50•, 58–60].

Numerous studies have examined the relationship between
viscosity and triglyceride levels. The West of Scotland Coro-
nary Prevention Study followed 6,595 hypercholesterolemic
adult males prospectively for an average of 4.9 years and
reported that plasma viscosity and whole blood viscosity were
both significantly associated with triglycerides and VLDL
concentration [61]. In a study of 126 healthy nonsmoking
adults, blood viscosity was shown to correlate with triglycer-
ide concentration (r=0.41, p=0.0007) [62]. Using hematocrit-
adjusted blood viscosity levels at high-shear and low-shear
rates, blood viscosity was shown to be significantly associated
with triglycerides in a cross-sectional study of 257 adults who
were being assessed for cardiovascular risk factors (high-shear
viscosity r=0.35, low-shear viscosity r=0.22, both p values<
0.0005) [63]. In addition, isolated chylomicrons, VLDL and
LDL added to plasma or serum in vitro cause a dose-
dependent and exponential rise in viscosity [64, 65]. VLDL
was accompanied by a greater viscosity change than LDL,
thereby supporting the influence of plasma protein size on
viscosity [65].

Blood viscosity measured at low shear rates reflects flow
conditions at end-diastole and, simultaneously, microcircula-
tory behavior such as the flow-retarding effect of cell aggre-
gation, which in turn is influenced by plasma proteins such as
fibrinogen [54, 66, 67]. On the other hand, blood viscosity
measured at high shear rates reflects higher velocity blood
flow regimes as in large arteries at the peak of systole, where
viscosity is dependent largely on hematocrit and the
deformability of erythrocytes [49].

Hemorheological Abnormalities in Peripheral Arterial
Disease

A number of researchers have investigated whether or not
hemorheological abnormalities are present in PAD patients.
In an earlier prospective study of 62 patients with intermittent
claudication followed for up to three years, Dormandy et al.,
observed a significant correlation between the progressive
deterioration of peripheral circulatory disturbances and initial
blood viscosity levels, as well as the plasma fibrinogen level
and the susceptibility of red cell membrane lipids to autoxi-
dation [68]. A second study by the same group reported that
blood viscosity was higher in PAD patients with resting pain
than in those with intermittent pain. Furthermore, blood

viscosity was higher in patients with a claudication distance
of less than 91 m than in those less severely disabled (i.e.,
>91 m) [69]. The researchers suggested that hyperviscosity
may be the determining cause of claudication in some PAD
patients.

A third study by Dormandy et al., compared 120 patients
having intermittent claudication with normal age-matched
controls and found blood viscosity was significantly higher
among claudicants (p<0.001) with the greatest difference in
blood viscosity observed at lowest shears [70]. At high shear
rates, patients with blood viscosity above 4.5 cP had mean
claudication distance of 126 meters compared to 289 meters
for patients with high-shear viscosity below that threshold.
Hyperviscosity among claudicants was not attributable to
differences in hematocrit but rather to plasma fibrinogen.
The researchers sought to examine if the principal cause of
circulatory insufficiency in patients with symptoms of inter-
mittent claudication was an abnormally high blood viscosity
rather than narrowing of the arteries. They found that many
patients with abnormally high blood viscosity have normal
arteriograms despite severe symptoms of claudication and
suggested the use of the term rheological claudication to
describe approximately 25 % of moderate to severe
claudicants with hyperviscosity of blood having significantly
worse prognoses [70] (Table 1).

Separately, plasma viscosity was shown to be significantly
elevated in individuals with intermittent claudication com-
pared with healthy age-matched controls [71]. Plasma viscos-
ity levels in Fontaine IIb and III stage PAD patients correlated
with plasma fibrinogen concentrations. Furthermore, the
blood filtration rate, a measure of erythrocyte deformability,
varied with walking distance and inversely with the stage of
disease.

In the Edinburgh Artery Study, which followed a random
sample of 1,581 men and women 55 to 74 years of age with
symptomatic or asymptomatic PAD, blood viscosity (at high
shear rate over 300 s-1, p<0.05) and fibrinogen (p<0.01) were
independently associated with peripheral arterial narrowing
[72]. A positive interaction was found between fibrinogen and
smoking in the association with arterial narrowing, and plas-
ma viscosity was also associated with claudication. The risk of
claudication for patients in the upper quintile of plasma vis-
cosity was 3.4 times greater than the risk for those in the
lowest plasma viscosity quintile. The authors implicated blood
rheologic factors in the pathogenesis of lower limb ischemia
in the general population. The Edinburgh Artery Study also
showed that plasma viscosity is a significant predictor for
development of PAD over 17 years of follow-up in a popula-
tion of subjects free from PAD at baseline [73].

Similarly, a study of 90 PAD patients and 180 controls
showed a significant association between the highest tertiles
of plasma viscosity and PAD [74••]. After adjustment for
traditional vascular disease risk factors, the highest tertiles of
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plasma viscosity remained significantly associated with PAD.
The researchers suggested that an alteration of plasma viscos-
ity may modulate predisposition to the disease.

Hemorheologic Therapies in Peripheral Arterial Disease

Medical care for PAD patients with intermittent claudication
includes a walking exercise program, smoking cessation,
treatment of atherosclerosis risk factors, evaluation for asso-
ciated CVD and, in some patients, drug treatment for symp-
tomatic relief. Treatments for obesity and hypertension, as
well as antiplatelet and statin therapies are often utilized to
reduce the risk of secondary CVD events. When risk of limb-
loss becomes substantial, interventions such as balloon angio-
plasty, stenting and surgical revascularization are considered
for patients with critical limb ischemia. The choice of inter-
vention is dependent on the anatomy of the stenotic or occlu-
sive lesion; percutaneous interventions are appropriate when
the lesion is focal and short but longer lesions must be treated
with surgical revascularization to achieve acceptable long-
term outcomes [2]. Surgical or endovascular intervention is
usually reserved for patients with severe, lifestyle-limiting
symptoms that do not adequately respond to more conserva-
tive management, including pharmacologic treatment.

Pharmacological Therapies

Antiplatelet drugs and cilostazol are the only pharmacologic
treatments shown to be effective for patients with claudication
[75•]. Cilostazol, a phosphodiesterase inhibitor with antiplate-
let and vasodilator effects [76], is among the most effective
drugs presently available for PAD [2, 77–80]. In a double-
blind, placebo-controlled, parallel-arm trial in 37 outpatient
vascular medicine clinics to evaluate the safety and efficacy of

cilostazol for the treatment of intermittent claudication, 516
patients 40 years or older with a diagnosis of moderately
severe chronic, stable, symptomatic intermittent claudication
were randomized to receive cilostazol (50 or 100 mg bid
orally) or placebo for 24 weeks. After 24 weeks, patients
administered cilostazol showed increases in the mean change
for pain-free walking distance by 59 % (p<0.001) and 48 %
(p<0.001), respectively, in high-dose and low-dose cilostazol
groups compared with placebo [79]. These results were cor-
roborated by the results of subjective quality-of-life assess-
ments and functional status.

A meta-analysis involving 2,702 patients with stable,
moderate-to-severe claudication enrolled in eight randomized,
double-blind, placebo-controlled trials examined the effect of
cilostazol treatment (50-100 mg daily over 12-24 weeks) on
pain-free and maximal walking distance and quality of life
measures. Cilostazol therapy was reported to increase maxi-
mal and pain-free walking distances by 50 % and 67 %,
respectively. In an analysis of subgroups, cilostazol was
shown to increase pain-free and maximal walking distance
similarly in men and women, in both older (≥65 years) and
younger patients, as well as in patients with and without
diabetes [76]. Cilostazol has also been observed to reduce
triglyceride concentrations by 16 % and elevate HDL choles-
terol by 13 % [48].

In a randomized controlled trial to evaluate the relative
efficacy and safety of cilostazol and pentoxifylline in PAD
patients with moderate-to-severe claudication from 54 outpa-
tient vascular clinics, there were 922 consenting patients.
There were 698 who met the inclusion criteria and were
randomly assigned to blinded treatment with either cilostazol
(100 mg orally twice a day), pentoxifylline (400 mg orally 3
times a day), or placebo. After 24 weeks of treatment, mean
maximal walking distance increased by 107 meters (a 54 %
increase from baseline) in the cilostazol group, significantly
more than the 64-meter improvement (a 30 % percent

Table 1 Results of select hemorheological studies in PAD

Source No. Study population Select findings

Dormandy [68] 62 PAD, intermittent claudication Correlation between change in claudication distance and initial high-shear
blood viscosity after correction for hematocrit (r=0.46, p<0.01).

Dormandy [69] 126 PAD, intermittent claudication Mean high-shear blood viscosity of PAD patients (4.74±0.54 cP) was higher
than in 100 controls (4.29±0.49 cP) (p<0.001).

Dormandy [70] 120 PAD, intermittent claudication Mean high-shear blood viscosity of claudicants (4.37±0.30 cP) was higher
than age-matched controls (4.15±0.35 cP) (p<0.001). PAD patients with
high-shear blood viscosity greater than 4.5 cP had mean claudication distance
of 126 m compared with 289 m for PAD patients with viscosity below 4.5 cP.

Lowe [72] 1,581 Randomly selected adults Blood viscosity was significantly associated with ABI after adjusting for other
CVD risk factors. Mean high-shear blood viscosity of claudicants (3.90 cP)
was higher than that of normal patients (3.53 cP) (p<0.0001).

Ricci [74••] 90 PAD, ABI<0.9 Mean plasma viscosity of 90 PAD patients (1.45 cP) was higher than that of 180
age-matched and gender-matched controls (1.32 cP) (p<0.001).
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increase) with pentoxifylline (p<0.001), which was similar to
that in the placebo group (65 meters, a 34 % percent increase)
[80, 81]. Cilostazol was significantly more effective than
pentoxifylline or placebo for increasing walking distance in
PAD patients with intermittent claudication but also associat-
ed with a greater frequency of side effects.

In a retrospective meta-analysis of the data that involved
1,751 patients pooled from six randomized, double-blind,
placebo-controlled studies, patients were assessed as to
whether or not cilostazol (50 or 100 mg bid for 12, 16, or
24 weeks) improved treadmill and community-based walking
ability and health-related quality of life in patients with inter-
mittent claudication resulting from PAD [82]. The mean age
of the patients was 65±9 years. All subjects had a history of
PAD for at least six months and an ABI of 0.90 or less.
Maximal treadmill walking distance and health-related quality
of life improved significantly with cilostazol treatment com-
pared with placebo (p<0.0001 for both assessments).

In the only study investigating the rheologic effects of
cilostazol, a reduction in blood viscosity, measured using a
cone-and-plate viscometer, was not observed [83].

Pentoxifylline is a xanthine derivative that appears to im-
prove erythrocyte deformability and lower fibrinogen, with
mild platelet anti-aggregatory effects [2]. In an earlier 8-week
randomized double-blind trial with 60 PAD patients (Fontaine
stage II or III), patients receiving pentoxifylline (400 mg)
demonstrated a mean improvement in walking distance of
47 % (p≤0.05) as compared with patients administered
nylidrin, a vasodilator. This effect was attributed to reductions
in blood viscosity and improved erythrocyte fluidity, suggest-
ing that pentoxifylline counteracts tissue hypoxia in the cap-
illaries, increasing perfusion and enabling patients to tolerate
increased exercise [84].

A study of 30 patients with severe PAD reported significant
improvements in absolute walking distance and relief from
resting pain after pentoxifylline (600 mg) treatment over three
weeks with parallel improvements in erythrocyte aggregation
and filterability [71]. Although pentoxifylline is considered by
some to be a viscosity-lowering therapy, there are conflicting
reports on this effect. Pentoxifylline has been shown in five
different peer-reviewed studies to reduce blood viscosity
[85–89]. In five other peer-reviewed studies, pentoxifylline
was demonstrated to increase blood viscosity or have no effect
on viscosity [83, 90–93].

Dormandy et al., studied the efficacy of clofibrate (2 g
daily) in 62 PAD patients with intermittent claudication over
a minimum of six months. Clofibrate was associated with a
steep and sustained fall in blood viscosity measured over a
wide range of shear rates (0.77, 2.62 23, 230 s-1) with an
average viscosity reduction of 34 % when measured at a low
shear rate of 0.77 s-1 (p<0.05) and an associated 21.4 %
reduction in mean plasma-fibrinogen levels from 420 at base-
line to 330 mg/dL (p<0.01) [66]. An increased proportion of

patients on treatment showed evidence of clinical
improvement.

In a randomized controlled trial of atorvastatin (10 or
80 mg per day) in 354 patients with intermittent claudi-
cation attributable to PAD, pain-free walking time in-
creased by 90±18 s after 12 months of high-dose treat-
ment compared with placebo (p=0.025) [94]. As atorva-
statin has been reported to reduce blood viscosity in
observational studies [95, 96], we speculate that increases
in pain-free walking time with atorvastatin therapy may be
linked with improvements in ESS at the lower extremities.
Increased pain-free walking times were observed after
12 months of therapy with atorvastatin [94], whereas
similar improvements by pentoxifylline and cilostazol
was observed in a timescale of weeks instead of months
[81, 82]. Statin therapy has been shown to increase
endothelium-dependent vasodilation [97], which reduces
vascular resistance and, thereby, increases blood flow
through collateral vessels of the lower extremities.

Ticlopidine, a thienopyridine, was shown to lower values
of fibrinogen (p<0.05), hematocrit (p<0.05), and blood vis-
cosity at high and low shear rates (p<0.01) as compared with
placebo in a randomized controlled trial of 44 PAD patients
with intermittent claudication [98]. Patients received
ticlopidine treatment (250 mg bid) for 21 months. In addition
to the known antiplatelet activity of the drug, the effects of
ticlopidine observed on fibrinogen and blood viscosity were
suggested as possible contributors to clinical improvements
reported in the larger group of claudicants to which this
substudy group belonged [98]. In contrast to this report, a
smaller randomized controlled study of 16 patients with inter-
mittent claudication showed that three years of ticlopidine
therapy had no significant effect on blood viscosity as com-
pared with placebo [99].

Hemodilution Therapy

Ernst et al. [53] investigated the efficacy of isovolemic hemo-
dilution (replacing 500-mL blood with 10 % hydroxyethyl
starch HES-200) in 24 men who had stable claudication with
long, collateralized femoro-popliteal obstructions in a double-
blind, placebo-controlled, crossover study. Three weeks of
hemodilution lowered hematocrit by a mean of 14 %
(p<0.01) and blood viscosity measured at a high shear rate
of 94.5 s-1 by a mean of 11 % (p<0.05). Hemodilution also
increased resting blood flow by a mean of 15 % (p<0.01) and
pain-free walking distance by 50% (p<0.01) [53]. In contrast,
sham therapy produced no such favorable changes. Since
hemodilution reduces both hematocrit and blood viscosity, a
precondition for effective enhancement of perfusion is that the
viscosity effect outweighs that of hematocrit, which would be
expected in patients with low or oscillatory ESS in the periph-
eral arteries. Although hemodilution therapy is time-
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consuming and considered by many to be outdated, this
treatment modality should be revisited, especially in cases
with multiple, long collateralized vascular obstructions and
could be expected to have a profound effect on ESS.

More recently, Kim et al. [100••] investigated whether
or not isovolemic hemodilution could reduce the rate of
major amputations in 28 critical limb ischemia patients,
who had tissue loss of Rutherford Grade III, Category 5
or 6. The subjects were divided into two arms: standard of
care (n=15) and hemodilution (n=13). Weekly isovolemic
hemodilution was performed over four consecutive weeks,
replacing 250 mL of whole blood with hydroxyethyl
starch solution. Mean hematocrit and low shear blood
viscosity levels (measured at a shear rate of 1 s-1) both
decreased over four weeks of hemodilution. The
hematocrit-to-viscosity ratio increased by 50 % to 60 %
with hemodilution, suggesting an overall improvement of
perfusion. No sham therapy was used, and the average
rate of major lower extremity amputations with standard
of care was 93 % (14 of 15), as compared with 31 % for
patients undergoing lower extremity amputation after he-
modilution (4 of 13) (p=0.001). The average time-to-
amputation was 2.7±3.5 months with standard care and
11.1 ±13.0 months with hemodilution (p=0.004).
Isovolemic hemodilution treatment of PAD patients with
end-stage limb ischemia was reported to be well-tolerated
and sharply reduced the rate of major amputations
resulting from the deterioration of critical limb ischemia.

Conclusions

Although atherosclerosis is conventionally attributed to sys-
temic risk factors such as hypertension, hypercholesterolemia
and diabetes, focal endothelial injury and dysfunction from
oscillatory or low endothelial shear stress (ESS) are well-
known to occur primarily at bifurcations or along the inner
wall of curved vessels. Accordingly, the tortuosity and curva-
ture in femoral arteries amplify the injurious effect of ESS.
Among the variables determining ESS, blood viscosity has to
date been the most overlooked by clinical researchers. Blood
viscosity is a laboratory assessment that is minimally invasive
and modifiable using pharmacologic therapy as well as by
hemodilution. We propose that incorporation of patient-
specific blood viscosity profiles may be able to enhance the
emerging field of ESS research. In addition, both blood vis-
cosity and ESS assessments have the potential to provide
clinically relevant insights into the mechanism of existing
and new PAD therapies. Additional clinical research is needed
to determine whether or not blood viscosity monitoring and
ESS assessment can be used to stratify PAD patients or for
diagnostic targeting in the treatment of PAD, claudication and
limb ischemia.
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