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Abstract Despite dramatic advances in standard of care,
the risk of recurrent myocardial infarction early after
an acute coronary syndrome (ACS) remains high. This
period of elevated risk after a cardiovascular event is
associated with an acute inflammatory response. While
post-ACS inflammation correlates with the risk for re-
current events and is likely to play a causal role in this
period, the precise pathophysiologic mechanisms have
been unclear. Recent studies have proposed that the
cardiac event itself activates the sympathetic nervous
system to directly mobilize hematopoietic stem cells to
differentiate into inflammatory monocytes, acutely infil-
trate plaque, and lead to recurrent plaque rupture. Here,
we summarize the existing and emerging evidence im-
plicating post-ACS activation of systemic inflammation
in the progression of atherosclerosis, and identify possible
targets for therapeutic intervention. We highlight experimental
therapies and ongoing clinical studies that will validate
these targets.
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Introduction

Cardiovascular (CV) disease, especially coronary artery dis-
ease (CAD) and acute coronary syndrome (ACS) (unstable
angina or myocardial infarction [MI] with or without ST-
segment elevation), continues to be the most common cause
of mortality in the developed world. Despite advances in
management, the rate of recurrence of an event, including
ischemia and infarction remains at up to 54 % within 1 year
[1, 2]. This elevated rate of re-infarction appears to decrease
over time [3]. This suggests that ACS patients are uniquely
vulnerable to recurrent events in the early post-ACS period,
perhaps driven by unique pathophysiology and amenable to
specifically tailored therapies.

It is not clearly understood how an ACS event elevates
risk for recurrent events. Many of the earliest events are
likely to be due to thrombotic complications at the culprit
lesion and complications of the myocardial infarction itself,
including arrhythmic death, periprocedural infarctions, and
death due to cardiogenic shock and pump failure. However,
coronary imaging studies in post-ACS patients strongly
suggests that many recurrent events are attributable to
nonculprit coronary lesions. The PROSPECT study studied
the natural history of coronary plaque using VH-IVUS,
although it was limited by a low incidence of both vulner-
able plaque and hard clinical endpoints (86 % of MACE
were due to unstable or progressive angina) [4•]. Clinical
events in PROSPECT were equally attributable to culprit
and non-culprit lesions, and more than half of the nonculprit
lesions leading to events had vulnerable features (thin cap
fibroatheromas) [4•, 5]. Other studies using OCT (optical
coherence tomography) have further support that ACS patients
often present with multiple inflamed nonculprit vulnerable
lesions [6–8]. This has led to the concept that ACS activates
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a pan-vascular process (“pan-coronaritis”) resulting in a
higher prevalence of vulnerable plaque and subsequent
recurrent ischemic events.

The systemic inflammatory response after ACS has been
well described, and may play a role in recurrent events after
ACS. Both circulating inflammatory markers, such as IL-6
and hsCRP, as well as circulating inflammatory cells, in-
cluding leukocytes and inflammatory monocytes, are ele-
vated acutely after an ACS event in a temporal pattern that
corresponds to elevated event rates and is predictive of
recurrent events [9].

The hypothesized pleiotropic effects of statins may point
to a role for modulating inflammation to prevent post-ACS
recurrent events [10, 11].The benefits of statin therapy in a
stable CAD setting may be related to low-density lipopro-
tein (LDL) lowering and inflammation reduction indepen-
dently; in both plaque regression studies [12] and clinical
outcomes studies [13], the on-treatment reduction in C-
reactive protein (CRP) correlates with benefit independently
of the change in LDL cholesterol. Specifically in ACS
patients, the use of high-dose statins reduce the risk of
recurrent events as early as 30 days post-ACS, along with
a corresponding decrease in inflammatory biomarkers. [14,
15]. Despite the use of statins, there remains a significant
residual risk of destabilization of plaque in the post-MI state
and potential for modifying this risk using therapies with
more potent and/or plaque targeted anti-inflammatory
effects.

In this review, we present an overview of the pathophys-
iology of the post-MI state leading to the vulnerable plaque,
including recent concepts, and also discuss potential targets
for intervention and therapeutics (Fig. 1).

Increase Hematopoietic Stem Cell (HSC) Production
and Monocytosis Following ACS

Acute coronary syndrome (ACS) involves an acute yet
transient increase in the inflammatory state, as manifested
through activation of both innate as well as adaptive immu-
nity. Despite the overwhelming evidence for immune cell
activation following ACS, the molecular and cellular mech-
anisms that drive the initiation and progression of these
processes are still under investigation.

It is speculated that the combination of stress, pain
and tissue damage associated with the trauma of ACS
are the initial drivers of immune cell response [16, 17•].
These seminal events are orchestrated by multiple or-
gans and mediators and are likely to provide infarct
healing through the removal of dead cells, angiogenesis,
and extracellular matrix turnover in the acute infarct
(Reviewed in Nahrendorf [18]). Monocytes were shown to
play a major role in these processes, and significant peripheral

monocytosis was seen in patients within 24 hours after
acute myocardial infarction (AMI) [18, 19]. The mono-
cyte response post ACS is biphasic, with a first wave of
CD16-CD14+ ‘inflammatory’ monocytes that responsi-
ble for removal of dead cells followed by CD16+
CD14dim ‘reparative’ monocytes that promote resolu-
tion of inflammation and tissue repair, suggesting the
involvement of distinct monocyte subsets at different
stages of infarction to promote infarct healing [20].
Similar subpopulations of monocytes were shown to be
involved in AMI models in rodents, where the ‘inflam-
matory’ and ‘reparative’ monocytes correspond to Ly-6Chi

and Ly-6low [21].
Fine-tuning of the proper monocyte response is critical

for the healing process, and insufficient or exuberant
responses compromise infarct repair and can drive left
ventricular remodeling in ACS patients and AMI mouse
models [19, 22•]. Furthermore, increased peripheral
monocytosis is directly correlated with non-recovery of
left ventricular function in ACS patients and is associated
with increased risk of heart failure [23]. Whether
monocytosis following primary ACS can also contribute
to the destabilization of non-culprit lesions, thereby in-
creasing the risk for a reoccurring infarction, is still
unanswered. It is well established that circulating mono-
cyte can migrate into blood vessels guided by activated
or damaged endothelium, thereby increasing the inflam-
matory load of existing vascular lesions (Reviewed in
[24]). Growing evidences suggests that an exaggerated
monocyte response correlates with cardiovascular risk.
Classical CD14++CD16- and intermediate CD14++
CD16+ monocytes independently predicted cardiovascular
events [25•] were associated with coronary plaque vul-
nerability in patients with stable angina pectoris [26•],
and strongly correlate with reduced fibrous cap thickness,
as measured by intravascular optical coherence tomogra-
phy (OCT) in patients with unstable angina [27•].

Mechanisms Associated with Monocytosis Following
ACS

An ACS event triggers the proliferation and mobiliza-
tion of progenitor cells from the bone marrow, including
endothelial progenitor cell (EPC) and hematopoietic pro-
genitor cells (HPCs) [28•, 29]. Patients with ACS dem-
onstrate a six-fold increase in circulating CD34+
progenitor cells, including both EPC and HPC, which
peak at admission and gradually return to baseline with-
in 2 months [30]. Studies in preclinical models have
shown that the mobilization of progenitor cells requires
the action of chemokine receptors and their cognate
ligands (reviewed in [31]). Specifically, the CCR2
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ligands monocyte chemotactic protein-1 and 3 (MCP1,
MCP3) are best described as essential for monocyte
emigration from the bone marrow during infection and
inflammation [32]. Whilst the mechanisms are unknown,
one hypothesis suggests that dead cells and damaged
extracellular matrix within the infarcted tissue release
mediators that can be sensed by different cell and or-
gans, including the bone marrow (reviewed in Liaudet and
Rosenblatt-Velin [33] and in Swirski and Nahrendorf [34]).
These endogenous signals, termed ‘danger associated molecu-
lar patterns’ (DAMPS) or ‘alarmins’, can activate toll-like re-
ceptors, especially TLR4 and TLR2, and can be sensed in
immune as well as stromal cells [35••]. In the bone marrow,
mesenchymal stem cells and their progeny can releaseMCP1 in
response to circulating TLR4 ligands, thus providing an acti-
vatingmigratory signal for bonemarrowmonocyte progenitors.

Another compelling hypothesis suggests that signals
from the sympathetic nervous system, following the pain
and stress associated with ACS, can trigger the egress of
cells from the bone marrow. Innervating neurons can alter
the adrenergic tone within the bone marrow through the
release of norepinephrine, which in turn disrupts
osteoblast-derived retention signals such as CXCL12
(SDF1a) [36]. In support of this hypothesis, administration

of B2-adrenergic receptor agonists or a Beta3 blocker in
mice effectively enhanced or blocked HSC mobilization
from the bone marrow, respectively [36, 37••]. The activa-
tion of the stem cell niche within the bone marrow in an
ACS model was shown to be mediated by Wnt signaling,
suggesting another potential link between catecholamines
and progenitor cell response [28•].

In addition to the bone marrow response, the splenic
red pulp retains a reservoir of undifferentiated monocytes
that can be mobilized and migrate to the injured myo-
cardium [38]. The migration of monocytes from the
spleen is mediated by Angiotensin II and in a mouse
model of exaggerated infarct inflammation, ACE inhibi-
tion reduced the levels of spleen-derived monocytes in
the circulation and improved infarct healing [39]. Con-
versely, it was shown that the spleen is essential to the
infarct healing process by providing a continuous supply
of cells to the site of myocardial injury, and splenectomy
after coronary ligation led to impaired wound healing and
heart failure [22•]. These studies highlight once more the
physiological challenge in achieving a balanced immune
response leading to an efficient healing process without
exacerbation of the inflammatory process. There is no
clinical evidence that a similar extramedullary monopoiesis

Fig. 1 Mechanisms promoting plaque destabilization following acute coronary syndrome (ACS)
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mechanism exists in humans; however, a study that included
745 ex-servicemen who had splenectomy for trauma during
the 1939-45 war reported an increased rate of ischemic heart
disease, suggesting a potential a cardio-protecting role for
the spleen [40].

Potential therapies to reduce post-ACS monocytosis
could target HPC release from the bone marrow or
monocyte release from the spleen. Chemokine antagonists
(e.g. MCP-1 decoy, anti-CSF antibodies) and B3 antago-
nists could target HPC mobilization from bone marrow,
although potentially at the cost of impaired infarct
healing. In a study conducted in patients with high CV
risk and elevated CRP, it was demonstrated that admin-
istration of anti-CCR2 mAb significantly attenuated in-
flammation, as measured by CRP [41•]. As described
above, ACE inhibition or ARB (angiotensin receptor
blocker) therapy may decrease splenic monocyte release,
and multiple animal studies have shown plaque stabiliza-
tion with these drug classes [42, 43]. Although CV out-
comes studies with ACE inhibitors show reduction in CV
death and reinfarction post-MI, this is mainly in patients
with STEMI and systolic dysfunction, and thus seems to
be due more to beneficial effects on myocardial rather
than plaque remodeling. A small human study has shown
a beneficial effect of these therapies on plaque stabiliza-
tion; however, ACE inhibition has failed to demonstrate
plaque regression in randomized clinical trials [12, 44].
Since the current standard of care mainly targets the Beta
adrenergic receptors I and II isoform, it would be of
value to assess the specific impact of beta III inhibitors
on risk of ACS recurrence [45].

Activation of Monocytes Following ACS

The activation of TLRs and the subsequent NFkB signaling
can be elicited by a variety of endogenous signals derived
from the injured myocardium (Reviewed in Liaudet and
Rosenblatt-Velin [33]). These stimuli include HMGB-1, Heat
Shock Proteins, myosin, hyaluronic acid, fibrinogen, fibro-
nectin EDA and nucleic acids, as well as myeloid signals such
as neutrophil-derived proteins MRP8 and MRP14 [46],
(Reviewed in Liaudet and Rosenblatt-Velin 2013 [33]). All
monocytic subtypes can respond to TLR ligands; however,
CD14++monocytes respond well to TLR4 and TLR2 stimuli,
while CD14dim monocytes sense TLR7 and TLR8 ligands
(reviewed in Liaudet and Rosenblatt-Velin 2013 [33]). Ex-
pression of TLR4 in myeloid cells is elevated in patients with
ACS compared with angina patients or healthy subjects [47•,
48, 49]. TLR4 upregulation peaks within 24 hours after AMI
and declines by Day 14 [50]. TLR4 expression correlated with
cytokine response (IL-6, TNFa) derived from innate immune
cells [50]. Interestingly, mononuclear cells from UA patients

with recurrent ischemia showed enhanced production of IL-6
in response to LPS 6 months post-ACS [51].

Another potent activator of monocytes is the cytokine
IL1b. It was reported that the Nlrp3 inflammasome is
activated in response to cardiomyocyte necrosis and can
trigger the release of IL-1b, which in turn exacerbates the
inflammatory state [52]. In vivo studies further show that
activation of the inflammasome in cardiac fibroblasts plays
an important role in inflammatory responses and subse-
quent injury after myocardial ischemia reperfusion, and
the activation is partly mediated by potassium efflux and
ROS production [53]. Interestingly, the activation of TLR4
and IL1R in monocytes through the intracellular TIR
(toll/IL-1 receptor) domain results in prominent production
and release of multiple cytokines and chemokines that
regulate both innate and adaptive immunity (TIR reference,
Reviewed in Tedgui and Mallat [54]). In addition, a reduc-
tion in anti-inflammatory cytokines was recorded in ACS
patients, reflecting the imbalance in systemic cytokine re-
sponse following an ACS [55].

Potential therapies that could modulate post-ACS mono-
cyte activation are currently in development. These include
an anti-TLR antibody in preclinical development (Opsona
OPN-305), the TLR2/4 antagonist VBL-201 [56] and anti-
IL1b (Novartis, Canakinumab, [57]), currently in a large
cardiovascular outcomes study.

Involvement of T cells in ACS

Unstable plaques show marked increase in T cell infiltra-
tion [58] accompanied by a dramatic increase in plaque
IFN+, but not IL-4, suggesting an imbalance between
Th1/Th2 T cell subsets. Similarly, circulating Th1 cells
undergo dramatic expansion within 6-hours post ACS)
[48, 49] Importantly, Th1-derived IFN+ as well as CD40
ligand are potent stimuli of plaque-resident macrophages,
and act synergistically to induce the expression of multi-
ple proinflammatory genes, as well as plaque destabilizing
metalloproteinases [59]. An additional subset of IFN+-
producing Th1 cells that can release IL-17 has been
implicated in ACS [60•]. A sharp increase in these
Th17/Th1 was observed in ACS. Interestingly, a concom-
itant decrease in the number of anti-inflammatory Treg
cells, the related transcription factor (Foxp3+), and plasma
TGF-β1 was observed in ACS patients [60•, 61]. These
changes highlight the imbalance in T cell response follow-
ing ACS, and suggest the potential involvement of pro-
inflammatory T cells in the development of atherosclerotic
plaque instability.

Typically, T cells require costimulation of both an
HLA/antigen complex, as well as an additional APC stimulus
to transform into effector cells. From the many different
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proteins with described costimulatory activity, the best
defined and perhaps most significant receptor/ligand complex
is B7/CD28. Recently, a unique subpopulation of T cells that
lack CD28 was shown to be involved in ACS [62]. CD4+
CD28null cells undergo considerable expansion during
unstable angina compared to patients with stable angina
[62]. These cells have a distinctive T cell phenotype and have
gained cytolytic activity through expression of perforin and
granzymeB, which can damage vascular endothelial cells [63]
and release large amounts of IFN+ [62], a potent stimulus of
macrophages. In addition, it was shown that CD4+
CD28null cells derived from ACS patients express a killer
immunoglobulin-like receptor (KIR) variant that induces
cytotoxic activity of these cells independent of the T cell
receptor [64]. The combination of such features makes
CD4+CD28null cells highly aggressive with the potential
to destabilize vascular lesions. Indeed, it was established
that the level of this unique T cell subtype is correlated
with high reoccurrence of acute coronary events [65].
Interestingly, CD4+CD28null cells isolated from ACS pa-
tients’ express high levels of the costimulatory receptors
OX40 and 4-1BB of the Tumor necrosis factor (TNF)
super family [66]. Blocking of these costimulatory signals
reduced IFN+ secretion and perforin release, thereby offer-
ing a potential path for inhibiting the harmful impact of
these cells in the pathophysiology of atherosclerosis.

No therapies specifically targeting T cells for post-ACS
risk are in clinical practice; however, a large cardiovascular
outcomes study of the effects of methotrexate may inform
on this hypothesis [67]. Strategies to inhibit T cell Th1
production and promote Treg function, such as FK506,
and anti-CD3 antibody are potential approaches to reduce
atherosclerosis [68].

Mechanisms of Plaque Destabilization and Potential
Targets for Therapeutics

Coronary plaques generally manifest clinically by creat-
ing a flow-limiting stenosis or by resulting in thrombi
that can block the blood flow at the event site, or
distally due to an embolic event. Paradoxically, the
thrombotic events do not occur preferentially at the
most significantly narrowed lesions, but at sites with
plaques that are structurally vulnerable to rupture. In-
flammatory cells are implicated in the destabilization of
these plaques and in subsequently hastening the thinning
and weakening of the fibrous cap.

There are several mechanisms by which the activated
immune cells can affect plaque structure. The role of mac-
rophages in the initiation and propagation of plaque pro-
gression and destabilization and the contribution of
inflammatory cytokines and MMPs is well studied in non-

clinical models and reviewed elsewhere [69]. In this section,
we highlight the current trends that will direct our thinking
about future therapies.

Macrophages within the atherosclerotic lesion morph
into foam cells through the continuous ingestion of mod-
ified lipoprotein particles such as oxidized LDL. Although
reported to be intimately involved in plaque initiation and
progression, foam cells were shown to suppress rather
than activate inflammatory gene expression [70]. However,
this seemingly protective behavior of macrophages can
often go astray as the intracellular accumulation of lipids
and cholesterol induce cytotoxic effects and can lead to
cell death and the formation of a destabilized lipid core
[71]. One of the mechanisms that facilitates macrophage
cell death is the blocking of macrophage egress out of the
lesion through the secretion of Netrin-1, a neuroimmune
guiding molecule [72]. Hence, the combination of ineffi-
cient macrophage exit and lipid-driven cell death within the
vascular lesion is a major driver for lesion development and
plaque vulnerability.

It is widely recognized that the hallmarks of apoptotic
cell death, whether chromatin condensation, annexin-V
staining or morphological characteristic, are associated
with the maturation of atherosclerotic plaque. The appear-
ance of apoptotic debris, including evidence of macro-
phage apoptosis, accumulates when the phagocytic
machinery is impaired. Apoptosis is abundant in human
atherosclerotic lesions, and is associated with inflammatory
and engulfing cells (T cells and macrophages) [73]. This
process often leads to the appearance of necrotic tissue in
mature plaques and likely reflects the complex pathology
or secondary necrosis following apoptotic cell death. Nu-
merous pro-inflammatory stimuli, including cytokines
(TNFa, IL-6) reactive oxidants, oxidized-LDL and free
cholesterol are evident in advanced plaque and, whilst
undoubtedly contribute to the evolving pathology, their
casual role in vulnerability to rupture remain uncertain.
Clinical antioxidant therapies, for example, have not trans-
lated into clinical success [74]. Non-clinical approaches to
assess the contribution of macrophage apoptosis to the
progression of atherosclerotic plaque use bone marrow
transplantation from animals with selective deletion in
established apoptotic pathways. For example, transfer of
bone marrow cells from p53-/- mice to syngeneic LDLr-/-
mice: supported a protective role for p53 in slowing down
atherosclerosis development and, interestingly, promoting
remodeling of the lesion from a vulnerable to a stable-
looking phenotype [75]. Similar observations were seen
for bone marrow from Bax-/- mice into LDL receptor
deficient mice; this reduced the degree of apoptosis and
promoted development of atherosclerosis [76]. Whilst the-
se studies indicate that apoptosis plays a critical self-
defense mechanism in limiting atherosclerosis progression,
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further experimental studies using pharmacological inhib-
itors are required to confirm these conclusions. Despite
the limitation of non-clinical studies, most converge on
the notion that phagocytic clearance of apoptotic cells is
important to slow the evolution of the lesion and stabi-
lize vulnerable plaques. The process of phagocytosis
and egress appears highly efficient, and interruption
can rapidly lead to accumulation of cell debris and
promotion of the inflammatory milieu [77]. Indeed, the
"rate of apoptosis" as well as serological markers of
apoptosis can be considered reflective of vulnerability.
It is therefore tempting to speculate that impediment of
this process, either due to a loss of apoptotic signalling
that "tags" the cell for phagocytic removal or the loss of
phagocytic activity can lead to enhanced plaque rupture.
Pro-thrombic factors (including tissue factor) released
from post-apoptotic macrophages or increased secretion
of matrix degrading proteases can cause atheroma de-
velopment, and thereby contribute to plaque vulnerabil-
ity. Free cholesterol and cholesterol crystals are found in
large amounts in the macrophages of advanced lesions,
and are thought to contribute to macrophage cell death
by induced ER stress [78]. Whilst the detailed mecha-
nistic response for induction of apoptosis and limited
efferocytosis of the macrophage and other inflammatory
cells of advanced plaque remains to be fully elucidated,
therapeutic strategies aimed at preventing macrophage
apoptosis or maintaining their phagocytic function and
egress should clearly be evaluated.

Autophagy

Autophagy is a process of “self-clearance” and refers to a
well-conserved process to turn over organelles and proteins
in order to maintain normal cellular homeostasis. The
processes of autophagy, efflux and efferocytosis are
fundamental to the stability of the lesion. It becomes
activated by environmental stress, and in atherosclerotic
plaques, the inflammation, reactive oxygen species, hypoxia,
oxidized lipoproteins and endoplasmic reticulum stress can all
act as inducers of autophagy [79].

Autophagy, once activated can have a dual role—it pro-
motes smooth muscle cell (SMC) and endothelial cell (EC)
survival when exposed to oxidative stress by removing intra-
cellular debris. There is also recent evidence that autophagy
plays a critical role in regulating the cholesterol efflux from
macrophage foam cells via lysosomal acid lipase [80].

However, excessive stimulation of autophagy can cause
autophagic death [79]. Loss of SMC in plaque can result in
destabilization of plaque, due to reduced synthesis of colla-
gen and thinning of the fibrous cap. Endothelial cell death
can weaken the structure of the plaque, and may also pro-
mote thrombotic events.

Experimental Therapies Targeting Plaque Inflammation

Blocking inflammatory monocyte infiltration into nonculprit
lesions is an attractive target to reduce post-ACS
reinfarction (Table 1). Therapies currently in clinical
development that may address this mechanism include
anti-P-selectin (Phase II, Roche), PA-508 (MCP-1 decoy,
preclinical, ProtAffin), and Serp-1 (Viron, Ph II, Circ
cardiovascular interventions [81]). Intracellular signal-
ling inhibitors, such as p38 MAPK GSK-856553
(losmapimod), may reduce macrophage activation in
plaque. GSK 2586881, a recombinant human angioten-
sin converting enzyme-2 is in Phase I development with
ACS as a potential indication, and may promote plaque
s tab i l i za t ion by c leav ing ang io tens in I I in to
atheroprotective peptides [82].

Although ApoA1 mimetic therapies are considered lipid
modifying, ApoA1 may directly reduce plaque inflammation.
Through anti-inflammatory effects and removal of cholesterol
by reverse cholesterol transport, these agents may modulate
plaque macrophage phenotype and plaque vulnerability [83].
ApoA1 Milano achieved proof-of-concept for plaque regres-
sion [84] and is now in Ph I, with a new formulation. CSL-112,
a synthetic reconstituted HDL, and RVX-208, an Apo-A1
inducer, which also has potential direct anti-inflammatory ac-
tions through an epigenetic mechanism, are both in Phase II
IVUS plaque regression studies with data expected in 2013
(reviewed in Vucic and Rosenson, Current Atherosclerosis
Reports 2011 [85]). ATI-5261 (Artery Therapeutics) is a
26-mer HDL mimetic peptide in preclinical development.

A number of experimental therapies have targeted LDL
oxidation. Darapladib, an Lp-PLA2 inhibitor in Phase III
outcomes studies [86] may reduce plaque inflammation by
inhibiting LDL oxidation, and has shown favorable effects
on necrotic core in animal and human studies [87, 88],
COR-2, an OxLDL scavenger (soluble CD68, J&J) and
INV-311 (inVasc therapeutics), a myeloperoxidase inhibitor,
are in preclinical development.

Exploratory drugs being developed to reduce myocardial
ischemia/reperfusion injury might secondarily be active in
plaque destabilization. Examples include complement
targeting therapies, J&J CB-159, a protease targeting the
inflammatory cascade, and Elafin (Proteo), an inhibitor of
leukocyte elastase and proteinase 3. Similarly, apoptosis
inhibitors being developed to improve myocyte survival
after STEMI, including growth factors and Akt activa-
tors, might have effects promoting survival of plaque-
resident cells.

While no therapies currently being explored directly tar-
get autophagy, rapamycin and related drugs may in part
function through this mechanism; stent-based delivery of
everolimus in rabbit atheroma has demonstrated clearance
of macrophages via autophagic death [89].
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Conclusion

Despite advances in therapy, patients remain vulnerable
after presenting with ACS, and preventing recurrent infarc-
tion in this high-risk period remains a major unmet need.
Advances in our understanding of immunology and plaque
biology lead to the promise of developing novel therapeutics
for novel targets with key roles in plaque vulnerability after
ACS. In particular, immune modulation to target the pro-
duction and release of HSC after ACS, HSC differentiation
to inflammatory monocytes, and inflammatory monocyte
ingress into plaque represent new approaches to therapy.
Cellular actors in the post-ACS “activated” plaque represent
downstream targets of therapy. A balancing of benefit and
risk of novel therapies will likely require an ability to
individually tailor therapy to patients, depending on both
the systemic and local (plaque) factors driving their risk of
recurrent events.
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