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Abstract
Purpose of Review Vaccination against influenza in pa-
tients with primary antibody deficiency is recommended.
Common variable immunodeficiency (CVID) is the most
frequent and clinically relevant antibody deficiency dis-
ease and is by definition characterized by an impaired
vaccination response. The purpose of this review is to
present the current knowledge of humoral and cellular
vaccine response to influenza in CVID patients.
Recent Findings Studies conducted in CVID patients demon-
strated an impaired humoral response upon influenza vaccina-
tion. Data on cellular immune response are in part conflicting,
with two out of three studies showing responses similar to
healthy controls.
Summary Available data suggest a benefit from influenza vac-
cination in CVID patients. Therefore, annual influenza vacci-
nation in patients and their close household contacts is
recommended.

Keywords Common variable immunodeficiency . Primary
antibody deficiency . Influenza . Vaccination

Introduction

Common variable immunodeficiency (CVID) is the most fre-
quent, clinically relevant antibody deficiency disorder affect-
ing one in 25.000 to 50.000 individuals [1]. According to the
criteria of the European Society for Immunodeficiencies
(ESID) [2], secondary causes of hypogammaglobulinemia
have to be excluded and based on reduced immunoglobulin
isotypes (low IgG + low IgA +/− low IgM); vaccine response
and percentage of switched memory B cell CVID patients are
further differentiated from other forms of primary antibody
deficiency (see Fig. 1).

The term CVID refers to a group of heterogeneous
conditions. Patients suffer from an increased susceptibility
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to infections and in addition, about two thirds of the pa-
tients develop non-infectious complications, such as
chronic inflammatory disorders, polyclonal lymphoprolif-
eration, autoimmune syndromes, and malignancies.
Frequent pulmonary complications include bronchiectasis
and granulomatous lymphocytic interstitial lung disease
(GLILD) occurring in approximately 25% of CVID pa-
tients [3••]. These structural lung changes contribute even
further to the increased risk of pulmonary infections [4].
Associated comorbidities reduce the expectancy and qual-
ity of life of the CVID patients [3••, 5].

In recent years, our understanding on the genetic back-
ground in CVID has increased considerably. However, in con-
trast to many other primary immunodeficiencies (PID), mono-
genic forms probably account for only 10–25% of patients
with CVID [6]. Genes currently implicated in monogenic
CVID include ICOS, TNFRSF13B (TACI), TNFRSF13C
(BAFF-R), TNFSF12 (TWEAK), CD19, CD81, CR2
(CD21), MS4A1 (CD20), TNFRSF7 (CD27), IL-21, IL-
21R, LRBA, CTLA4, PRKCD, PLCG2, NFKB1, NFKB2,
PIK3CD, PIK3R1, VAV1, RAC2, BLK, IKZF1 (IKAROS),
and IRF2BP2 [7].With an increasing number of disease genes
identified, CVID is consideredmore andmore as an “umbrella
diagnosis,” and it became evident that many of these genetic
defects cause distinct disease entities. At least a subgroup of
patients with CVID is suspected to have an oligogenic rather
than a monogenic inheritance [7].

General Treatment in CVID

Treatment options in CVID include antibiotics, immunosup-
pressive drugs, vaccinations, and immunoglobulin (Ig) re-
placement therapy [3••]. To increase the diversity of immuno-
globulins, treatment products are originated and pooled from
> 1000 healthy donors, thereby transferring and replenishing
missing IgG antibodies in patients. Naturally, immunoglobu-
lin treatment cannot transfer protection against every infec-
tion. Particularly, antibody concentrations against diseases
with low vaccine coverage in the general population (e.g.,
tick-borne encephalitis) [8] or diseases with a low prevalence
(e.g., meningococcal meningitis) [9, 10] are variable or insuf-
ficient. Further, immunoglobulin replacement therapy would
not be expected to protect recipients from currently circulating
influenza strains, since antibodies to the current influenza
strains are absent from the plasma donor pool from which
the immunoglobulins had been purified at that time.

Vaccination in CVID

With regard to the humoral responses, the effectiveness of
many common vaccines in patients with CVID has not been
formally evaluated. Specific antibodies against many vaccine-
preventable diseases are present in high amounts in therapeu-
tic polyclonal IgG and for instance booster vaccinations
against tetanus or diphtheria toxoids are not necessary for

At least one of the following:
• increased susceptibility to infection
• autoimmune manifestations
• granulomatous disease
• unexplained polyclonal lymphoproliferation
• affected family member with antibody deficiency

AND

• marked decrease of IgG and marked decrease of IgA
with or without low IgM levels

(measured at least twice; <2SD of the normal levels for their age)

AND at least one of the following

• poor antibody response to vaccines (and/or absent isohaemagglutinins); i.e.
absence of protective levels despite vaccination where defined

• low switched memory B cells (<70% of age-related normal value)

AND exclusion of

• secondary causes of hypogammaglobulinemia
• inappropriate age (patients must be >4 years old, but symptoms may present before)
• profound T-cell deficiency, defined as 2 out of the following (y=year of life):

• CD4 numbers/microliter: 2-6y <300, 6-12y <250, >12y <200
• % naive CD4: 2-6y <25%, 6-16y <20%, >16y <10%
• T cell proliferation absent

Fig. 1 Common variable
immunodeficiency (CVID)
according to ESID Registry—
working definitions for clinical
diagnosis of PID (2016)
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individuals receiving IgG replacement therapy, meanwhile
vaccination for instance against meningococcal disease
(serogroups A, B, C, W, and Y) is recommended [11, 12•].
There is no theoretical reason that intravenous Ig (IVIg)
should reduce effectiveness of inactivated vaccines.

Immunization remains the only possibility of transferring
protection against seasonal influenza in these patients; despite
the fact that, by definition, many CVID patients have a miss-
ing or impaired response to vaccinations [13]. Cellular immu-
nity is thought to be mainly intact in the majority of patients
with CVID; however, cell-mediated immune response is still a
poorly understood effect of vaccination [14, 15]. Due to tech-
nical limitations and a missing clear correlate of protection
[16], currently, cellular immune responses to vaccination can-
not be conducted as part of routine diagnostics.

When using live attenuated vaccines in patients who are
receiving immunoglobulins, the efficacy is reduced due to
vaccine neutralization by pre-existing antibodies. Thus, it is
recommended to postpone live attenuated vaccination until a
minimum of three months after the last immunoglobulin infu-
sion [12•, 17]. In patients receiving subcutaneous immuno-
globulin therapy, vaccines should be administered at a differ-
ent anatomical site [17]. Because of negligibly low concentra-
tions of specific antibodies, immunoglobulin treatment does
not interfere with yellow fever vaccine [18].

There are no safety concerns with the use of inactivated
vaccines [12•]. Live attenuated vaccines are generally contra-
indicated in patients with PID and especially patients with
impaired cellular immune response are considered to be at
high risk for developing vaccine-related diseases [12•]. Viral
live attenuated vaccination against MMR (mumps, measles,
and rubella) and varicella (but not quadrivalent MMRV) is
considered to be safe in patients with > 200/μl or > 25% of
CD4+ cells and normal mitogen response [19, 20].

Influenza

Influenza is a worldwide, highly infectious airborne disease
affecting millions of individuals every year (reviewed in [21]).
Influenza viruses are single-stranded RNA viruses belonging
to the Orthomyxoviridae family. Three types of influenza vi-
ruses, influenza A, B, and C, affect humans and are capable of
causing epidemics and pandemics. Influenza A is most prone
to antigenic shifts and the most common circulating type caus-
ing significant illness. Influenza strains are named after their
types of hemagglutinin (HA) and neuraminidase (NA) surface
proteins, which are the primary target of the immune response
to influenza.

The influenza virus infects all age groups but especially
children and adults over the age of 65 are considered to be
at high risk for severe influenza infections. Therefore, vacci-
nation is strongly recommended for these age groups, and also
for anyone with high-risk conditions for disease-associated

complications such as patients with chronic medical condi-
tions (metabolic, cardiac, pulmonary, or kidney diseases, as
well as immunocompromised patients) [22, 23].

In patients with PID, influenza is a common viral infection
[24]. A recent population-based study from Japan reported a
high morbidity in pediatric PID patients suffering from influ-
enza, with 90% requiring hospitalization [25].

Influenza Vaccines

The earliest attempts of developing vaccines against influenza
date back to the 1930s when the first live attenuated virus
vaccines were produced in chicken eggs [26]. Today, vaccine
efficacy remains highly variable due to uncertain predictions
concerning the main circulating strain, as occurred in the sea-
son 2014/15 with the CDC (Centers for Disease Control and
Prevention) reporting an overall vaccine efficacy of only 23%
[27]. However, when the annual prediction is well matched to
circulating influenza strains, vaccine efficacy can reach up to
75% [28, 29].

The currently available seasonal influenza vaccines are ei-
ther trivalent vaccines (TIVs), containing one strain of each of
the two subtypes of influenza Avirus (A/H1N1 and A/H3N2)
and one of the two co-circulating B virus lineages (B/Victoria
or B/Yamagata), or quadrivalent vaccines (QIVs), containing
both influenza A subtypes (A/H1N1 and A/H3N2) and both
influenza B co-circulating lineages (B/Victoria and
B/Yamagata) [30]. Protective effects of inactivated influenza
vaccines remain variable, particularly in vulnerable groups
such as the elderly [31].

Oil-in-water adjuvants like MF59 and AS03 have been
licensed and widely used, and shown efficacious in preventing
influenza infections in the last pandemic. In young children,
MF59-adjuvanted inactivated vaccine was more efficacious
than non-adjuvanted vaccine in preventing influenza infec-
tions [32]. Furthermore, MF59-adjuvanted influenza vaccines
reduced hospitalization following influenza infection in the
elderly [48]. Other adjuvants are currently developed and
some are already being tested in clinical trials (reviewed in
[33]).

Universal influenza vaccines targeting conserved regions
of the influenza virus including the HA stalk domain or the
ectodomain of the M2 ion channel represent a promising ap-
proach. Universal influenza vaccine development is in its late
preclinical and clinical stage [34].

The live attenuated influenza vaccine (LAIV) is available
for large-scale use in the United States (US) since 2003 and in
Europe since 2011. Recent data have revealed conflicting re-
sults concerning its effectiveness in children. LAIVappears to
protect particularly poorly against currently circulating H1N1
viruses that are derived from the 2009 pandemic H1N1 virus-
es. This observation led to the decision of US authorities to not
further advise the use of LAIV in 2016–17; however, other
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countries, including the UK, Canada, and Finland, have con-
tinued to recommend the use of LAIV [35, 36].

In secondary immunodeficiencies such as HIV and solid
organ transplanted patients, different vaccination schedules
with intradermal administration or adjuvanted influenza vac-
cination have been examined, with variable results [37–39].

In PID patients, there are no comparative studies on alter-
native influenza vaccination protocols available. The use of
live attenuated influenza vaccines is generally not recom-
mended in PID patients [12•]. Some national recommenda-
tions favor the use of tetravalent influenza vaccines, expecting
a broader coverage against two influenza A (H1N1 and
H2N3) and two influenza B strains (Yamagata and
Brisbane), which is a plausible procedure, although compara-
tive studies between trivalent and tetravalent influenza vac-
cines are missing.

To further limit the risk of influenza infection, it is recom-
mended that household contacts are vaccinated with the
inactivated influenza vaccine [40].

In addition to active immunization, there is ongoing re-
search on monoclonal antibodies for passive immunization
against influenza. However, so far these products have only
entered phase 2 clinical trial stage and their clinical benefit
cannot be judged yet [41].

Correlate of Protection

Immunity induced by current vaccines is predominantly based
on antibodies capable of neutralizing pathogens [42].
Knowledge of a correlate of protection is indispensable in
each vaccine, but in the majority of vaccines it remains poorly
defined. Humoral vaccination response to the seasonal influ-
enza vaccine is commonly assessed by hemagglutination in-
hibition (HI) assay. Early studies by Hobson et al. [43] have
established that HI antibody titers are correlated with protec-
tion against influenza infection with the definition of an HI
antibody titer of 1:40 as 50% protective against influenza in-
fection compared to an HI titer < 1:10. This cut-off is still
applied by the European Medicines Agency (EMA) defining
seroprotection at 1:40 [44]. According to the EMA, a positive
vaccination response (seroconversion) is considered as an in-
crease in HI titer pre- to post-vaccination ≥ fourfold or an HI
titer of at least 1:40 with antibodies being absent before vac-
cination [44]. Despite this definition, higher HI titers have
been shown to lead to a higher degree of protection especially
in children and elderly patients [45, 46].

While regulatory agencies are focusing on the role of anti-
body response, effects of cell-mediated immunity are not
assessed [47]. Even if cell-mediated immunity does not appear
to contribute significantly to the prevention of the infection,
data suggest that it plays an important role in viral clearance
after influenza infection and that it may also be protective
against disease-associated complications [49]. In particular,

T lymphocytes play a crucial role in mediating the cellular
immune response, by providing a helper antibody response
and intervening directly in reducing viral replication [50].

T cell-mediated immunity against influenza appears to be
less affected by the annually occurring epitope changes.
Studies of viral evolution over the years indicate that while
only 2.7% of epitopes recognized by antibodies are conserved,
15% of T cell epitopes remain unchanged [51]. This higher
conservation of T cell epitopes correlates with the ability of T
cells to target internal viral proteins, which are far less tolerant
to selection pressure compared to external coat proteins
[52–54]. This is also exemplified by the observation that the
hemagglutinin (HA) and neuraminidase (NA) of the pandemic
H1N1 strain have acquired mutations at a rate six to eight
times faster than the internal nucleoprotein (NP) protein, in
terms of amino acids substitutions per site per year [55].

During the 2009 pandemic waves in the UK, it was dem-
onstrated that higher frequencies of pre-existing interferon
(IFN)-γ+ T cells against conserved CD8+ epitopes were
found in individuals, who developed less severe illness
[56••]. In addition, recent influenza challenge studies have
demonstrated a correlation between influenza A virus-
specific CD4+ T cells and lower virus shedding with less
severe illness in human volunteers following infection with
non-virulent influenza A strains [57]. Data provided evidence
that both influenza-specific CD4+ and CD8+ T cells confer
cross-protective immunity towards various influenza sub-
types. Ex vivo cellular immune responses to influenza were
shown to correlate with protection in the elderly [58]. Cell-
mediated immunity is characterized by stimulation of CD8+
cytotoxic lymphocytes that are critical in the defense against
viral diseases. This stimulation is mediated, and maintained,
to a large extent by CD4+ Th1 cells capable of IFN-γ, IL-2, or
TNF-α cytokine production [59–62]. Preliminary studies of
young children confirmed that the IFN-γ enzyme-linked
immunospot (IFN-γ ELISPOT) was a more sensitive measure
of influenza memory than serum antibody titers [63].

Antibody Responses to Seasonal Influenza Vaccine
in CVID Patients

To our best knowledge, currently, only three studies have ad-
dressed the issue of influenza vaccination in CVID patients
[64, 65•, 66]. An absent or insufficient antibody response was
found in most but not all cases.

Van Assen et al. reported a significant increase of HI titers
against all three strains included in the seasonal vaccine
2006/2007 (non-adjuvanted) in healthy controls but not in
17 CVID patients [64]. No seroconversion was reported for
any patient against A/H1N1 or A/H3N2.

In line with this study, the majority of the patients described
by Hanitsch et al. did not respond to the seasonal non-
adjuvanted influenza vaccine 2013/2014 [65•]. Following
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vaccination, increasing antibody titers were observed in the
healthy control group; however, only one patient expressed a
positive humoral response against both A strains. While ful-
filling the ESID criteria for CVID, this patient was considered
to suffer from a less severe form of CVID, as this patient had
also shown a good vaccine response to pneumococcal vaccine
and had higher concentrations of switched memory B cells
compared to the other CVID patients.

Finally, Pedersen et al. studied effects of influenza vacci-
nation in four cases with primary antibody deficiencies [66].
The study included one patient suffering from x-linked agam-
maglobulinemia (XLA) and three patients with CVID.
Patients were vaccinated with the pandemic vaccine A⁄
California⁄7⁄2009 (H1N1)-like split virus (X179a) adjuvanted
with the oil-in-water emulsion AS03. Seroconversion was re-
ported for two out of three CVID patients after two doses of
the adjuvanted influenza vaccine. However, and in line with
the results of the other studies, the vaccine-induced fold in-
crease of HI titers of both responders was rather marginal
compared to participating healthy controls.

Despite a hampered vaccination response, protective HI
titers could be detected in many CVID patients after vaccina-
tion. Van Assen et al. reported HI titers of at least 1:40 in 77%
(A/H1N1), 12% (A/H3N2), and 12% (influenza B) [64].
Seroprotection was achieved in 7/8 (A/H1N1), 5/8
(A/H3N2), and 5/8 (influenza B) CVID patients in the study
by Hanitsch et al. [65•]. A seroprotection was also observed
by Pedersen et al. in both responders after vaccination [66].
Although these patients were receiving immunoglobulins, the
treatment is not likely to have influenced the measurement,
since anti-influenza titers in the immunoglobulin batches were
1:5 for A/H3N2, 1:10 for A/H1N1, and 1:5 for the B strain as
determined by HI assay [64]. However, patients were under
immunoglobulin replacement therapy and in all three studies
post-vaccination antibody titers were generally lower, when
compared to healthy controls with the mean HI titer at best
being slightly above 1:40 [64, 65•, 66].

All three studies used the intramuscular administration
route. Only mild local or systemic side effects were observed.

There are no studies in CVID patients using intradermal or
intranasal vaccination.

T Cell-mediated Response to the Seasonal Influenza
Vaccine in CVID Patients

Studies on cell-mediated immunity to influenza in CVID pa-
tients are also scarce. Van Assen et al. evaluated cell-mediated
immune response in 15 CVID patients and 15 matched
healthy controls by determining frequencies of IFN-γ-
producing PBMC, and frequencies of IFN-γ-, interleukin
(IL)-2-, and tumor necrosis factor (TNF)-α-producing activat-
ed (CD69+) CD4+ and CD8+ T cells before and after influ-
enza vaccination using IFN-γ ELISpot and flow cytometry

[67]. In this study, cell-mediated immunity was found to be
lower for IFN-γ than in healthy controls. No difference was
reported for TNF-α [67].

In their small case collection, Pedersen et al. also reported
on effects on cell-mediated immunity. Vaccination induced
CD4+ Th1 cell responses in the XLA patient and the CVID
patients, although the frequency of influenza-responsive cells
varied among the patients [66].

Hanitsch et al. observed in their study on 8 CVID patients
and 8 patients with unclassified antibody deficiency that 7/8 of
the CVID patients and 6/8 of the patients with unclassified
antibody deficiency had similar frequencies of vaccine-
induced IFN-γ-, TNF-α-, and IL-2-producing activated
CD4+CD40L+ T cells as the healthy control group [65•].

Another import aspect of cellular immunity is the genera-
tion of multifunctional T cells that are generally considered to
be of crucial importance for a protective T cell response [16].
Better protection through multiple cytokine-producing Th1
cells against different other forms of infection has been shown
in animals [60] and humans [68–70]. Van Assen et al. did not
provide any information considering this aspect of a vaccine-
induced T cell response. However, Pedersen et al. detected a
similar distribution of single, double, and triple cytokine-
producing T cells for IFN-γ, TNF-α, and IL-2 in both CVID
patients with relatively high frequencies of influenza-
responsive CD4+ T cells following vaccination [66].
Likewise, CVID patients in the study by Hanitsch et al. de-
veloped comparable frequencies of multifunctional T cells for
these three cytokines with single (39.0%), double (33.2%),
and triple (27.8%) producers accounting for roughly one third
of IFN-γ-, TNF-α-, and IL-2-producing CD4+ T cells [65•].

Conclusions

Our knowledge of vaccine response to influenza in patients
with CVID is still limited. Patients with PID are at increased
risk of influenza infections. Anti-influenza antibody titers
have been shown to be low in immunoglobulin products and
immunoglobulin replacement treatment does therefore not
transfer sufficient amounts of specific antibodies. There are
no studies assessing clinical endpoints, and only a few studies
investigated immunogenicity.

All studies that examined the humoral immune response in
CVID showed a missing or insufficient increase of specific
antibodies against influenza. Data on the cellular immune re-
sponse to influenza vaccination are in part contradictory, but
suggest a benefit from vaccination. Therefore, annual influen-
za vaccination in CVID patients and their close household
contacts is recommended.
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