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Abstract Common variable immunodeficiency (CVID) is
the most prevalent symptomatic primary immune deficiency.
With widespread use of immunoglobulin replacement therapy,
non-infectious complications, such as autoimmunity, chronic
intestinal inflammation, and lung disease, have replaced infec-
tions as the major cause of morbidity and mortality in this
immune deficiency. The pathogenic mechanisms that underlie
the development of these complications in CVID are not
known; however, there have been numerous associated labo-
ratory findings. Among the most intriguing of these associa-
tions is elevation of interferon signature genes in CVID pa-
tients with inflammatory/autoimmune complications, as a
similar gene expression profile is found in systemic lupus
erythematosus and other chronic inflammatory diseases.
Linked with this heightened interferon signature in CVID is
an expansion of circulating IFN-γ-producing innate lymphoid
cells. Innate lymphoid cells are key regulators of both protec-
tive and pathogenic immune responses that have been exten-
sively studied in recent years. Further exploration of innate
lymphoid cell biology in CVIDmay uncover key mechanisms
underlying the development of inflammatory complications in

these patients and may inspire much needed novel therapeutic
approaches.
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Introduction

Common variable immunodeficiency (CVID) is the most
common symptomatic primary immune deficiency with an
incidence estimated at 1:25,000, though this can vary in dif-
ferent locations [1, 2]. Importantly, CVID is a heterogeneous
disorder of diverse genetic etiologies all leading to a shared
phenotype of profound antibody deficiency [3]. While the
genetic causes of CVID are known for only a minority of
patients, the list of mutations associated with this immune
deficiency has been steadily increasing through extensive re-
search efforts [4, 5]. To meet the diagnostic criteria of CVID,
patients must have marked reductions of serum IgG, IgA, and/
or IgM (conventionally at least two standard deviations below
reference levels) along with impaired antibody responses to
vaccination, often with extensive reduction of isotype-
switched memory B cells [6]. CVID patients typically present
with frequent sinopulmonary infections, but autoimmune,
granulomatous, and lymphoproliferative diseases occur in a
significant proportion [7]. Perhaps due to the heterogeneous
nature and somewhat later onset of symptoms thanmany other
primary immunodeficiencies, the diagnosis of CVID is often
delayed many years due to poor recognition of the immune
defect [8••].

The underlying pathogenesis leading to the immunological
findings of CVID is poorly understood. Rare monogenic
causes for the disorder have been identified, some instances
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involving genes easily linked to the B cell dysfunction that
defines CVID while in other cases the connection to antibody
deficiency is less clear [9]. Complicating genetics is that new-
ly described autosomal dominant forms, such as mutations of
cytotoxic T lymphocyte-associated protein 4 (CTLA-4), sig-
nal transducer and transcription activator 3 (STAT3), and
NFκB1 are found in CVID subjects, but sometimes also in
asymptomatic family members [10–12]. In other instances,
genes such as transmembrane activator and calcium-
modulating ligand interactor (TACI) found also in some nor-
mal subjects may act as disease modifiers rather than causative
mutations [13]. Moreover, CVID is typically diagnosed in
adulthood, suggesting a role for the environment, somatic ge-
netic changes, and/or nucleic acid modification. Further re-
search efforts are necessary to adequately understand the bi-
ology that underlies CVID and its complications.

CVIDmortality has improved in recent decades due to wide
adoption of IgG replacement therapy leading to reduction of
infections, particularly severe examples such as meningitis,
pneumonia, and sepsis [14–17]. Possibly due to this extended
longevity, about half of CVID patients now suffer from com-
plications unresponsive to IgG replacement [18]. These “non-
infectious” complications are now the most important cause of
morbidity and mortality in CVID and include autoimmune,
gastrointestinal, and lung disease as well as malignancy [19•].
Treatment of these disorders in CVID is limited because their
immunological basis is poorly understood. Simply put, it is not
known why all CVID patients share the phenotype of profound
antibody deficiency but not all develop these complications.
Seeking to understand the reason for this major divergence in
the clinical course of CVID, investigators have examined im-
munologic profiles, clinical phenotypes, cell populations and
functions, molecular aspects, and cytokines (as reviewed [20••,
21, 22•]). The wide variability in clinical presentation, com-
bined with the relative rarity of the disease and potential mul-
tiplicity of causes, are major hurdles to improve our under-
standing and develop better therapeutic strategies.

CVID Patients with Non-infectious Complications
Have Distinctive Immunological Findings

Extensive work has been done to identify biological features
distinguishing CVID patients with non-infectious complica-
tions from those without. Impairment of B cell maturation is a
feature of many CVID patients, but it is most dramatically
affected in CVID patients with these conditions. CVID patients
with autoimmunity, granulomatous disease, lymphoid hyper-
plasia, or splenomegaly have significantly reduced numbers
of isotype-switched memory B cells as compared to those with-
out these complications [20••, 23, 24]. Another aspect of B cell
dysfunction which specifically characterizes CVID patients
with inflammatory complications is increased numbers of

circulating CD21 low B cells, found especially in patients with
autoimmunity and splenomegaly [25]. This B cell subset has
self-reactivity but is apparently anergic and may have expanded
in response to persistent antigenic stimulation, as increased
numbers of these cells are also found in immunocompetent
patients with autoimmune disease or chronic viral infection
[26–28]. Autoimmunity, lymphoid hyperplasia, and spleno-
megaly are also more common in CVID patients with loss-of-
functionmutations in TACI, a receptor with an important role in
B cell regulation [29, 30]. The B cells of these subjects, as well
as mutation-bearing relatives, have similar dysfunctions in vitro
[31]. Greater preservation of IgM production is associated with
lymphoproliferative disease both benign and malignant and
may be necessary for the development of at least some autoim-
mune manifestations in CVID [8••, 32]. In contrast, lower
levels of serum IgM are linked with the development of bron-
chiectasis, a complication of chronic pulmonary bacterial infec-
tion [33–38].While B cell impairment is a key feature of CVID,
the mechanisms by which dysfunction of these lymphocytes
occurs, and how such dysfunction is connected to the develop-
ment of non-infectious complications remains to be elucidated.

Additional cellular defects have been identified in CVID
over the years; not surprisingly, some of these have particu-
larly associated with autoimmune or inflammatory complica-
tions. For example, autoimmunity appears more likely to oc-
cur in association with reduction of naïve and regulatory T
cells in CVID [39–43]. Numerous defects in cytokine produc-
tion as well as dendritic and other innate immune cell func-
tions have also been characterized in CVID, potentially lead-
ing to the development of inflammatory features in some sub-
jects [22•, 44–46]. Thus, the immune dysregulation underly-
ing non-infectious complications in CVID clearly extends be-
yond B cell biology.

Interferon Signature in CVID Patients
with Non-infectious Complications

A key observation in CVID is the fact that multiple autoim-
mune and inflammatory complications often occur in the same
patient. For example, individual patients commonly have a
history of autoimmune cytopenias, lymphoid hyperplasia,
splenomegaly, and often granulomatous disease as well [20••,
32, 33]. In the largest retrospective analysis of 2212 CVID
subjects, enteropathy was also associated with autoimmunity,
granulomas, and splenomegaly, confirming a group of interre-
lated conditions [47]. This concurrence of complications in
CVID hints at shared pathogenesis, or at least divergent effects
of the same immunological dysfunction. For example, im-
paired B cell maturation or regulation, in the setting of lym-
phoid hyperplasia and loss of tolerance may give rise to auto-
immune cytopenias [48–52]. In such patients, the B cell matu-
ration defect could especially impair mucosal antibody
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defenses at this microbial interface and thereby predispose to
enteropathy [53]. Yet, as mentioned earlier, B cell dysfunction
may not be the only contributing factor for the emergence of
non-infectious complications in CVID. Patients with mutations
resulting in CTLA-4 haploinsufficiency, impairment of func-
tion of Fas and its receptor, or STAT-3 gain-of-function have all
been linked to the development of autoimmunity, lymphoid
hyperplasia, and splenomegaly in antibody deficient patients
[10, 11, 54, 55]. Furthermore, association of granulomas with
autoimmunity and lymphoid hyperplasia may be explained by
the fact that granulomatous inflammation is a common pathol-
ogy in settings of inadequate antigen clearance and excessive
lymphoproliferation. Illustrating this fact, granulomatous in-
flammation is seen in biopsies of benign lymphoproliferation
in patients regardless of a diagnosis of CVID [11, 56–60].
Thus, despite the diversity of conditions that emerge in
CVID, unifying forms of immunological dysfunction underly-
ing multiple non-infectious complications are likely.

Categorizing CVID patients into a simplified stratification
on the basis of having non-infectious complications or not, our
group previously compared the RNA expression profile of
whole blood between these two categories of subjects.
Interestingly, this study revealed that expression of interferon
signature genes was significantly higher in CVID patients
with these complications as compared to those without
[61••]. While this study demonstrated an increase in the sig-
nature of genes common to type I and type II interferon path-
ways, our follow-up work clearly demonstrated a key role for
interferon (IFN)-γ in inflammatory disease [62••]. INF-γ was
first recognized for its importance in intracellular pathogen
responses and has important stimulatory and modulatory ef-
fects upon other immune cells [63]. INF-γ is predominantly
produced by conventional natural killer (NK) cells, natural
killer T (NKT) cells, as well as effector CD4+ (Th1), and
CD8+ (CTL) T cells. Unexpectedly, we found a significant
expansion of circulating IFN-γ-producing innate lymphoid
cells (ILCs) in CVID patients with non-infectious complica-
tions compared to those without and identified these cells in
the affected mucosal tissues of these subjects [62••].
Identification of the expansion of ILCs in these CVID patients
provided a novel area to further explore in the effort to under-
stand the pathogenesis and clinical course of this primary im-
mune deficiency.

Introduction to Innate Lymphoid Cell Biology

ILCs have recently emerged as innate-like counterparts of T
lymphocytes, with similar activity and physiological roles as
corresponding Tcells [64•]. ILCs lack antigen specificity, pro-
duce a milieu of cytokines, and are enriched in barrier sites,
such as skin and mucosal tissues. Thus, ILCs are endowed to
respond locally and rapidly to environmental changes and act

as a first-line modulator of immunity, inflammation, and tissue
homeostasis. The ILC family has been divided in three differ-
ent subclasses, based on shared developmental requirements
and effector functions, in many cases mirroring that of effector
T cell subsets (Table 1) [65••]. Thus, ILC-1 includes conven-
tional natural killer (cNK) cells, CD127+ ILC-1s, and
CD103+ intraephithelial ILC-1 (ieILC-1). cNKs and ieILC-1
have cytotoxic activity, mediated by perforin and granzyme B,
while CD127+ ILC-1 have common progenitors and produce
IFN-γ [66, 67]. Like Th1 cells, ILC-1 subsets have been im-
plicated in immunity against intracellular bacteria and para-
sites [68]. ILC-2s are dependent on the transcription factor
GATA3 and produce interleukin (IL)-5, IL-13, IL-9, and
amphiregulin in response to IL-25 and IL-33 [69]. ILC-2 sub-
sets have been linked to a rapid immune response to helminths
and extracellular parasites as well as the development of aller-
gic disease. ILC-3s are the most heterogeneous ILC group, yet
they all share the necessity for the retinoic acid-related orphan
receptor (ROR)γt, while further subdivided by their surface
markers and transcription factor dependency [70]. Human
ILC-3s have been shown to produce mainly tumor necrosis
factor (TNF)-α, IL-22, IL-17, and in some cases IFN-γ.

Despite the established delineation of ILC subsets, these
cells are in fact characterized by a great deal of plasticity,
especially between ILC-1 and ILC-3s subsets. It has been
shown that in humans, conversion of ILC-3s toward an ILC-
1 phenotype is possible upon IL-15, IL-2, and IL-12 stimula-
tion with concomitant inhibition of aryl hydrocarbon receptor
signaling [71, 72]. The first study to report such plasticity
demonstrated acquisition of T-bet with concomitant loss of
RORγt expression in ILCs involved patients with Crohn’s
disease who harbor an IL-17 and INF-γ producing cell popu-
lation [73]. In addition, INF-γ producing ILC-1s could be
generated in vitro from NKp44+ ILC-3s and ILC-1 cells ex-
pand within inflamed Crohn’s disease intestinal biopsies in
correspondence with a loss of ILC-3 [74••, 75]. The natural
cytotoxicity receptor NKp44 belongs to an Ig-like transmem-
brane activating receptor family on human NK cells, which
has been also found in ILC subsets [71]. Expression of T-bet
and IFN-γ in ILCs that expressed RORγt appears to be driven
by IL-12 and IL-18, as well as, curiously, IL-1β and IL-23
[72, 74••]. This plasticity mirrors that of CD4+ T cells as Th2
and Th17 cells have been shown to acquire IFN-γ productive
capacity in response to IL-12 and IL-23 stimulation [76]. The
exact sequence of events by which ILC-3 lose RORγt and
acquire features typical of ILC-1, such as T-bet expression,
is still not fully understood [70].

ILCs and Inflammatory Diseases

As potent cytokine producers ILCs are now appreciated as key
drivers of autoimmune and other forms of chronic
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inflammatory disease. Indeed, ILC activity is thought to un-
derlie a variety of chronic inflammatory diseases, including
inflammatory bowel disease, psoriasis, and rheumatic disease
[77–79]. ILCs were first appreciated for their importance in
immune regulation at mucosal sites. As such, distinct subsets
of ILCs have been described in multiple tissues, particularly
the gastrointestinal tract, lungs, and skin (for exhaustive re-
view see [80]). Additionally, a significant role of ILCs is now
also appreciated in lymphoid tissues such as tonsil and spleen
(reviewed in [66, 81]).

Circulating ILCs may also play a distinct role in immune
regulation [82]. It has been estimated that in healthy humans,
about 0.01 to 0.1% of circulating lymphocytes express
CD127, and most of these cells are ILC-2s [81]. More recent-
ly, another study has described a CD117+ circulating precur-
sor for ILC cells in healthy humans [83]. However, it is be-
coming apparent that in various disease states different ILC
subsets are enriched in circulation. Ren and colleagues first
described a population of CD3− CD56+ NKp44+ CCR6+
cells reminiscent of ILC-3 with heightened frequency in both
synovial fluid and peripheral blood of patients with rheuma-
toid arthritis [84]. Moreover, these ILC-3-like cells were
found to produce IL-22 and TNF-α, which was correlated
with disease activity [84]. IL-22 producing ILC-3s have also
been described in circulation of patients with psoriasis, com-
pared with numbers found in healthy individuals [85, 86].
Moreover, treatment with TNF-specific antibody in one pso-
riatic patient abrogated disease in association with a disap-
pearance of NKp44+ ILC-3 cells from blood [86]. Similarly,
lineage negative ILC-3-like cells have been found to be ele-
vated in untreated multiple sclerosis patients. Interestingly,
therapy with the IL-2 receptor antagonist daclizumab not only

decreased the numbers of circulating ILCs in this disease but
also modified their phenotype toward an immunoregulatory
CD56bright NK lineage [87], providing an interesting insight
on the plasticity of these cell types as well as their therapeutic
potential. A similar population of regulatory CD56bright NKs
has been also described in patients with systemic lupus ery-
thematosus, although they did not correlate with disease ac-
tivity [88]. Another ILC-3-like population has been described
in patients with ankylosing spondylitis, a family of arthritis-
associated inflammatory diseases. Phenotypically, they were
defined as Lyn- RORc- T-bet+ and NKp44+ and capable of
producing IL-17 and IL-22. These gut-derived ILC-3 were
expanded in circulation, suggesting an active homing axis
between the gut and the inflamed joints [89, 90]. Another type
of complex and poorly understood autoimmune disease is
systemic sclerosis, with patients showing altered frequencies
of ILC-3 and ILC-1 in circulation [91], however, the clinical
significance of these findings remain unclear.

ILC biology has just begun to be explored in CVID. A small
study of 10 patients with CVID found decreased levels of
mRNA levels for Th17-related genes, such as IL17, RORC2,
and IL23R, which can also be expressed by ILCs [92]. In ad-
dition, lineage negative CD127+ CD90+ ILCs were decreased
in peripheral blood of patients with CVID; however, no corre-
lation with clinical features was described [92]. A more recent
study found a decrease in CD117+ ILCs, mostly ILC-2, in the
circulation of patients with CVID [93]. In the latter, patients
with a more pronounced reduction of CD117+ ILCs also
showed lower numbers of circulating marginal zone-like B
cells and increased prevalence of chronic, non-infectious enter-
opathy [93]. We found an increase in IFN-γ-producing ILCs to
be apparent when comparing CVID patients on the basis of

Table 1 Types of human innate lymphoid cells (ILCs) and their distinguishing features

ILC type Sources of activation Transcription
factor

Subtypes Effector molecules Role in disease

ILC-1 IL-12
IL-15
IL-18

T-bet Conventional NK cells
CD103+ intraepithelial

ILC (ieILC-1)
CD127+

IFN-γ
NK and ieILC-1:
Granzyme
Perforin

Immune response against intracellular
pathogens and tumors

Chronic gastrointestinal and pulmonary
inflammation

ILC-2 IL-25
IL-33
TSLP

GATA3 Amphiregulin
IL-4
IL-5
IL-9
IL-13

Immune response against
helminths
Driver of allergic disease and asthma

ILC-3 Aryl hydrocarbon
receptor ligand

IL-1
IL-6
IL-23

RORγt Lymphoid tissue-inducer (LTi)
NKp44+
T-bet + RORγt + double positive

IL-17
IL-22
LTi:
LT-β
TNF-α
T-bet/RORγt+:
IFN-γ

Immune response against extracellular
pathogens

Disease of gut and skin barrier, including
inflammatory bowel disease and psoriasis

IFN interferon, IL interleukin, ILC innate lymphoid cell, LT-β lymphotoxinβ, LTi lymphoid tissue-inducer, TNF-α tumor necrosis factorα, TSLP thymic
stromal lymphopoietin
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whether or not they had non-infectious complications; those
with such complications had increased levels of circulating
ILC-3 cells [62••]. The diversity of these results speaks to the
well-established heterogeneity of CVID that continues to com-
plicate study of this primary immune deficiency. Further efforts
will be needed to elucidate the mechanisms and significance of
observations that ILC biology is altered in CVID to better un-
derstand how these immune cells influence the progression of
this primary immune deficiency.

Our data suggests that ILCs play a prominent role as a
source of IFN-γ that may promote the inflammation found in
some subjects with CVID [61••]. Another group found that
splenomegaly, one of the most common complications of
CVID, was associated with an INFG polymorphism [94].
Along these lines, we found IFN-γ-expression to be a defining
feature of the ILC-3 cells increased in these CVID patients, as
cells were CD127+ and expressed intracellular IFN-γ as well
as T-bet, the key transcription factor for IFN-γ-production
[62••]. These results were similar to the IFN-γ-expressing
pro-inflammatory ILC-3 population previously described in
mice [67]. Indeed, murine studies have revealed that
RORγt + T-bet + NKp46+ ILC-3s lose IL-17 producing capac-
ity in favor of producing IFN-γ and IL-22 [67]. Thus, it is
important to appreciate that a subset of ILC-3 cells may be an
important source of IFN-γ during disease states, including in
CVID.

Future Directions and Therapeutic Perspectives

As earlier mentioned, an upregulated interferon signature char-
acterizes numerous chronic inflammatory diseases as it also
does CVID patients with non-infectious complications.
Unsurprisingly, the therapeutic potential of modulating this in-
terferon signature has been explored in autoimmune diseases
such as Sjogren’s syndrome and systemic lupus erythematosus
(SLE). Much of this focus has been on type I interferons, but
IFN-γ antagonism is considered to have therapeutic potential
as well [95, 96]. For example, neutralization of IFN-γ was
shown to ameliorate disease in a mouse model of SLE and
IFN-γ antagonism was shown to downregulate IFN signature
genes in SLE patients [97, 98]. However, downregulation of
IFN signature genes mediated by therapeutic IFN-γ antago-
nism failed to coincide with clinical improvement in patients
with discoid lupus [99]. Much work remains to be done in
optimizing this therapeutic approach. Treatment that targets
both type 1 IFN and IFN-γ signaling, through STAT inhibition
or other methods, may be more effective than targeting one
cytokine type alone given the redundancy of their effects [100].

ILC-3 cells themselves are also intriguing therapeutic tar-
gets in CVID. Some therapy already in use may have under-
appreciated roles in modulating ILC activity. For example,
inflammatory cytokine production by ILC-3 cells is reduced

by the immunosuppressant medication cyclosporin A [101].
Therapeutic antagonism of IL-23 may have benefits both by
ameliorating the pathogenic effects of this cytokine as well as
its role as a stimulus of IFN-γ production and ILC-3 activation
[102]. In a short 8-week clinical trial, IL-23 blockade with
risankizumab demonstrated efficacy for inducing remission
of Crohn’s disease [103]. Therapeutic antagonisms of other
cytokines, such as IL-1 or IL-6, may also suppress activation
and expansion of ILC-3 cells. Alternatively, treatments
impairing cell trafficking may have a profound effect on
ILC-driven pathology, as these cells mediate much of their
effects locally. Along these lines, as ILCs utilize the integrin
α4β7 to migrate to the gastrointestinal tract, their depletion
from the GI tract may, along with inhibition of T cell recruit-
ment, contribute to the efficacy of vedolizumab in inflamma-
tory bowel disease [104, 105]. Yet, the relative contribution of
ILC-3 suppression to overall efficacy seen by these therapeu-
tic approaches remains to be determined.

Numerous unique considerations regarding CVID remain
to be understood in the pursuit of improved therapy for these
patients. Prospective longitudinal studies of CVID are lacking
in order to determine whether IFN signature expression or
circulating ILC expansion precedes the development of in-
flammatory complications. While hematopoietic stem cell
transplant (HSCT) has been used infrequently and with high
mortality rates in CVID, efficacy has been profound in those
that survive the treatment [106]. Thus, future advancements in
HSCT patient selection and safety may improve outcomes in
CVID and lead to greater usage of such treatment and conse-
quently have effects upon cytokine and ILC dysregulation in
these patients. Similarly, advancement of genetic diagnosis
and corresponding gene therapy approaches may lead to fu-
ture usage of this treatment in some cases of CVID. One of the
hallmarks of ILCs is their enrichment in mucosal sites, as well
as local self-renewal [107]. Thus, ILC reconstitution after
HSCT is slow, as chemo and radiotherapy deplete blood
ILCs. A study has shown that a circulating ILC-3 population
reappeared after both chemotherapy and allogenic HSCT, but
whether the contribution to pathogenesis of certain disease
states would be ameliorated by such therapy is unknown
[82]. The impact of HSCTand gene therapy upon ILC biology
and pathogenic activities of these cells may ultimately have
significant impact upon the therapeutic course of CVID, but
important mechanisms of their pathogenesis remain to be
elucidated.

Conclusions

The development of non-infectious complications in patients
with CVID remains an enigma. While immunological find-
ings associated with these complications are numerous, the
pathogenesis is not clear. Recent identification of an increased

Curr Allergy Asthma Rep (2017) 17: 77 Page 5 of 9 77



IFN signature distinguishing CVID patients with non-
infectious complications provides a promising avenue of fur-
ther research because this finding is also shared with other
chronic inflammatory diseases where it is being explored as
a therapeutic target. Increased circulating ILCs were identified
in CVID patients with non-infectious complications and may
be an important driving force of the IFN signature also found
to distinguish these patients. Of particular importance may be
ILC-3 as a key source of pathogenic IFN-γ in CVID. Further
research is needed to better understand the contribution of the
IFN signature and expansion of IFN-γ-producing ILCs to
non-infectious complications in CVID and assess their poten-
tial as therapeutic targets.

Numerous unanswered questions remain as ripe areas for
future research. What is driving this IFN signature and ILC
expansion in a subset of CVID patients? Extensive genetic
studies of CVID have yet to reveal an explanation of upregu-
lation of interferon genes. Alterations of the microbiota and
translocation of bacterial products due to mucosal antibody
deficiency of these patients may play a role, but this remains
to be shown conclusively [108]. Moreover, how does the ob-
served IFN signature gene dysregulation relate to the profound
B cell dysfunction characterizing CVID? IFN has been shown
to delete B cells in the setting of viral infection but has also
been linked to the development of autoantibodies, so clearer
delineation of the impact of IFN, and perhaps IFN-γ specifi-
cally, upon B cells remains to be defined [109, 110]. While
early reports have hinted at the importance of IFN and ILC
expansion for emergence of non-infectious complications in
CVID, the area remains in need of greater research efforts in
order to progress toward impactful clinical intervention.
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