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Abstract A boronic acid-based anthracene fluorescent
probe was functionalised with an acrylamide unit to
incorporate into a hydrogel system for monosaccharide
detection. In solution, the fluorescent probe displayed a
strong fluorescence turn-on response upon exposure to
fructose, and an expected trend in apparent binding
constants, as judged by a fluorescence response where
D-fructose> D-galactose> D-mannose> D-glucose. The
hydrogel incorporating the boronic acid monomer demon-
strated the ability to detect monosaccharides by fluores-
cence with the same overall trend as the monomer in
solution with the addition of D-fructose resulting in a 10-
fold enhancement (£0.25 mol/L).

1 Introduction

Monosaccharides are among the basic building blocks of
life and play an essential role in the function of several
physiological processes, including metabolism and cellular
recognition [1]. The monosaccharide glucose serves as the
main form of energy for tissues and cells [2]. Due to their
biological importance, there has been extensive effort in
the development of methods and techniques for mono-
saccharide detection [3–4].
Lorand and Edwards reported the ability of boronic

acids to form complexes with 1,2- and 1,3- diols. In

addition it was discovered that D-fructose formed a 1:1
fructose-boronic acid complex and D-glucose formed a 1:2
glucose-boronic acid complex [5]. The strength of the
boronic acid binding to monosaccharides is determined by
the orientation and relative position of hydroxyl groups. In
aqueous solution fructose predominates in the furanose
form with a syn-periplanar pair of hydroxyl groups
resulting in a strong binding constant with boronic acids
[4]. As a result, a number of aryl boronic acid-based
sensors have been developed for the detection of
monosaccharides which exploit the difference in binding
stoichiometry and inherent binding affinity to achieve
either D-fructose or D-glucose selectivity [4,6–8]. More
specifically, in 1994, James et al. developed an anthracene-
containing mono boronic acid derivative as a photoinduced
electron transfer (PET) fluorescence probe for the detection
of fructose (Fig. 1) [9]. In this system, it was discovered
that ortho-aminomethylphenylboronic acid functionality
facilitated the detection of fructose in neutral aqueous
solution. This pioneering work has led to the development
of other ortho-aminomethylphenylboronic acid-containing
fluorescence sensors improving selectivity, increasing
excitation/emission profile and binding affinities [10–12].
While there was never any doubt that the ortho-
aminomethylphenylboronic acid group was important to
improve saccharide binding at neutral pH the mechanism
of action had been under debate for a number of years
[13–15]. Recently, the debate was concluded and the
fluorescence enhancement on saccharide binding is caused
by modulation of internal conversion resulting in different
levels of quenching. Initially, before saccharide binding the
free -B(OH)2 groups quench the fluorescence by internal
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conversion, then when saccharides bind the -B(OR)2
groups formed have reduced internal conversion and less
quenching resulting in an enhanced fluorescence [16].
The saccharide-binding properties of aryl boronic acid

derivatives have been exploited as recognition motifs
across a number of different domains including polymer
hydrogels [6,17,18]. Hydrogels are three dimensionally
cross-linked hydrophilic polymers, with a high (~90 wt-%)
water content [19]. The modification of hydrogels to
contain boronic-acid binding motifs enables the physical
properties of the hydrogel to be reversibly modulated
through exposure to saccharide-containing stimuli, i.e.,
glucose responsivity [20–23]. Co-authors of this report
have developed stimuli responsive hydrogels and fluor-
escent sensors [24–30], and as a result, we were motivated
to translate a Shinkai-like anthracene-containing boronic
acid sensor unit into a hydrogel sensor by linking to an
acrylamide functionality, thus generating a fluorescence-on
sensor hydrogel for monosaccharide detection.

2 Results and discussion

Whilst solution-based fluorescent sensors offer a signifi-
cant advantage in terms of binding-kinetics over analogous
heterogenous sensors [31]. Heterogenous immobilisation
of a fluorescent sensor is preferential as it avoids
contamination of the sensor in a practical situtation, i.e.,
in vivo [32,33]. The near-solvated nature of a hydrogel is
thus an attractive alternative as they offer heterogeneity

without the disadvantages associated with a solution-based
system. By integrating the Shinkai et al. anthracene PET
fluorescent probe into a hydrogel, we hoped to develop a
fluorescence responsive boronic acid hydrogel, which
could eliminate the need for an additional competitive
optical reporter [33]. The desired boronic acid monomer
AM-5 is shown below in Fig. 2.
AM-5 was synthesised over five steps (Scheme 1). In

brief, 1,6-hexanediamine was mono-Boc protected through
the dropwise addition of di-tert-butyl dicarbonate
((Boc)2O) to an excess of 1,6-hexanediamine, which
afforded tert-butyl (6-aminohexyl)carbamate (1) in 74%
yield. To attach the desired anthracene fluorophore, 1 was
stirred with anthracene-9-carbaldehyde at room tempera-
ture overnight to form an imine intermediate. NaBH4 was
then added portion-wise to produce the desired secondary
amine tert-butyl (6-((anthracen-9-ylmethyl)amino)hexyl)
carbamate (2) in reasonable yield (48%). Compound 2 was
subsequently alkylated with 2-bromomethylphenylboronic
acid pinacol ester to afford 3 in good yield (89%).
Compound 3 was then Boc-deprotected using trifluoroa-
cetic acid, which also resulted in the partial hydrolysis
of the boronate ester to form boronic acid 4, this
intermediate was taken onto the next step without
purification. Methacryloyl chloride was then used to afford
AM-5, which was confirmed by mass spectrometry.
Compound AM-5 proved difficult to characterise by
NMR techniques and exhibited a broad and complex 1H
NMR due to the formation of “oligomeric boronic acid
anhydrides” [34–35].

Fig. 1 Shinkai et al. anthracene-based boronic acid PET fluorescence probe for the detection of fructose

Fig. 2 Anthracene-based fluorescent monomer (A-M5) for the development of a hydrogel for the detection of monosacharides
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With 3 in hand, the fluorescence properties and
responses to a panel of monosaccharides were evaluated
to demonstrate its sensing ability before incorporation into
a hydrogel. As shown in Fig. 3(b), 3 was more sensitive
towards fructose over other monosaccharides (as expected)
and the binding stability constants between mono-boronic
acids and saccharides followed: D-fructose> D-galac-
tose> D-mannose> D-glucose (Table S1, cf. Electronic
Supplementary Material (ESM)). From these results, we
turned our attention towards the incorporation of 3 into a
hydrogel.
Hydrogels containing AM-5 were formed by co-

polymerisation of acrylamide and methylene bisacryla-

mide in water through free radical polymerisation using
ammonium persulfate (APS) and tetramethylethylenedia-
mine (TMEDA) (cf. ESM for full detailed procedure). For
the evaluation of the fluorescence response of the hydrogel
towards different monosaccharides, each hydrogel was
placed into a monosaccharide solution for 2 h (Note: 2 h
was chosen since at this time point no further increase in
fluorescence intensity was observed after addition of
monosaccharides).
Acrylamide-based hydrogels consisting of AM-5 were

exposed to increasing concentrations of fructose and a
significant fluorescence enhancement was observed
(~16-fold) as shown in Fig. 4, the selectivity order for

Scheme 1 Synthesis of boronic acid fluorescent probes 3 and AM-5

Fig. 3 (a) Fluorescent spectral changes of 3 (0.6 µmol/L) with different concentrations of D-fructose in pH 8.21 aqueous methanolic
buffer solution (52.1 wt-% methanol (KCl, 10 mmol/L; KH2PO4, 2.73 mmol/L and Na2HPO4, 2.78 mmol/L)); (b) Fluorescence intensity
changes (F/F0) at 419 nm versus increasing saccharide concentration. lex = 370 nm
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the detection of monosaccharides was consistent with the
solution titration data of 3 (Fig. 2, Table S1 and Table S2),
D-fructose>D-galactose> D-mannose> D-glucose. How-
ever, the observed binding constants for each monosac-
charide were much lower than in the solution phase, which
is believed to be due to the binding event being a diffusion-
based process ((1381.7�41.80) versus (52.6�5.3) dm3/
mol for D-fructose). The response towards D-glucose in the
hydrogel was too low for the binding constant to be
determined.

3 Conclusions

A fluorescent monosaccharide responsive hydrogel was
developed by functionalising the proven ortho-amino-
methylphenylboronic acid anthracene PET sensor with an
acrylamide unit to incorporate into a hydrogel backbone.
The boronic acid-containing hydrogel produced a
significant fluorescent enhancement (~16 fold) with the
addition of fructose and the binding stability constants
followed the well-established order for binding between
mono-boronic acids and saccharides: D-fructose> D-
galactose> D-mannose> D-glucose.
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