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Abstract Plasma catalysis is drawing increasing atten-
tion worldwide. Plasma is a partially ionized gas compris-
ing electrons, ions, molecules, radicals, and photons.
Integration of catalysis and plasma can enhance catalytic
activity and stability. Some thermodynamically unfavor-
able reactions can easily occur with plasma assistance.
Compared to traditional thermal catalysis, plasma reactors
can save energy because they can be operated at much
lower temperatures or even room temperature. Addition-
ally, the low bulk temperature of cold plasma makes it a
good alternative for treatment of temperature-sensitive
materials. In this review, we summarize the plasma-
assisted reactions involved in dry reforming of methane,
CO2 methanation, the methane coupling reaction, and
volatile organic compound abatement. Applications of
plasma for modification of metal–organic frameworks are
discussed.

Keywords plasma catalysis, methane, carbon dioxide,
VOCs, metal–organic frameworks

1 Introduction

Plasma technology has attracted broad interest since its
discovery by Crookes in 1879. In 1927, American
scientists Langmuir and Tonks introduced the term
“plasma” [1]. Since then, plasma has been extensively
studied. Plasma, which is the fourth state of matter, is a
partially or fully ionized gas consisting of electrons, ions,
free radicals, and neutrals [2–5]. According to the
discharge energy, plasma systems are classified as thermal
plasma or cold plasma. Thermal plasma is in the
equilibrium state; the bulk temperature can reach several

thousands of degrees Celsius, which is close to the electron
temperature. In contrast, cold plasma is in a nonequili-
brium state in which the electron temperature is higher than
thousands of degrees Celsius, but the bulk temperature
remains as low as room temperature [6–11]. Cold plasma
has been widely studied because it is easier to generate on
either the laboratory or the industrial scale than thermal
plasma. Depending on the discharge form, cold plasma can
be divided into various types. Dielectric barrier discharge
(DBD) is a gas discharge in which an insulating medium is
inserted between two discharge electrodes. When a
sufficiently high voltage is applied to the electrodes, the
gas between them breaks down at or above atmospheric
pressure to form a DBD. High-voltage pulse discharge is
obtained by applying a direct current high-voltage pulse to
an electrode. When the potential on the needle electrode
reaches a certain value, the strong electric field near the
needle tip causes ionization of the surrounding gas,
generating a partial discharge phenomenon. Glow dis-
charge refers to a self-sustained discharge. It can easily be
created between two electrodes in low vacuum. Radio-
frequency discharge can also be operated at a very low
pressure but at high frequencies (several megahertz) to
achieve nonequilibrium conditions. Microwave discharge
is operated at very high frequencies (e.g., 2.45 GHz) in the
microwave range, and therefore, it is far from local
thermodynamic equilibrium. Corona discharge occurs
when the conductor has a tip with a small radius of
curvature. It can be implemented at atmospheric pressure
[12–14].
Plasma technology has been widely used in many

applications, including reaction facilitation, surface mod-
ification, and catalyst preparation [15–19]. Integration of
catalysis and plasma has progressed greatly, and plasma-
assisted catalysis can provide not only increased activity
but also increased stability [11,20–22]. Plasma catalysis is
studied in multiple fields such as physical chemistry,
catalysis, materials science, plasma physics and chemistry,
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and nanotechnology [23–27]. In this review, we summar-
ize the application of plasma in various catalytic reactions:
dry reforming of methane, CO2 methanation, the coupling
reaction of methane, and volatile organic compound
(VOC) abatement. In addition, a new type of material,
metal–organic frameworks (MOFs), is attracting much
attention owing to their relatively high surface areas, well-
organized porosities, and tunable chemical structures. The
application of plasma for modification of MOFs is also
discussed here.

2 Plasma-assisted reactions

2.1 Plasma-assisted methane reforming reaction

Dry reforming of methane proceeds by the following
reaction when methane and carbon dioxide are fed into a
reactor:

CH4ðgÞ þ CO2ðgÞ↕ ↓2COðgÞ þ 2H2ðgÞ,

ΔH0
298 ¼ 247 kJ=mol:

This process is regarded as an effective way to reduce
the release of greenhouse gases and synthesize syngas. The
regular tetrahedral structure of methane makes activation
of the C–H bond (average bond energy of approximately
4.5 eV, i.e., 434 kJ/mol) very difficult. Carbon dioxide, the
final product of combustion of carbonaceous material, is
also a very stable C1 resource with an average O = C = O
bond energy of approximately 5.5 eV, i.e., 532 kJ/mol [28].
Consequently, dry reforming of methane requires a high
activation energy, so it is difficult to achieve by traditional
catalytic processes. Many researchers have searched for
effective solutions in terms of catalyst selection, catalyst
carbon deposition behavior, and catalytic mechanism.
Moreover, application of various unconventional methods
has also been extensively discussed. Among them, plasma
technology is thought to be a promising method. Plasma
generally plays a role in pretreatment of catalysts,

operation of plasma-alone reactors, or operation of
combined plasma–catalyst reactors in this catalytic reac-
tion. Many articles have reported work on plasma-
pretreated catalysts for dry reforming of methane. They
have shown that nonthermal plasma (NTP) may change
some of the physicochemical characteristics of the catalyst,
giving it higher activity or better performance [15,17–
19,21,29–31]. Furthermore, catalytic reactions integrated
with plasma can effectively suppress carbon deposition.
Ni/Al2O3-ZrO2, Ni/MgAlO, NiPt/MgAlO, NiMgSBA-15,
and Со/SiO2 catalysts pretreated [32] by glow discharge
plasma, a Ni/g-Al2O3 catalyst pretreated by DBD plasma
[33], and a Pd/TiO2 catalyst pretreated by radio-frequency
plasma [34] all showed improved catalytic performance in
dry reforming of methane.
Catalysts may face practical problems such as short

lifespan, poor stability, poor carbon deposition resistance,
and polluting and time-intensive preparation processes
[35–37]. Therefore, plasma-alone reactors without a
catalyst are also a focus of research. Tu and Whitehead
[38] developed an atmospheric pressure alternating current
(AC) gliding arc discharge to synthesize syngas along with
value-added carbon nanomaterials, such as spherical
carbon nanoparticles, multiwalled carbon nanotubes, and
amorphous carbon (Fig. 1). They provided a new method
for not only dry reforming of methane but also synthesis of
value-added by-products. Moreover, the results revealed
that this arc discharge was much more energy efficient than
dielectric barrier or corona discharges. Lim and Chun [39]
applied a novel plasma converter that had an orifice-type
baffle to improve the amount of fed gas and realize greater
destruction of CO2. The CO2 destruction and CH4

conversion at a CH4/CO2 ratio of 1.29 were 37% and
47%, respectively. Other types of plasma reactors,
including DBD reactors, glow discharge reactors, and
spark discharge reactors have also been explored for dry
reforming of methane [40–42].
Plasma-assisted reactions occur mainly by a free radical

mechanism [43,44], and the product selectivity is hard to
control. The presence of a catalyst in the plasma system
improves the NTP syngas synthesis process. To facilitate

Fig. 1 Transmission electron microscopy images of carbon produced in the plasma dry reforming process: (a) spherical carbon
nanoparticles; (b) carbon nanotubes (CH4/CO2 = 7:3, total flow rate: 51 min–1, input power: 165 W). Reprinted from ref. [38], copyright
(2014), with permission from Elsevier
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the NTP dry reforming reaction and enhance its efficiency,
various efforts have been made to improve the catalytic
performance of this technology. Ray et al. [45] used a
glass-bead-packed DBD reactor to obtain 29% conversion
of CH4 and 21% conversion of CO2 at a specific input
energy of 6.4 J/mL. Zhang et al. [46] compared BaTiO3

with other catalysts (glass, Ni/SiO2, and NiFe/SiO2) in the
discharge zone of DBD plasmas. They obtained 16.2%
conversion of CO2 and 27.3% conversion of CH4 at a
plasma power of 86 W. Additionally, the catalytic activity
decreased in the sequence BaTiO3>NiFe/SiO2>Ni/SiO2.
Zheng et al. [47] used perovskite LaNiO3 nanoparticles
coupled with DBD plasma to explore the kinetics of
plasma-catalytic dry reforming of methane. They sug-
gested a global kinetic model considering argon dilution.
The model gave satisfactory predictions of plasma-assisted
dry reforming of methane over the LaNiO3 catalyst. Chung
et al. [48] formed a hybrid plasma photocatalysis system
with a spark discharge reactor and a series of perovskite-
type photocatalysts to evaluate its effectiveness for
methane reforming. They found that plasma played a key
role in changing the surface structure of the photocatalyst,
which increased the lifetime of electron-hole pairs and thus
the syngas generation rate.
Efforts have been made to optimize the plasma-catalytic

process because both the plasma setup and reaction
conditions strongly influence the yield and energy
efficiency. Zhou et al. [41] found that higher methane
conversion was obtained at higher discharge powers, and
methane conversion increased significantly with the input
power below 50 W. Xia et al. [49] varied the gap distance
between the electrode from 1.5 to 3.5 mm to investigate the
relationship between the distance and the catalytic activity.
Similarly, Montoro-Damas et al. [50] systematically

investigated the relationship between the gap and the
process efficiency. Jin et al. [51] suggested that using an
electrode with a large diameter and long discharge gap
negatively affected the conversion of CO2 and CH4. Other
operational parameters including the residence time, input
power, frequency, and permittivity have also been widely
studied [52–55]. However, despite these attempts, there is
still insufficient knowledge and quantitative description of
the effect of the operating parameters on the energetic
performance.
The high reaction temperature is a serious problem for

dry reforming of methane. A thermodynamic analysis of
this reaction system was reported in the book “Technology
and Application of Plasma” [56]. Because it is a strongly
endothermic reaction, methane reforming has to be
performed at higher temperature in the conventional
catalytic process. Consequently, room-temperature plasma
may not yield satisfactory results. Therefore, many
researchers have attempted to obtain better catalytic
performance by using external heating of the plasma
reactor. Yap et al. [57] combined 10% La2O3/alumina balls
with plasma at room temperature and found that the
catalyst was inactive under these conditions. When the
reaction temperature was increased from room temperature
to 300°C, the CH4 conversion increased by a factor of
almost 3. Sentek et al. [58] tested the effect of temperature
(120°C–290°C) on the performance of dry reforming of
methane. When a Pd/Al2O3 catalyst was used, the methane
conversion could reach 50% at 240°C. Kim et al. [59]
suggested that activation of C–H bonds can be remarkably
improved at temperatures over 357°C (Fig. 2). Further-
more, several hypotheses have been suggested in the
literature to explain the enhancement of C–H activation
when plasma–catalyst combinations are used [23,60,61].

Fig. 2 Schematic representation of dry CH4 reforming on or near the surface of an Al2O3-supported metal catalyst in the presence of
plasma: (a) excitation of CH4 species by gas-phase electron impact, (b) transition-metal catalyst supported on dielectric support (e.g.,
Al2O3) within plasma discharge zone, and (c) chemical equation of dry CH4 reforming. Reprinted from ref. [59], copyright (2016), with
permission from American Chemical Society
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2.2 Plasma-assisted CO2 methanation

Burning of fossil fuels increases the atmospheric CO2

content. CO2, which is one of the main greenhouse gases,
is an extraordinarily stable molecule that absorbs infrared
radiation and gives rise to global warming [62–64].
Various research groups have been working on CO2

capture and utilization. CO2 hydrogenation to high value-
added products including hydrocarbons [65,66], methanol
[67,68], formic acid [69,70], formamide [71,72], and other
chemicals has been extensively studied. CO2 methanation,
which is an effective way to convert CO2, has the
advantages of a fast reaction rate, high selectivity, and
fewer by-products. It is also an indispensable step in the
overall process of coal gasification to produce natural gas.

CO2ðgÞ þ 4H2ðgÞ↔ CH4ðgÞ þ 2H2OðgÞ,

ΔH0
298 ¼ – 165 kJ=mol:

CO2ðgÞ þ H2ðgÞ↔ COðgÞ þ H2OðgÞ,

ΔH0
298 ¼ 41 kJ=mol:

CO2 methanation has a small negative free energy value,
which means that it can be easily performed in a wide
temperature range of 27°C to 527°C (Table 1) [73]. The
enthalpy value illustrates that CO2 methanation is indeed a
highly exothermic reaction. The strong heat release makes
it difficult to prevent overheating and leads to inactivation
of the catalyst. In some cases, the temperature becomes so
high that methanation is limited by thermodynamic
equilibrium. Therefore, many groups have applied a cold
plasma reactor for CO2 methanation to reduce catalyst
deactivation and provide sufficient energy for this reaction.

Plasma ionizes high-energy particles that collide with
reactant molecules to activate reactive species (ions,
excited molecules, atoms, free radicals, etc.). These active
species interact to recombine into new species. Owing to
the excellent activity of high-energy electrons in plasma,
some chemical reactions are easily realized under plasma
but not under conventional conditions. Chemical reactions

with plasma exhibit rapid startup and fast cooling and can
be implemented using simple devices. The most com-
monly used plasma reactors for CO2 conversion include
DBDs [74–79], microwave plasmas [80–83], nonthermal
gliding arc discharges [84–87], and spark discharges [88–
90].
Lee et al. [91] employed a DBD plasma reactor to

investigate CO2 methanation. The discharge frequency and
H2/CO2 mole ratio affected the CO2 conversion and CH4

selectivity. Similarly, plasma–catalysis reactions are also
widely studied in CO2 methanation. For instance, Nizio et
al. [92] assayed Ni-Ce-Zr hydrotalcite-derived catalysts for
plasma-catalytic CO2 methanation. High methane yields of
approximately 80% were measured even at 110°C. In
addition, they also used Ni-CexZr1-xO2 with different Ce/Zr
ratios to obtain 80% CO2 conversion and 100% CH4

selectivity in the presence of plasma at 90°C [93] (Fig. 3).
The main purpose of integration of plasma and a catalyst is
to obtain high energy efficiency and enhance the selectivity
of the desired products. The electrical properties of the
catalysts packed in the plasma are very important. Inserting
different electrical catalysts into plasma reactors can cause
a number of changes in the equivalent electrical circuits,
which in turn affect the overall performance of the plasma
reactor. Some researchers have highlighted the interaction
between the plasma and catalyst [94–96], but they also
faced difficulties owing to the complexity of plasma-
catalytic systems. Many questions on the nature of the
interactions still need to be addressed.
The reaction mechanism assists industrial amplification

which occupies a crucial position in catalytic reactions.
Regarding CO2 methanation, some researchers consider
that CO is an intermediate, and the process proceeds as CO
methanation [97,98]. Weatherbee and Bartholomew [99]
suggested a mechanism in which CO2 was dissociatively
adsorbed on active metal sites, forming adsorbed CO and
O species. Subsequently, the adsorbed CO was hydro-
genated to CH4. However, others consider that carbonates/
formates are intermediates and that the reaction then
proceeds by hydrogenation to synthesize CH4 [100,101].
Jiang et al. used diffuse reflectance Fourier transform
infrared spectroscopy to confirm the presence of abundant
oxygenates, including formate and carbonate, on the
catalyst surface. Furthermore, as the amount of methane
increased, the amount of oxygenates decreased [102].
However, in reactions in which plasma participates, the
high-energy particles generated by plasma ionization and
the molecules, radicals, and ions generated by feed gas
dissociation complicate the reaction mechanism. The
mechanism of the energy transfer channels and reactant
interactions is not clear. According to Jwa et al. [103], CO2

methanation occurred in three steps in a DBD plasma
reactor packed with Ni/zeolite catalyst. First, dissociation
of CO2 to CO and O occurred on the active site, followed
by dissociation of CO to C species and finally carbon
methanation.

Table 1 Thermodynamic properties of CO2 methanation reaction

Temperature /°C DHf° /(kJ$mol–1) DG° /(kJ$mol–1) logKp

27 –165.101 –113.290 19.724

127 –170.080 –95.265 12.440

227 –174.803 –76.015 7.940

327 –179.042 –55.844 4.86

427 –182.757 –35.003 2.61

527 –185.975 –13.677 0.893

627 –188.720 +8.037 –0.466

727 –191.012 +30.012 –1.568
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Step 1. CO2 dissociation

CO2,ads ↔ COads þ Oads;

Step 2. Carbon formation

COads ↔ Cads þ OadsðRDSÞ;
Step 3. Carbon methanation

Cads þ Hads ↔ CHads,

CHads þ Hads ↔ CH2,ads,

CH2,ads þ 2Hads ↔ CH4,gas:

Speckmann et al. [104] controlled the water vapor by
transporting oxygen ions into the reaction chamber
(Fig. 4). According to their findings, H2O and CO2 can
be used directly as precursors for methanation. The voltage
applied to the ion conductor as well as the power of the
plasma source current strongly affected the CO production
rate. However, CH4 production was low owing to
recombination of CO and O2 to CO2. These results also
reflect the fact that the energy efficiency (even the
theoretical value) of low-pressure glow discharge plasma
is lower than that of other nonthermal discharges. This
remains a challenge in industrializing the low-pressure
process [105]. Other researchers have also worked on the
mechanism of CO2 methanation, but no conclusion has
been reached [106–108].

2.3 Plasma-assisted methane coupling reaction to C2
hydrocarbons

The methane coupling reaction is another effective way to

convert natural gas to value-added products. To date,
interest in catalyst preparation, basic research, and reaction
processes has resulted in dozens of papers and patents
[109,110]. As mentioned above, methane is one of the
most stable molecules, so a large amount of energy is
required for its conversion to higher hydrocarbons. A high-
temperature reaction induces deactivation of the catalyst
and a decrease in the C2 hydrocarbon yield. Accordingly,
the use of cold plasmas in this reaction is very important to
improve the productivity of C2 hydrocarbons and prolong
the catalyst life. Lee et al. [111] compared several plasma
reactors used for methane conversion; their findings are
summarized in Table 2. The results suggest that the product
distribution can be controlled by varying the degree of
warmth of the plasma source.
Zhang et al. [112] employed a Pd catalyst doped with the

ionic liquid l-hexyl-3-methylimidazolium tetrafluoroborate
(C6MIMBF4) for the methane coupling reaction (Fig. 5).
They inferred that in a cold plasma reactor, elastic collision
of methane with energized electrons may produce radicals
such as CH3•, CH2•, and CH•. Moreover, C6MIMBF4 is a
weak Brönsted acid that can efficiently attract these
radicals to accelerate their combination, thus promoting
the selectivity of C2 hydrocarbons [113].
Nozaki et al. conducted a similar study [114]. Consider-

ing electronic collision, several reaction paths for the
formation of C2H2 and alkenes are provided below [111].
The production of C2H2, C2H4, and C3H6 depends on the
concentration of alkanes such as C2H6 and C3H8.

eþ C2H6↕ ↓eþ C2H4 þ H2

eþ C2H4↕ ↓eþ C2H2 þ H2

Fig. 3 Experimental setup for plasma-catalytic methanation of CO2. Reprinted from ref. [93], copyright (2016), with permission from
Elsevier
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eþ C3H8↕ ↓eþ C3H6 þ H2

eþ C3H6↕ ↓eþ C2H2 þ CH4

The energy density (Ed) and energy efficiency (ηE) are
two important parameters in a plasma reaction [115]. In a
glow plasma reactor, the catalytic activity of the methane
coupling reaction to C2 hydrocarbons has a linear
relationship with the energy density, as shown in Fig. 6.
In a certain range, increasing Ed facilitates the interaction
between methane and high-energy electrons, enhancing the
methane conversion and C2 hydrocarbon yield. Never-
theless, when Ed is too large, further breakage of C–H
bonds will occur, forming carbon deposits and reducing the
C2 hydrocarbon yield. Other papers also suggested this
linearity with respect to increasing input power [116–120].
As shown in Fig. 7, this linear relationship between the
energy density and energy efficiency is quite different from

their relationship with respect to the catalytic activity. With
an increase in energy density, the energy efficiency of the
reaction gradually decreases.
The following matters associated with the plasma-

assisted methane coupling reaction still need to be
addressed: (1) the mechanism of the plasma-assisted
reaction process, including the interaction between sub-
stances in the gas with the plasma and mutual collision of
the substances in a plasma environment, and (2) the
development of high-activity discharge plasma generation
technology, which is related to the reaction rate and energy
utilization efficiency of the plasma-catalytic reaction.

3 Plasma-assisted VOC abatement

“VOC” is a general term for volatile organic compounds
with a melting point below room temperature and a boiling

Fig. 4 Components of a switching-TPE lambda probe and bidirectional ion transport through the ceramic (yttria-stabilized zirconia) ion
conductor. Reprinted from ref. [104], copyright (2017), with permission from Elsevier

Table 2 Product analysis of methane coupling reaction in different plasma sources. Reprinted from ref. [111], copyright (2013), with permission
from Springer
Material Molar ratio /%

AC
DBD

Pulsed
DBD

Pulsed
Spark

AC
Spark

Hollow
Cathode

Gliding
Arc

Rotating
Arc

H2 0.520 0.210 1.373 2.920 0.850 1.83 1.310

C2H6 0.106 0.065 0.026 0.000 0.014 – 0.002

C2H4 0.007 0.003 0.031 0.024 0.015 – 0.011

C3H8 0.018 0.009 0.002 0.000 0.000 – 0.000

C3H6 0.002 0.000 0.005 0.000 0.003 – 0.000

C2H2 0.008 0.003 0.459 0.860 0.270 0.272 0.420

CH4 conv. /% 14.76 12.375 49.405 82.930 25.772 23.72 42.170

Sel.(H2) /% 36.457 19.312 32.249 42.053 33.173 73.2 34.815

Sel.(C2H2) /% 2.243 1.104 43.124 49.171 42.149 43.52 44.649
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point between 50°C and 260°C. They pose a serious threat
to human health and the environment. Many techniques for
removing VOCs are costly and difficult to apply, in
contrast to NTP approaches [121–124]. When the
concentration of VOCs is low (up to 1000 ppm), complete
removal by conventional methods is difficult. Unfortu-
nately, the poor product selectivity, formation of undesired
by-products, and low energy efficiency are three main

obstacles that impede the industrialization of plasma
approaches. To overcome these problems, a series of
hybrid system such as NTP/electrostatic precipitation
[125], packed-bed NTP reactors [126], and adsorption/
NTP [127], NTP/catalysis [128,129], and photocatalysis
[130] techniques have been established.
The simple packed-bed plasma reactors reported thus

far, however, have many drawbacks for effective decom-
position of VOCs, including low energy efficiencies, poor
selectivity to CO2 in the reaction products, and by-product
formation [131,132]. In 1999, Ogata et al. introduced
alumina into the plasma reactor as an adsorption material.
The results indicated better benzene decomposition
efficiency compared to that of plasma alone without
alumina [133]. Soon after, they tried zeolite, which showed
a 1.4–2.1 times higher benzene decomposition efficiency
[134] (Fig. 8). Oh et al. [135] also confirmed accelerated
oxidation of toluene in a plasma reactor when a zeolite
adsorbent was used. Subsequently, plasma hybrid systems
became a topic of research. Kuroki et al. [136] developed a
gas circulation system in which ozone was circulated to
oxidize toluene (Fig. 9). This system realized high toluene
conversion with no ozone waste.

Feng et al. [137] designed a three-stage plasma-assisted
catalysis system consisting of a DBD stage, back-corona
discharge (BCD) stage, and catalyst stage to drastically
reduce the pressure drop in the catalyst layer (Fig. 10).
They successfully achieved a high removal efficiency of
almost 100%.

Fig. 5 Schematic illustration of methane conversion under
plasma over Pd-IL/γ-Al2O3. Reprinted from ref. [112], copyright
(2013), with permission from Elsevier

Fig. 6 Effect of energy density on CH4 conversion and C2
hydrocarbon yield. Reprinted from ref. [115], copyright (2006),
with permission from Nuclear Fusion and Plasma Physics

Fig. 7 Energy efficiency of CH4 coupling reaction. Reprinted
from ref. [115], copyright (2006), with permission from Nuclear
Fusion and Plasma Physics Fig. 8 Reactor configurations: (a) conventional reactor,

(b) zeolite-hybrid reactor. Reprinted from ref. [134], copyright
(2001), with permission from IEEE
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Many other researchers have also reported on the
application of plasma for VOC abatement. Sultana et al.
[138] thoroughly summarized the articles concerning
sequential plasma treatment for VOC abatement and the
current status of this new technique. Schiavon et al. [139]
described in detail the types of plasma and parameters for
VOC treatment. Vandenbroucke et al. [140] focused on
plasma-alone and plasma-catalytic treatment for VOC
abatement. Feng et al. [141] studied the synergistic effects
and mechanism of an NTP-catalysis system for VOC
removal. Current plasma (catalytic) technology has not
been able to completely eliminate VOCs and their organic
intermediates by the oxidation reaction owing to the
complex molecular structure of the organic compounds.
Further, aerosol generation remains a problem. Therefore,
the design of new high-energy plasma sources and new
catalysts for coupling with plasma light, heat, electron, and

other effects are potential solutions for degradation of
VOCs.

4 Plasma for treatment of metal–organic
frameworks

The use of plasma in catalyst calcination, reduction, and
modification has been comprehensively studied [18,142,
143]. Note that the option of room-temperature operation
of plasma makes it an excellent candidate for thermally
sensitive materials, such as porous organic materials,
peptides, proteins, conducting polymers, and ultrahigh-
surface-area carbon [144–147].
MOFs, a new family of crystalline porous materials,

have found applications in many fields, such as gas storage
and separation, chemical sensing, drug delivery, lumines-
cence, ion exchange, and heterogeneous catalysis
[148,149]. They not only combine the beneficial char-
acteristics of inorganic and organic components but also
frequently show unique properties that exceed those
expected of a simple mixture of the components. However,
the thermal instability of MOFs limits their application in
catalytic reactions. According to thermogravimetric ana-
lysis, ZIF-67 begins to disassemble at approximately
500°C in nitrogen, Co-MOF-74 degradation begins at
approximately 450°C in nitrogen, and ZIF-8 degradation
begins at approximately 550°C in nitrogen. Data for these
and other MOFs are shown in Table 3.

Accordingly, researchers have attempted to apply cold
plasma to this material and maintain its original skeleton
structure. Sadakiyo et al. [156] applied the arc plasma
deposition (APD) method to prepare MOF-supported
metal nanoparticles, as illustrated schematically in
Fig. 11. Various transition metal nanoparticles such as Pt,
Pd, and Ru on different types of MOF composed of ZIF-8
[157], MIL-101 [158], UiO-66-NH2 [159], and Zn-MOF-
74 [160] have been reported. The results revealed that the
metal particles deposited on the MOF supports had similar
sizes, with a diameter of approximately 2 nm.
Bahri et al. [161] used MIL-101, MIL-53, and CPM-5 in

Fig. 9 Overview of equipment for toluene oxidation in a gas
circulation system. Reprinted from ref. [136], copyright (2011),
with permission from IEEE

Fig. 10 CO selectivity, CO2 selectivity, and carbon balance of
the three-stage system in four different conditions: DBD alone,
DBD-BCD, DBD-catalyst, and DBD-BCD-catalyst. The specific
input energy of DBD and BCD is fixed at 64 and 128.9 J/L,
respectively. Reprinted from ref. [137], copyright (2015), with
permission from American Chemical Society

Table 3 Thermogravimetric analysis of various MOFs

Catalyst Temperature /°C Ref.

ZIF-67 500 148

ZIF-8 550 149

Co-MOF-74 450 150

Ni-MOF-74 300 151

MIL-101 330 152

MOF-5 400 153

Cu-BTC 280 154

UiO-66 500 155
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an NTP-catalytic reactor to remove 1 ppm toluene and
isobutanol. All three MOFs exhibited high removal
efficiencies of 100% for isobutanol and approximately
90% for toluene in dry air. Li et al. [162] carbonized MIL-
100 and MIL-10 onto synthesized Al2O3 and Cr2O3

nanoparticles. Use of O2 plasma was required to obtain
high-quality crystalline metal oxides. Analogously, Dou et
al. [163] realized on-site formation of atomic-scale CoOx

species from ZIF-67 by O2 plasma. The obtained CoOx

catalyst with atomic-scale active sites exhibited excellent
performance (even better than that of the RuO2 catalyst) for
the oxygen evolution reaction.

5 Conclusions

In this paper, we summarized the applications of plasma in
various reactions: dry reforming of methane, carbon
dioxide methanation, the methane coupling reaction to
C2 hydrocarbons, and VOC abatement. Both plasma-alone
and plasma catalysis techniques have drawn considerable
attention. The catalytic performance is affected not only by
the properties of the catalysts but also by the plasma
configuration. Various configurable plasmas and different
types of catalysts have been tested. Under optimized
plasma parameters and reaction conditions, the catalytic
activity has been improved to varying extents with or
without catalysts. Although many researchers have
devoted considerable effort to elucidating the reaction
mechanisms under plasma, our knowledge of these
mechanisms is still insufficient. In addition, plasma also
provides a new treatment method for MOFs and other heat-
sensitive materials. As stated above, plasma, with its
excellent properties, shows great promise for use in these
reactions. We hope that on the basis of existing
accomplishments, further progress can be made in future.
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