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Abstract The synthesis of N-cyclohexyl carbamate-
attached fluorene-alt-phenylene copolymer (PFPNCC)
and the use of PFPNCC as a “ligand-free” fluorescent
chemosensor for Cu(II) are described. Addition of Cu(II)
can efficiently quench the fluorescence of PFPNCC in
nucleophilic solvents such as DMF and DMSO, but not in
low nucleophilic solvents such as 1,4-dioxane and THF.
Ultraviolet-visible spectra of the mixture of the conjugated
polymer and Cu(II) indicate the presence of a reduced Cu
(I) ion in the solution. Furthermore, fluorescence recovery
of PFPNCC observed at low temperature suggests that the
quenching and reducing mechanism is most probably due
to a photo-induced electron transfer from excited PFPNCC
to Cu(II). Our findings provide a novel strategy for highly
selective conjugated polymer-based chemosensors for
various target analytes, albeit “ligand-free”.

Keywords ligand-free, fluorescent chemosensor, copper,
photo-induced electron transfer

1 Introduction

Copper ions, the third abundant trace metal ions in human
body, are often employed for metal centers of over 30
proteins [1,2] such as superoxide dismutase, ceruloplas-
min, lysyl oxidase, cytochrome c oxidase, tyrosinase and
dopamine-β-hydroxylase [3–5]. Although copper ions play
a positive role in human body, their disorder induces
various neurodegenerative diseases [6–9]. In addition, the
contamination of environmental water by copper ions leads
to heavy-metal pollution, because certain microorganisms

are affected by even sub-μmol/L concentrations of copper
ions [10]. In this regard, World Health Organization
(WHO) recommends that the concentration of copper ions
in drinking water must not exceed 2 mg/L (30 μmol/L)
[11]. Therefore, much attention has been paid to the
selective recognition and sensing of copper ions.
Fluorescent chemosensors for copper ions have attracted

considerable interest, because the conventional methods,
including high performance liquid chromatography, mass
spectrometry and atomic absorption spectroscopy, suffer
either from expensive procedures or the use of sophisti-
cated instruments [12]. To date, a variety of fluorescent
chemosensors with copper ion ligands such as pyridine
[13,14], Schiff-base [15], crown ether [16], and their
derivatives has been developed. Moreover, conjugated
polymers have emerged as one of the most important
classes of backbone and reporter moieties for chemosen-
sors [17]. A key advantage of conjugated polymer-based
chemosensors is their potential to exhibit collective
properties that are sensitive to very minor perturbations
[18]. Thus, several conjugated polymer-based chemosen-
sors with bipyridine or imidazole have been developed for
the detection of copper ions [19–21]. Most of the reported
chemosensors have copper chelating sites linked to
reporter-backbones [22–24]. However, these chemosen-
sors suffer from complicated synthesis and interference
from competing metal ions. Hence, the development of a
highly selective and simple detection strategy for copper
ions “without” any ligand cites remains a challenge.
We herein report a “ligand-free”, N-cyclohexyl

carbamate-attached fluorene-alt-phenylene copolymer
(PFPNCC) as a highly selective fluorescent chemosensor
for copper ions. The bulky side-chain, N-cyclohexyl
carbamate, can improve the solubility of the π-conjugated
polymer. More importantly, the fluorescence of PFPNCC
can be quenched by Cu(II) in nucleophilic solvents. To the
best of our knowledge, this is the first time to report a
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conjugated copolymer-based chemosensor for Cu(II) with-
out any metal ligands in molecular structures.

2 Experimental

2.1 Materials

All chemical reagents and organic solvents used were
purchased from Sigma-Aldrich, Acros, and Alfa and were
used without further purification. All organic reactions
were performed under a nitrogen atmosphere.

2.2 Methods

NMR spectra were recorded on a Bruker Ultra Shield Plus
400 MHz. Gel permeation chromatography analysis of
PFPNCCwas conducted on Shim-pack GPC-80X columns
with THF as an eluent and polystyrenes as standard
polymers. Ultraviolet-visible spectroscopy (UV–vis) and
fluorescence spectroscopic measurements were performed
on a Shimadzu UV–3600 and a Shimadzu RF-5301PC
spectrophotometer, respectively. The solutions of metal
ions were prepared by dissolving an appropriate amount of
metal salts in Milli-Q grade water. To evaluate the metal
ion detectability of PFPNCC, the aqueous solutions with
metal ions were added into a N,N-dimethylformamide
(DMF) solution (2 mL) of PFPNCC (1.0 � 10–6 mol/L).

2.3 Synthesis of PFPOH

Monomer units were synthesized according to the
previously reported methods [25,26]. 0.744 g
(1.00 mmol) of (9,9-bis(6-bromohexyl))fluorene-2,7-
diboronic acid di(pinacol) ester (1), 0.384 g (1.00 mmol) of
1,4-dibromo-2,5-di(hydroxypropyloxy)-benzene (2) and
1 mol-% of Pd(PPh3)4 were placed into a two-neck flask.
Subsequently, 30 mL of 1,4-dioxane and 2 mL of an
aqueous solution with 0.69 g (5.00 mmol) of K2CO3 were
added to the flask. The resulting mixture was stirred at
85°C for 3 d. After this period, phenylboronic acid
(5 mol-%) was added, and the mixture was further heated
at 85°C for 8 h. Then, bromobenzene (5 mol-%) was added
to the mixture and stirred at 85°C for 16 h. After cooling
down, 1,4-dioxane was removed in vacuo and the residue
was dissolved in dichloromethane. The dissolved residue
was purified by an alumina column chromatography. The
collected solution was partially concentrated, followed by
reprecipitation by using in n-hexane. In this way, 0.7 g of
PFPOH was obtained. Yield: 56%. 1H NMR (400 MHz,
CDCl3, d ppm): 7.28–7.86 (m, 6H, fluorene–H), 7.20 (s,
2H, phenylene–H), 4.15 (t, J = 5.6 Hz, 4H, Ar–O–CH2–),
3.77–4.10 (m, 8H, –CH2OH, –CH2Br), 2.07 (quint., J =
8.8 Hz, 4H, –CH2–CH2OH), 1.80–1.90 (m, 8H, –CH2–
CH2Br, fluorene–CH2–), 1.17–1.40 (m, 12H, –CH2–).

2.4 Synthesis of PFPNCC

PFPOH (0.2 g) was dissolved in 20 mL of dry 1,4-dioxane
at room temperature, and 1.1 mL (8.6 mmol) of cyclohexyl
isocyanate was added dropwise in 10 min. The mixture
solution was stirred for 24 h. The solution was concen-
trated in vacuo, and then n-hexane was added. The
resulting precipitates were collected and dried in vacuo to
give PFPNCC as a powder. Yield: 0.19 g (96%). 1H NMR
(400 MHz, CDCl3, d ppm): 7.28–7.92 (m, 6H, fluorene–
H), 7.10 (s, 2H, phenylene–H), 4.64 (br, 2H, –NH–), 4.16–
4.41 (m, 8H, –CH2–CH2–CH2O–), 3.99–4.09 (m, 4H,
–CH2Br), 3.40–3.55 (m, 2H, –NH–CH–), 2.10– (m, 4H, –
CH2–CH2OH), 1.83–1.98 (m, 12H, –CH2–CH2Br, –CH–
CH2–, fluorene–CH2–), 1.61–1.71 (m, 8H, –CH2–), 1.50–
1.13 (m, 20H, –CH2–). The 1H NMR spectrum of
PFPNCC is shown in Fig. S1. 13C NMR could not be
measured due to its low solubility. Mn= 1.1 � 104 g/mol,
Mw/Mn= 2.0.

3 Results and discussion

The synthetic route of the polymer PFPNCC is summar-
ized in Scheme 1. The precursor PFPOH was synthesized
via a Suzuki coupling polymerization [23], and PFPNCC
was subsequently obtained by the reaction of PFPOH with
cyclohexyl isocyanate. The 1H NMR spectrum of the
product clearly showed a broad carbamate-NH peak at
around 3.5 ppm, which supported that the aforementioned
reaction was successfully achieved. More details of
synthetic methods and assignments of the polymers are
summarized in the Experimental section. We also char-
acterized optical properties of PFPNCC. The UV–vis
spectrum of PFPNCC showed the maximum absorbance at
370 nm in DMF. The DMF solution of PFPNCC exhibited
fluorescence with an emission peak at around 420 nm (lex
= 370 nm).
First, the fluorescence responsivity of PFPNCC against

various heavy-metal ions and transition-metal ones was
investigated. Figures 1 and S2 show the quenching
behavior of PFPNCC against the addition of various
metal ions (Zn2+, Pd2+, Al3+, Pb2+, Ni2+, Mn2+, Li+, K+,
Hg2+, Fe3+, Cr3+, Co2+, Cd2+, Ca2+, Ba2+, Ag+ and Cu2+)
in DMF. As a result, the addition of metal ions except Cu
(II) induced almost no or very weak fluorescence
quenching (i.e., less than 10% changes). On the other
hand, significant fluorescence quenching by adding Cu(II)
was clearly observed. Furthermore, competitive experi-
ments were carried out by monitoring changes in the
fluorescence intensity at 420 nm upon addition of the
mixture of all tested metal ions to the DMF solution of
PFPNCC. No obvious fluorescence quenching was
induced by mixed metal ions without Cu(II), whereas a
very strong fluorescence quenching by a mixture of metal
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ions with Cu(II) was observed (Fig. S3). Any types of
counter anions such as NO3

–, Cl–, SO4
2– and ClO4

– did not
affect the fluorescence intensity of PFPNCC. These results
demonstrate that the fluorescent chemosensor PFPNCC
shows a high selectivity for Cu(II) over other cations.
We further studied the fluorescence response of

PFPNCC to an increasing amount of Cu(II) (Fig. 2). As
depicted in Fig. 2, a linearly dependent quenching
was observed when the Cu(II) concentration was less
than 60 μmol/L. The Stern-Volmer quenching constant was
estimated to be 1.1 � 104 M–1 (Fig. S4). The 3σ detection

limit of Cu(II) is ~5 μmol/L, which is lower than the WHO
guideline level (30 μmol/L) for copper in drinking water.
To discuss the observed quenching phenomenon,

UV–vis spectra was measured for the Cu(II) titration. As
shown in Fig. 3, a new weak peak at 435 nm was also
observed, which is attributed to a trace of Cu(I) derived
from Cu(II) reduction in the presence of PFPNCC with
solvent [27]. Upon addition of Cu(II), the color of the
solution turned out to be bronze yellow, which could be
seen by naked eyes. The similar phenomena and UV–vis
spectral changes were also observed in other nucleophilic

Scheme 1 Synthesis of PFPNCC

Fig. 1 Fluorescence quenching efficiency of PFPNCC (1.0 � 10‒6 mol/L) in DMF by adding metal ions. lex = 370 nm, lem= 420 nm.
CMetal ion = 4 mmol/L
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solvents such as DMSO, but the absorbance peak derived
from Cu(I) was not observed in low nucleophilic solvents
such as 1,4-dioxane and THF. Figure 4 shows the solvent-
dependency of the quenching behavior for the addition of
Cu(II). The efficient fluorescence quenching was observed
in nucleophilic solvents, whereas weak fluorescence
quenching exhibited in low nucleophilic solvents. These

results indicate that the fluorescence quenching by
Cu(II) is related to the Cu(I) complexes with nucleophilic
solvents [25].
The aforementioned UV–vis spectra showed an overlap

between the fluorescence spectrum of PFPNCC and the
absorbance spectrum of the copper complex. In other
words, fluorescence resonance energy transfer (FRET)

Fig. 2 Fluorescence spectra of PFPNCC (1.0 � 10–6 mol/L) in
DMF upon addition of Cu(II). CCu(II) = 0–5 mmol/L. lex = 370 nm.
Inset shows titration isotherm corresponding to the Cu(II)-induced
fluorescence quenching

Fig. 3 UV–vis spectra of PFPNCC (1.0 � 10–6 mol/L) in DMF
with various concentrations of Cu(II). Inset shows UV–vis spectra
of PFPNCC (1.0 � 10–6 mol/L) with higher concentration of Cu
(II) in DMF

Fig. 4 Fluorescence spectra of PFPNCC in the presence or absence of Cu(II) in various solvents. CCu(II) = 4 mmol/L, lex = 370 nm
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and/or photo-induced electron transfer (PET) could be
considered for the origin of the quenching phenomenon
[28]. The mechanism of FRET depends on an energy
transfer without charge separation and reorganization of
solvent molecules, and its transfer efficiency is inversely
proportional to the sixth power of the distance between a
donor and an acceptor. On the other hand, the PET process
generates charge separation, and makes an orientation of
solvent molecules near by the charged portions. According
to those theories, a fluorescence recovery of PFPNCC
quenched by the addition of Cu(II) would be observed at
low temperature if the fluorescence quenching is induced
by PET, because the prevention of the solvent reorganiza-
tion at low temperature brings about inefficient electron
transfer [29]. However, in the case of the FRET process,
the fluorescence recovery will not happen [29]. As shown
in Fig. 5, the fluorescence intensity of the PFPNCC
quenched by the addition of Cu(II) was clearly recovered at
low temperature, indicating that the fluorescence quench-
ing at room temperature most probably stems from the PET

process followed by the reduction of Cu(II) though the
partial fluorescence recovery implies that the FRET
process may also exist [29].
To discuss the PET process in detail, the Rehm–Weller

equation was employed [30]. The thermodynamic driving
force (ΔGPET) should be calculated as:

ΔGPET ¼ eE°ðPFPNCCþ=PFPNCCÞ

– eE°ðCuðIIÞ=CuðIÞÞ –W p –E00ðPFPNCCÞ,
where E°(PFPNCC+/PFPNCC), E°(Cu(II)/Cu(I)), Wp,
E00(PFPNCC) are the oxidation potential of the donor,
the reduction potential of the acceptor, the radical ion pair
energy and the singlet excitation energy of the donor,
respectively. The values of E°(PFPNCC+/PFPNCC) and
E00(PFPNCC) are known to be 0.87 V and 3.57 eV,
respectively [31]. E°(Cu(II)/Cu(I)) is known to be 0.08 V
[32], and the value of Wp is negligible [33]. Therefore,
ΔGPET = e � 0.87 V – e � 0.08 V – 3.57 eV = – 2.78 eV.
As shown the above-calculated value, ΔGPET value is
negative from these parameters, suggesting that the PET
process can spontaneously occur.
Scheme 2 displays the plausible mechanism of copper

ions-induced fluorescence quenching of PFPNCC. First,
some Cu(II) ions form complexes with nucleophilic
solvents. The electron transfer from the excited state of
PFPNCC to Cu(II) ions in the complexes subsequently
occurs, resulting in the fluorescence quenching of
PFPNCC.

4 Conclusions

In summary, we have developed a highly selective
detection method for Cu(II) by using a combination of
the “ligand-free” PFPNCC and nucleophilic solvents. The
fluorescence of PFPNCC can be efficiently quenched by
the addition of Cu(II) in nucleophilic solvents such as
DMF and DMSO, but not in low nucleophilic ones such as
1,4-dioxane and THF. This fluorescence quenching may be

Fig. 5 Fluorescence spectra of PFPNCC (1.0 � 10–6 mol/L) in
DMF in the presence or absence of Cu(II) (4 mmol/L) (I: no Cu(II),
at 25°C; II: Cu(II), at 25°C; III: Cu(II), at about –75°C). lex =
370 nm

Scheme 2 A plausible mechanism of the fluorescence quenching of PFPNCC by adding Cu(II) in nucleophilic solvents
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explained by the PET process in which the Cu(II) ion after
forming a complex with nucleophilic solvent is reduced by
the excited PFPNCC. Although the recognition of Cu(II)
was achieved in organic solvents, the designed chemo-
sensor might be able to detect Cu(II) in biological fluids by
incorporating the chemosensor into amphiphilic polymer-
gel-matrices [34,35]. Such the “ligand-free” chemosensors
would provide a novel strategy for the simpler detection of
various metal ions using conjugated polymers in the near
future.
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