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We have developed an electrical circuit-based compact numerical fitting model
to determine industry-related physical parameters of solar cells utilizing only
3–8 current–voltage coordinate points without any specific selection of an
experimental coordinate axis. The proposed compact numerical fitting model
was effectively tested to determine the peak power point, fill factor and effi-
ciencies for organic and inorganic solar cells, as well as for solar panels. This
research facilitates cost-effective energy management of solar modules and
farms.
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INTRODUCTION

Solar cells are one of the most promising devices
for meeting rising demands of clean electric power
generation.1–8 To predict the performance of solar
cells accurately, it is essential to have a precise set
of solar cell parameters.1–3,7–12 The lumped circuit
models are the most commonly used method for
describing the electrical characteristics of a solar
cell and extracting the physical parameters from
experimental data. Among the existing circuit mod-
els, the single exponential model (Fig. 1) is the
simplest and most widely used method to describe
the characteristics of a large variety of solar
cells.13–18 In the single exponential model (SEM),
the current (I) and voltage (V) relation has an
implicit form and is given by the following
equation:12

I ¼ Iph � I0 exp
V þ RsI

nVth

� �
� 1

� �
� V þ RsI

Rsh
ð1Þ

where Iph is the photocurrent, I0 represents the
saturation current, Vth is a product of the Boltz-
mann constant, with temperature revived by elec-
tron charge q, n is the ideality factor, Rs is the series
resistance and Rsh is the shunt resistance. An
accurate estimation of these parameters is very
important to provide precise evaluation of the
performance of a solar cell.10,11 Various methods
have been developed to determine these parameters
of solar cells.1–3,8,9,11–13,16–18 The transcendental
nature of the SEM increases the complexity of
determination of solar cell parameters. As a result,
the SEM has been expressed in explicit form using
the Lambert function to avoid the complexity.13–15

However, to determine the accurate set of param-
eters, many terms of the series are required to be
computed and it increases complexity of the simu-
lation. The physics-based compact models aid
designers in creating advanced designs and more
simply predict the performance of the new devices
without need of complex simulation. Compact solar
cell models are ideal for predicting the design
parameters of solar cells from I–V characteristics
without rigorous simulation. Compact modeling of a
solar cell is the crucial step for shortening of the
design cycle, which is necessary in today’s
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competitive industry, and will be particularly help-
ful to device designers.

However, only a few works have attempted to
introduce a compact model7,12 for solar cell param-
eter extractions. Recently, based on the empirical
model reported in Saleem and Karmalkar7 and
Karmalkar and Saleem,8 Saleem et al.7 presented
empirical compact expressions for the solar cell
parameters. However, the accuracy of their pre-
dicted results is sensitive to the selection of mea-
sured points. One of the useful compact models for
determining the physical parameters of solar cells is
that of Phang et al.12 In their model, they have
assumed Rsh is much bigger than the Rs (Rsh + Rs

Rsh). Hence, parameters estimated (following
Phang et al.12) for solar cells having high series
resistance (Rs � Rsh), especially inorganic thin
films, organic and hybrid photovoltaics, were inac-
curate. The series resistance of a solar cell is a
parasitic and dominant factor that affects conver-
sion efficiency and current–voltage characteristics
under illuminated condition. The energy loss result-
ing from the series resistance has risen because of
the increase in the finger length and handling of
large current. Therefore, accurate determination of
series resistance becomes more important to obtain
reliable characterization and optimization of cell
designs to minimize such losses.19–25 In the present
article, we have developed a compact numerical
fitting formula for determining solar cell parame-
ters, based on the single exponential model. Our
compact model aims to focus on the improvement of
the predicted series resistance from field data.

The maximum power point and fill factor of a
solar cell are also important parameters for design-
ing high-efficiency solar cells.8,9 The current–volt-
age relation of a solar cell has an implicit form and
requires iterative calculation to determine these
parameters. There are many methods in the liter-
ature for determining these parameters, including
empirical models8,9 to the curve-fitting tech-
nique.2,10,11 Generally, the polynomial interpola-
tions are used to estimate the maximum power
point and fill factor. However, the polynomial
technique requires rich experimental I–V data with
smooth variation of applied bias to estimate the
accurate parameters. Increasing the number of
measured points inherently increases the effect of
noise. In the present article, we have employed the
Thiele interpolation technique based on the curve

fitting to determine the peak power point and fill
factor from few measured points (3–6) of the cur-
rent–voltage characteristic. It is shown that the
Thiele interpolation method can accurately estimate
the maximum power point and fill factor with fewer
measurement points in the current–voltage
characteristic.

THEORETICAL BACKGROUND

Equation 1 is an implicit equation and it is not
possible to solve it analytically. However, using the
Lambert W function, the solution for current and
voltage (V ¼ Vout) can be expressed as

V ¼ IphRsh þ I0Rsh � I Rs þ Rshð Þ

� nVthW
I0Rsh

nVth
exp

IphRsh þ I0Rsh � IRsh

nVth

� �� �

ð2Þ

where W represents the Lambert W function.
The short-circuit current Isc, by substituting

V = 0 and I = Isc in Eq. 2, and open-circuit voltage
Voc, by substituting V = Voc, I = 0 in Eq. 2, can be
given by

Isc ¼ � 1

Rs
W

RsI0Rsh exp
Rsh RsIphþRsI0ð Þ
nVth RsþRshð Þ

� �

nVth Rs þ Rshð Þ

0
BB@

1
CCA

þ
Rsh Iph þ I0

� �
Rs þRsh

ð3aÞ

and

Voc ¼ IphRsh � nVthW

I0Rsh exp
Rsh IphþI0ð Þ

nVth

� �

nVth

0
BB@

1
CCA

þ I0Rsh

ð3bÞ

Using Eqs. 3a and 3b, the photocurrent Iph and
saturation current I0 can be given by

I0 ¼
Isc Rs þ Rshð Þ � Vocð Þ exp � Voc

nVth

� 	

Rsh 1 � exp � Voc�RsIsc

nVth

� 	� 	� 	 ð4aÞ

and

Iph ¼ Voc

Rsh
þ exp

Voc

nVth

� �
� 1

� � Isc Rs þ Rshð Þ � Vocð Þ exp � Voc

nVth

� 	

Rsh 1 � exp � Voc�RsIsc

nVth

� 	� 	

ð4bÞ

By substituting Eqs. 4a and 4b in Eq. 2 and
making the assumption of D ” exp{� (Voc �

Fig. 1. Generic solar cell equivalent circuit with the single
exponential model
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RsIsc)/nVth} > 1, which is generally valid for a large
variety of solar cells,10,11 Eq. 2 is simplified to

V ¼ Isc Rs þ Rshð Þ � I Rs þ Rshð Þ

� nVthW
Isc Rs þ Rshð Þ � Vocð Þ

nVth
exp � Voc

nVth

� �
exp

Isc Rs þ Rshð Þ � IRsh

nVth

� �� �

ð5Þ

Using the reverse of the Lambert function, the
current and voltage relation can be expressed as

V ¼ Isc � Ið Þ Rs þ Rshð Þ

� Isc Rs þ Rshð Þ � Vocð Þ exp
V � Voc þ IRs

nVth

� �

ð6Þ

From Eq. 6, the derivative of V with respect to I
can be given by:

dV

dI
¼

� Rs þ Rshð Þ þ Rs

nVth
V � Isc � Ið Þ Rs þ Rshð Þð Þ

1 � V� Isc�Ið Þ RsþRshð Þ
nVth

ð7Þ

The short-circuit dynamic resistance Rsho, by
substituting V = 0 and I = Isc in Eq. 7, and open-

circuit dynamic resistance Rso, by substituting
V = Voc, I = 0 in Eq. 7, can be given by

dV

dI






V¼0

¼ �Rsho ¼ � Rs þ Rshð Þ ð8aÞ

and

dV

dI






I¼0

¼ �Rso

¼
� Rs þ Rshð Þ þ Rs

nVth
Voc � Isc Rs þRshð Þð Þ

1 � Voc�Isc RsþRshð Þ
nVth

ð8bÞ

For a maximum power ¶(I Æ V)/¶I = 0, so that
Eq. 7 becomes

dV

dI






V¼Vm; I¼Im

¼ �Vm

Im

¼ �
� Rs þ Rshð Þ þ Rs

nVth
Vm � Isc � Imð Þ Rs þ Rshð Þð Þ

1 � Vm� Isc�Imð Þ RsþRshð Þ
nVth

ð9Þ

where Im represents the maximum power current
and Vm represents the maximum power voltage. By

Fig. 2. Comparison of rebuilt I–V curves of a silicon solar cell at T = 50�C for (a) three measurements, (b) four measurements, (c) five
measurements and (d) eight measurements of the bias point.
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substituting Eq. 8a into Eqs. 8b and 9, we have
obtained the following relations for the Rso and
maximum power:

Rso ¼ �
�Rsho þ Rs

nVth
Voc � IscRshoð Þ

1 � Voc�IscRsho

nVth

ð10Þ

and

Vm

Im
¼ �Rsho þ

Rs

nVth
Vm � Isc � Imð ÞRshoð Þ

� �
=

1 � Vm � Isc � Imð ÞRsho

nVth

� � ð11Þ

Equation (10) can be written as

n ¼ Rso � Rs

Rsho � Rso

� �
IscRsho � Voc

Vth

� �
ð12Þ

The closed form expression for n in the terms of
measured parameters can be represented by sub-
stituting Eq. 12 in Eq. 11, as

n ¼ b
aVth

ð13aÞ

where

b ¼ �VmRsho Isc � Imð Þ þ V2
m

þ Im Rsho Isc � Imð Þ � Vmð ÞRso ð13bÞ

a ¼ Vm � RshoIm

� Im Rsho Isc � Imð Þ � Vmð Þ Rso �Rshoð Þ
RshoIsc � Voc

ð13cÞ

Substituting Eq. 13a in Eq. 10, the Rs can be
given by

Rs ¼
Rso � Rshoð Þbþ aRso RshoIsc � Vocð Þ

RshoIsc � Vocð Þa ð14Þ

Substituting Eq. (14) in Eq. (8a), the Rsh can be
given by

Rsh ¼ Rsho �
Rso � Rshoð Þbþ aRso RshoIsc � Vocð Þ

RshoIsc � Vocð Þa
ð15Þ

Substituting Eqs. 13, 14 and 15 in Eqs. 4a and 4b,
the I0 and Iph can be given by

I0 ¼ Isc þ
RsIsc � Voc

Rsh

� �
exp � aVoc

b

� �
ð16Þ

and

Iph ¼ Isc � Isc þ
RsIsc � Voc

Rsh

� �
exp � aVoc

b

� �
þ RsIsc

Rsh

ð17Þ

Equations. 13, 14, 15, 16 and 17 can be used to
determine corresponding values of n, Rs, Rsh, I0 and
Iph from measured parameters.

Fig. 3. Comparison of rebuilt I–V curves of a silicon solar cell at
T = 50�C for eight selected points with (a) equal space on the V axis
and (b) equal space on the I axis. The deviation of the model with
insignificant data is shown in 3b (inset).

Fig. 4. Comparison of rebuilt I–V curves of a silicon solar cell at
T = 50�C after adding random noise to the measured points.
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RESULTS AND DISCUSSION

The accuracy of the presented Eqs. 13, 14, 15, 16
and 17 for determining the parameters of solar cells
depends on the accuracy of measurements of Im, Vm,
Rso and Rsho. The values of Im, Vm, Rso and Rsho can
be determined from the measured current–voltage
coordinates (I, V) utilizing curve-fitting techniques.
The high-degree polynomial curve-fitting technique
is employed to estimate these parameters.10,11 But
the technique requires very smooth experimental
data to reduce the errors that originate from the
Runge effect.12 Furthermore, many factors may
influence the measured current-voltage coordinates
and introduce noise to the measured I–V data. In
addition, fluctuations in the measured current–
voltage coordinates reduce smoothness of experi-
mental data and causes a large numerical error in
the estimated parameters as obtained from the
polynomial method. To resolve these problems,
Chan et al.26 discussed a subsection polynomial
curve-fitting technique. In this method, the exper-
imental current–voltage curve is divided into sev-
eral subsections and for each subsection, low-degree
polynomial curve fitting is used. Although the
method can estimate the parameters precisely, it
requires a large number of points. The accuracy of
the estimated parameters is greatly influenced by
the position of the selected subsections and exper-
imental points. By employing the Thiele curve-
fitting technique, we have solved the aforemen-
tioned problems even with a lower number of
measured I–V coordinates. The developed method
is less dependent on the position of the selected
experimental I–V coordinates.

The Im and Vm were extracted from the measured
I–V coordinates by using the spline technique (ST),
two-degree not-a-knot spline technique (TDST),
polynomial interpolation (PI), polynomial curve
fitting (PCF) and the Thiele technique (TT).

In Fig. 2, we have compared the predicted I–V
curve using the spline technique, two-degree not-a-
knot spline technique, polynomial interpolation,
polynomial curve fitting and Thiele technique for
3, 4, 5 and 8 I–V coordinate points of a silicon solar

cell at a measurement temperature of 50�C. For
comparison, we have also plotted the ideal I–V curve
obtained by Chan et al.26 As shown in this figure,
the rebuilt I–V curve using the Thiele interpolation
technique is very close to the ideal one while using
fewer measured I–V coordinates. The estimated
maximum power points, using the aforementioned
techniques, are tabulated in Tables I and II. The
deviation percentage (DP) is also presented in the
tables. The DP is a factor which differentiates
between a compact model and a numerical model
for parameter extraction. As shown in Tables I and
II, the estimated maximum power points using the
Thiele technique are more accurate than the other
methods.

Being realistic, we also simulate I–V curves
from eight measurements of the bias point with
different spacing utilizing the spline technique,
two degree not-a-knot spline technique, polyno-
mial interpolation, polynomial curve fitting and
the Thiele technique, as depicted in Fig. 3.
Selected I–V coordinates have the equal space on
the V axis for Fig. 3a, while for Fig. 3b, selected
points have equal space on the I axis. The
deviation in the fitting model with insignificant
data points is shown in the inset of Fig. 3b. As
demonstrated in this figure, the polynomial and
spline method is more sensitive to the position of
selected points. To further investigate the sensi-
tivity of our employed approach to the fluctuations
in the measured data or noise, the data incorpo-
rated with the random noise has been analyzed
with our employed technique to estimate the
maximum power point and fill factor. As illus-
trated in Fig. 4, the fitted curve using the Thiele
curve-fitting technique is in very good agreement
with the ideal numerical method one.

Also, as shown in Table III, the estimated max-
imum power point using the Thiele technique is
very accurate even for the data with random noise.
In the rest of the article, we have employed our
Thiele curve-fitting technique to estimate precisely
the values of Im, Vm, Rso and Rsho from an exper-
imentally measured current–voltage curve.

Table III. Estimated maximum power point (Vm, Im or Jm) and fill factor (FF) by the spline technique, two-
degree spline technique, polynomial interpolation, polynomial curve fitting and the Thiele technique for five
bias points with random noise of a silicon solar cell at T = 50�C, and the results obtained by an exact
numerical method

Number of measured points

Five points

Numerical valueMethod ST TDST PI PCF TT

Vm (V) 0.41 0.41 0.41 0.38 0.42 0.42
Jm (Am�2) 280.08 �277.11 �266.27 �263.03 �237.1 �239.91
FF 0.84 0.83 0.79 0.72 0.72 0.72
DP from ideal value of Vm (%) 1.42 0.71 1.47 9.09 0.038 0
DP from ideal value of Jm (%) 16.7 15.5 11.0% 9.6% 1.2% 0
DP of FF (%) 15.07 14.69 9.45 0.33 1.20 0
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To investigate the reliability of our presented
compact numerical fitting model, the physical
parameters of a large variety of solar cells were
predicted and compared with the other numerical
results in the following. Our presented compact
model is used to predict the parameters of silicon
solar cells (at T = 33�C), a silicon solar module (at
T = 45�C), DSSC (20�C), P3HT cell (27�C),
PCPDTBT cell (27�C), tandem cell (27�C) and a
multi-junction small-molecule cell under different
illumination. The estimated Im, Vm, Rso and Rsho for
these solar cells and the parameters predicted by
our compact model are tabulated in Tables IV, V
and VI. Also, our results have been compared with
the results obtained by the numerical method10 and
the compact model presented in Phang et al.12 As
shown in Tables V and VI, our predicted results are
very close to the numerical results, and the DP of
the parameters predicted by our method are better
than the reported results by Phang et al.12 and
Chan et al.26 The DP of the parameters predicted by
our method is less than 1% except for saturation
current. It could be because of the approximation
employed in our method.

It is well recognized that series and shunt resis-
tance (Rs) values significantly influence the solar
cell performance, and highly accurate prediction of
such low values of series resistance is very impor-
tant.25,27–37 Our predicted results for Rs are almost
the same as the numerical results, and the DP of
our predicted results for this parameter is much
better than that obtained by Phang et al.,12 espe-
cially for non-silicon solar cells and for multi-
junction small-molecule cells (Tables VII and VIII).

CONCLUSION

In this article, we have explored a new compact
numerical fitting model, focusing on improvement of
predicted series resistance. The circuit equations
are directly derived from a single exponential model
and are useful for determining the physical param-
eters of solar cells more easily. With three to eight
current–voltage points from random experimental
coordinates, as obtained from different crystalline to
non-crystalline photovoltaic cells, we established
that our compact numerical fitting model, could
predict physical parameters with high accuracy. In
addition, it was demonstrated that Thiele interpo-
lation appears to be more accurate for predicting the
maximum power point and fill factor with fewer
measurements of the bias point even in the presence
of random noise. The implementation of our com-
pact numerical fitting model will help to obtain in-
field load matching parameters to enrich energy
management techniques for small-scale solar mod-
ules to large-scale solar farms.
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