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Photovoltaic (PV) power generation has been widely used in recent years, with
techniques for increasing the power efficiency representing one of the most
important issues. The available maximum power of a PV panel is dependent
on environmental conditions such as solar irradiance and temperature. To
extract the maximum available power from a PV panel, various maximum-
power-point tracking (MPPT) methods are used. In this work, two different
MPPT methods were implemented for a 150-W PV panel. The first method,
known as incremental conductance (Inc. Cond.) MPPT, determines the max-
imum power by measuring the derivative of the PV voltage and current. The
other method is based on reduced-rule compressed fuzzy logic control (RR-
FLC), using which it is relatively easier to determine the maximum power
because a single input variable is used to reduce computing loads. In this
study, a 150-W PV panel system model was realized using these MPPT
methods in MATLAB and the results compared. According to the simulation
results, the proposed RR-FLC-based MPPT could increase the response rate
and tracking accuracy by 4.66% under standard test conditions.

Key words: PV model, maximum-power-point tracking, incremental
conductance, fuzzy logic control

INTRODUCTION

Renewable energy sources have been a major
research topic in recent years, especially because of
environmental issues such as pollution and global
warming.1 Photovoltaic (PV) energy is one of the
most promising renewable energy sources. It is
clean, inexhaustible, and free to harvest.2 PV cells
and panels have nonlinear electrical characteristics,
and this characteristic is dependent on environ-
mental conditions such as solar irradiance and
ambient temperature. Therefore, all PV panels have
power characteristic curves such that the maximum
power is obtained when an impedance with a
particular magnitude or load is connected. This
impedance point is obtained only at a single

operating point given by a particular voltage and
current, called the maximum-power point (MPP),
which varies considerably with both the solar
irradiance and temperature.1

This forces researchers to develop a mechanism
for determining the actual MPP depending on
environmental changes. Therefore, maximum-
power-point tracking (MPPT) algorithms have been
utilized to emulate the unique impedance or load
such that the the maximum achievable power can
be extracted from a PV panel or system. MPPT
methods direct the operating point of the PV system
toward the MPP by controlling the power circuit of
the PV system such that the operating point
matches the maximum point of the contained PV
panels. MPPT is a very important problem in PV
systems, since extraction of the maximum achiev-
able power from PV systems is of great value and
importance.3
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In literature, many classical methods and con-
trollers have been designed and widely imple-
mented to track the MPP.4–6 However, the
different methods in actual use present different
advantages as well as disadvantages such as slow
response rate, energy loss, oscillations, etc.7 Meth-
ods for MPPT can be classified into two main
categories. The first includes classical or conven-
tional techniques such as perturb and observe
(P&O), incremental conductance (Inc. Cond.), hill
climbing, fractional short-circuit voltage, and frac-
tional short-circuit current, while the second cate-
gory includes intelligent MPPT techniques, which
are more versatile and capable than conventional
techniques but also more complex.1,3,8,9 Intelligent
MPPT techniques include particle swarm optimiza-
tion (PSO), fuzzy logic control (FLC)-based tech-
niques, artificial neural network (ANN)-based
techniques, and metaheuristic-based techniques.3

Various conventional and intelligent MPPT
methods have been proposed to track the MPP,
including adaptive P&O-modified Inc. Cond., parti-
cle swarm optimization (PSO), fuzzy logic control
(FLC), and artificial neural network (ANN)
approaches. These methods vary in terms of
convergence speed, oscillations around the MPP,
implementation complexity, cost, and electronic
equipment requirements.10–13 The P&O and hill
climbing methods are very similar, as both require
perturbation of some control variable to determine
the tracking direction. This control variable could be
the voltage, current, or duty ratio.14 The Inc. Cond.
method is derived from the same basis as the hill
climbing and P&O methods but is based on a
comparison of how the voltage and current change.
This method is widely preferred and is an important
technique in literature due to its good tracking
performance and environmental adaptability.15–18

The Inc. Cond. method is more robust to measure-
ment noise compared with the P&O method because
the control decision depends on two distinct vari-
ables.19 Disturbance observations and incremental
conductance are two of the most popular methods,
being easy to implement in any digital controller
and offering good approach to the MPP, but they
exhibit oscillations around the MPP that cause
serious energy loss and they fail to track the global
MPP in partial shading conditions.20 To avoid these
drawbacks, intelligent MPPT techniques are gener-
ally preferred in literature.

The introduction of intelligent MPPTs for PV
systems is highly promising. These methods
achieve good performance in partial shading con-
ditions, fast response with no overshoot, and less
fluctuations.13 One of the most widely used intel-
ligent techniques is the fuzzy logic control (FLC)-
based MPPT method, offering fast tracking ability
and improved efficiency of tracking accuracy. FLC-
based MPPT has evolved into a very popular topic,
with many variations of FLC for MPPT being
introduced in literature; For instance, various

papers have considered using dP/dV as the input
to the FLC. Specifically, Ref. 21 investigated and
compared the performance in terms of tracking
accuracy and convergence speed depending on the
fuzzy rule base applied and hence determined the
optimal rule variables and ranges. Reference 22
proposed a novel MPPT method based on a fuzzy
logic controller (FLC) and applied it to a stan-
dalone photovoltaic system. This method uses a
sampling measure of the PV array power and
voltage, then determines the optimal increment
required to obtain the optimal operating voltage,
thereby permitting MPPT. References 23, 24 pro-
posed using the change in power and the change in
current as the two inputs to the FLC. However, the
cited studies used many rules (between approxi-
mately 16 and 49) as well as membership functions
defined for linguistic subsets due to their use of
two inputs for the FLC.

By using a reduced number of fuzzy rules, the
reduced-rule compressed fuzzy logic control (RR-
FLC) proposed herein offers much lower computa-
tional demands, less system complexity, and sim-
pler implementation. However, the primary
drawback of this method is the requirement to
calculate the angle conductance and angle of incre-
ment of conductance, which is more difficult than
the conventional use of the direct PV current and
voltage as the inputs of the FLC.

This research focuses on implementation of the
incremental conductance (Inc. Cond.) and reduced-
rule compressed fuzzy logic control (RR-FLC) MPPT
methods to determine the MPP of a PV system and a
detailed comparison between them in terms of
tracking efficiency, convergence speed, implemen-
tation complexity, and cost. The remainder of this
manuscript is organized as follows: ‘‘PV Cell Mate-
rials’’ section discusses different kinds of PV cell
materials used for photoelectric generation and
surveys their efficiency. ‘‘Equivalent Circuit Model
of a PV Cell’’ section presents modeling of PV cells
and panels using an equivalent circuit model.
‘‘MPPT for PV Panels’’ section discusses the mech-
anisms of the Inc. Cond. and RR-FLC MPPT
methods. ‘‘Simulation Results for the MPPT Meth-
ods and Discussion’’ section reports experimental
results and comparisons between the Inc. Cond. and
RR-FLC MPPT methods. Finally, the conclusions of
the study are presented in ‘‘Conclusions’’ section.

PV CELL MATERIALS

A solar cell, also called a PV cell, is a device that
can produce a voltage difference when a source of
light shines on it. The choice of the PV cell material
plays an important role in the design and perfor-
mance of such systems. PV cell materials include
silicon, gallium arsenide (GaAs), copper indium
diselenide (CuInSe2), cadmium telluride (CdTe),
indium phosphide, and many others, having differ-
ent cell efficiencies and costs.25,26
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PV cell technologies can be divided into two basic
types: wafer-based PV (called first-generation PV)
and thin-film cell PV (called second-generation PV).
The first category includes crystalline silicon (c-Si)
cells (both mono- and polycrystalline silicon) and
gallium arsenide (GaAs) cells.27 The conversion
efficiency of monocrystalline cells is generally
higher than that of polycrystalline cells, that is,
16% to 22% and 14% to 18%, respectively.25 Thin-
film technology (second-generation PV) provides
alternative absorber materials, such as amorphous
silicon (a-Si) or a combination or amorphous and
microcrystalline silicon (a-Si/lc-Si), the compound
semiconductor cadmium telluride (CdTe), and com-
pound semiconductors made of copper, indium,
gallium, and selenium (CIS or CIGS).27 The conver-
sion efficiencies of thin-film materials are approxi-
mately 7% to 9% for amorphous silicon (a-Si), 10% to
15% for cadmium telluride (CdTe), and 7% to 12%
for copper indium gallium selenide. Another recent
technology is dye-sensitized PV cells, currently
achieving a highest laboratory efficiency of 12.3%
on glass substrate and 8.6% on flexible stainless-
steel substrate.25

In several studies, energy conversion efficiencies
of approximately 40% have been achieved in labo-
ratories by using III–V semiconductor compounds
as PV materials. These types of PV cell achieve the
highest energy conversion efficiency, rather than
other materials such as silicon.28 In addition to the
potential for such high efficiency, III–V semicon-
ductor compound materials offer advantages includ-
ing bandgap tunability by tailoring the elemental
composition, higher photon absorption based on
their direct bandgap, greater robustness to high-
energy rays for use in space applications, and less
efficiency degradation by heat compared with Si PV
cells.29 Multistacking of PV materials with different
bandgap energies is commonly used to obtain high-
efficiency III–V PV cells, which are known as
multijunction or tandem cells, to reduce the energy
loss between the photon energy and the bandgap
energy of the PV material and to absorb the energy
in the solar spectrum over a wider wavelength
range and more efficiently. Moreover, perovskite
solar cells (PSCs) have recently emerged as a strong
contender for next-generation photovoltaic technol-
ogy and have attracted attention from the photo-
voltaic community, including both scientists and
industry. ‘‘Perovskite’’ refers to the absorber mate-
rial of PSC devices, which adopts the ABX3 crystal
structure.30 In a few years, perovskite tandem solar
cells have reached efficiencies above 25%.31

EQUIVALENT CIRCUIT MODEL OF A PV
CELL

PV cells are the basic building blocks of PV
systems, enabling direct transformation of sunlight
into electricity. PV systems are made up of a
number of individual PV cells connected in series

to form strings and then in parallel to form mod-
ules.19,32 Under light illumination, a PV cell acts as
a current source. Electrons from the cell are excited
to higher energy levels when a collision with a
photon occurs. These electrons are free to move
across the junction, creating a current that can be
modeled as a photogenerated current source (Iph).
The characteristics of a PV array can be simulated
using an ideal single-diode model as shown in
Fig. 1.33,34

This ideal equivalent circuit model will offer a
good compromise between accuracy and simplicity
and be accurate enough to understand the PV
characteristics.34,35 The PV load current shown in
Fig. 1 is defined as

I ¼ Iph � I0 e
qðVþRsIÞ

AkT � 1
� �

� V þ RsI

Rsh
; ð1Þ

where I and V represent the output current and
voltage of the PV cell, Rs and Rsh are the series and
shunt resistance of the PV cell, respectively, Iph is
the photocurrent of the PV cell, I0 is the diode
saturation current, A is the diode quality factor
(ffi 1.2), k is the Boltzmann constant
(1.38 9 10�23 J/K), and T is the temperature of the
PV cell in kelvin.36

By solving Eq. 1 or using the equivalent circuit
model shown in Fig. 1, the electrical characteristic
curves of a 150-W PV panel can be obtained in
MATLAB for any environmental conditions. Under
uniform conditions, only one maximum point is
observed in the characteristic power curves. How-
ever, when the solar irradiance or temperature
varies, the power generated by the PV module
changes and the maximum point varies accord-
ingly,8 as illustrated by the voltage–power charac-
teristic curves in Fig. 2 for different environmental
conditions (solar irradiance and temperature).

When changing the levels of solar irradiance and/
or temperature, the corresponding power–voltage
curve of the PV panel also varies, and therefore the
maximum power point. Figure 2 shows the power–
voltage characteristic curves of the PV panel under
different solar irradiance and temperature condi-
tions. As shown in Fig. 2, the power of the PV panel
is almost proportional to the solar irradiance.
Hence, when the solar irradiance increases, the
maximum power of the PV panel also increases. In
addition, the power of the PV panel depends
inversely on temperature, increasing as the tem-
perature decreases.

MPPT FOR PV PANELS

With the changing direction of the sun, variations
in the solar irradiance level and temperature result
in changes in the power output of a PV cell.
Therefore, PV cells and panels operate at a different
power level depending on the environmental condi-
tion and electrical load. The nonlinear current–
voltage (I–V) characteristics given by Eq. 1 clearly
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display this variation under different temperature
and solar irradiance conditions. The power–voltage
(P–V) curve of a PV panel has a single maximum
point, revealed as a peak in the power correspond-
ing to a certain voltage (known as the MPP voltage)
and current (known as the MPP current).25 There-
fore, there is a single optimum operating point for
each combination of temperature and solar irradi-
ance, at which the maximum output power can be
obtained (Fig. 2).35 This unique operating point is
known as the maximum power point (MPP). In this
context, to operate PV panels at the MPP, maxi-
mum-power-point tracking (MPPT) algorithms have
been developed and implemented by researchers in
literature.37,38 MPPT aims to ensure that, under
any environmental conditions, i.e., solar irradiance
or temperature, the maximum achievable power is
extracted from a PV system.39–41 Figure 3 illus-
trates the MPP, at which the PV panel operates at
maximum efficiency for a specific environmental
condition.

To accomplish MPPT for a 150-W PV system, two
different methods are considered herein, and their
tracking accuracy and response rate compared. The

Fig. 1. PV panel and equivalent circuit model of PV cell.

Fig. 2. Voltage and power curves of PV panel under different (a) solar irradiance and (b) temperature conditions.

Fig. 3. I–V (current–voltage) and P–V (power–voltage) curves for
electrical load value corresponding to the maximum power.
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first method is the incremental conductance (Inc.
Cond.) method, which operates by periodically
incrementing or decrementing the output voltage
of the PV panel and comparing the change in the
output power. The second method uses reduced-rule
compressed fuzzy logic control (RR-FLC) to deter-
mine the MPP point for uniform environmental
conditions.

In certain situations, PV cells or panels may be
exposed to different amounts of solar irradiance,
which is referred to as a partial shading condition.
Shading may be caused by features such as clouds,
adjacent structures, or trees. Under such condi-
tions, the less illuminated cells of the panel in the
PV system dissipate some of the power generated by
the others. In the resulting power–voltage charac-
teristic curve, multiple local MPPs and a single
global MPP occur due to the bypass diodes of the PV
cells. When this occurs, conventional MPPT meth-
ods such as P&O and Inc. Cond. cannot distinguish
the global MPP from local MPPs. Although they are
efficient under uniform environmental conditions,
they can fail to track the MPP under partial shading
conditions. Due to this drawback of conventional
MPPTs, intelligent MPPT methods such as particle
swarm optimization (PSO), modified FLCs, artificial
neural network (ANN), etc. are preferred to find the
global MPP. Intelligent MPPTs include methods
based on numerical computing and optimization,
segmentation, and artificial intelligence. Although
these methods can track the global MPP faster and
more efficiently in partial shading conditions, their
implementation is more complex and requires a
more expensive digital controller compared with
conventional MPPT approaches.3,8

Table I presents a comparison of conventional
and intelligent MPPT methods in terms of their
tracking efficiency in partial shading conditions,
complexity, and implementation cost.

Incremental Conductance MPPT Method

The Inc. Cond. method tracks the MPP by com-
paring the sum of the incremental conductance plus
the instantaneous conductance of a PV panel with

zero, using the slope of the I–V characteristic of the
PV system to track the MPP. This method is based
on the principle that the slope of the power curve
(dP/dV) of the PV system is zero at the MPP,
positive when the output voltage is less than the
MPP voltage (which means that the operating point
is to the left of the MPP), and negative when the
output voltage is greater than the MPP voltage
(which means that the operating point is to the right
of the MPP).42 This explanation can be illustrated
using the following simple equations:

dP

dV
¼ dðV � IÞ

dV
¼ I þ V

dI

dV
¼ 0; ð2Þ

DI
DV

¼ � I

V
) MPP; ð3Þ

DI
DV

> � I

V
) left of MPP; ð4Þ

DI
DV

< � I

V
) right of MPP: ð5Þ

Because it uses the differential of the operating
point (dP/dV), the Inc. Cond. method can easily
track the MPP in the case of rapidly changing
environmental conditions (solar irradiance and
temperature).43 The accuracy and rapidity with
which this method tracks the MPP depend on the
size of the increment of the reference voltage.32 A
flowchart for the Inc. Cond. method is illustrated in
Fig. 4.

The main advantages of this method are that it is
convenient for any PV panel or array under uniform
(no shading) environmental conditions, and that it
requires no information regarding the PV system.
In addition, the Inc. Cond. method requires current
and voltage sensors to achieve MPPT, and it is
simple to implement on a digital controller. Unfor-
tunately, this method has the disadvantage of
oscillating around the MPP, which decreases its
efficiency, and it cannot work well under partial
shading conditions.8,20 However, variable-step-size

Table I. Comparison of conventional and intelligent MPPT methods in partial shading conditions

MPPT method
Tracking

rate
Tracking
efficiency Complexity

Implementation
cost

Conventional MPPT
Perturb and observe (P&O) Low Low Low Low
Incremental conductance (Inc. Cond.) Low Low Low Low

Intelligent MPPT
Particle swarm optimization (PSO) Medium Medium High High
Fuzzy logic control (FLC) Medium High High High

Artificial neural network (ANN) High High High High
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Inc. Cond. method implementations have also been
studied in literature to reduce the oscillations
around the MPP and thereby improve the tracking
response;44,45 For instance, Ref. 44 proposed a
modified variable-step-size Inc. Cond. method that
automatically adjusts the step size to track the MPP
of a PV array. Reference 46 investigated modifica-
tions of the step size for P&O and Inc. Cond.
methods to improve their dynamic and steady-state
MPPT performance. Reference 47 presented a novel
variable-step-size incremental resistance MPPT
algorithm that not only has the merits of Inc. Cond.

but also automatically adjusts the step size to track
the MPP of the PV array.

Reduced-Rule Compressed Fuzzy Logic
Control MPPT Method

Fuzzy logic control (FLC)-based MPPT is one of
the most widely used methods to achieve MPPT for
any PV system in any environmental conditions.
FLCs offer several advantages including better
performance, robustness, and simple design. In
addition, such methods do not require knowledge
about the exact model of the system.48,49 The main

Fig. 4. Flowchart for Inc. Cond. method.
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advantage of fuzzy control methods is their good
performance under fast-changing weather condi-
tions, although they require a high-cost processor
and difficult acquisition of empirical data.50

In this method, variables adopt various nonnu-
meric and linguistic values, e.g., ‘‘high,’’ ‘‘low,’’
‘‘medium,’’ and ‘‘often.’’51 FLCs operate using mem-
bership functions instead of a mathematical model.
FLCs can be divided into three parts, viz. fuzzifica-
tion, fuzzy inference, and defuzzification. During
fuzzification, the input variable(s) are converted
into linguistic variables according to chosen mem-
bership functions. In the inference stage, the lin-
guistic variables are manipulated based on a fuzzy
rule table, which defines the behavior of the MPPT
control. In the defuzzification stage, the FLC output
is converted from a linguistic to a numerical value
using the corresponding membership function.52

In the proposed RR-FLC method, a single input
variable is used to control the MPPT process of a PV
system. The input of the RR-FLC is the sum of the
angle conductance [h1 = tan�1(Ipv/Vpv)] and the
angle of increment of conductance [h2 = tan�1(dIpv/
dVpv)] as described by Eq. 6.

h1 ¼ tan�1 Ipv

Vpv

� �
; tan h1 ¼ Ipv

Vpv
; and

h2 ¼ tan�1 dIpv

dVpv

� �
; tan h2 ¼ dIpv

dVpv
:

ð6Þ

The slope of the power curve (dP/dV) of the PV
system is zero at the MPP. Therefore, Eq. 3 can be
rewritten in terms of the angle conductance and
angle of increment of conductance parameters as
shown in Eq. 7.

dPpv

dVpv
¼

d Vpv � Ipv
� �

dVpv
¼ Ipv þ Vpv

dIpv
dVpv

¼ Ipv
Vpv

þ dIpv
dVpv

¼ tan h1 þ tan h2 ¼ 0

ð7Þ

tan h1 þ h2ð Þ ¼ tan h1ð Þ þ tan h2ð Þ
1 � tan h1 tan h2

¼
Ipv

Vpv
þ dIpv

dVpv

1 � Ipv

Vpv

dIpv

dVpv

¼ 0:

ð8Þ

Using Eqs. 7 and 8, the sum of the angle conduc-
tance and angle of increment of conductance
(h1 þ h2), which is used as the input of the RR-FLC
MPPT method, must be equal to zero around the
MPP, i.e.,

h1 þ h2 ¼ tan�1 Ipv

Vpv

� �
þ tan�1 dIpv

dVpv

� �
¼ 0: ð9Þ

The relationships between h1 þ h2 and the cur-
rent–voltage and power–voltage characteristic

curves of the PV panel are illustrated in Fig. 5a
and b, respectively.

As seen in Eq. 9 and Fig. 5b, the sum of the
angles of the PV panel conductance and increment
of conductance equals zero around the MPP. There-
fore, the membership functions of the input and the
rule base set for the fuzzy inference system of the
RR-FLC MPPT must be identified according to this
condition. The flowchart for the RR-FLC method is
illustrated in Fig. 6.

The proposed RR-FLC to control the MPPT
process has three stages, known as fuzzification,
inference, and defuzzification. In the fuzzification
stage, the input variable, i.e., the sum of the angles
(h1 þ h2), is assigned to several linguistic variables;
the corresponding membership functions are shown
in Fig. 6, denoted by NB (negative big), NS (nega-
tive small), ZE (zero), PS (positive small), and PB
(positive big). In the inference stage, these linguistic
variables are manipulated based on a fuzzy rule
table. In the defuzzification stage, the RR-FLC
output is converted from a linguistic to a numerical
value using the membership function, defining the
output. Hence, the number of corresponding fuzzy
rules is decreased to five by using a single input
(h1 þ h2) for the RR-FLC. The corresponding fuzzy
rule set is shown in Fig. 7.

In literature, most conventional FLC methods
require two input variables. Generally, each input
requires several linguistic variables. This makes
FLCs more complex and highly computationally
demanding. Thus, the corresponding fuzzy rule
tables consist of many rules, i.e., many more than
five.1,2,4,48,53 Use of the method proposed herein
when designing the output domains allows greater
step sizes, thereby improving the efficiency of the
MPPT algorithm. The other advantage is that this
algorithm does not require use of a second set of
MPPT input variables.54 Since RR-FLC- and FLC-
based MPPT functions are based on the derivative
of the power and voltage ratio, they cannot detect
the true global MPP for partial shading conditions
and must be modified and adapted using the input
variables and fuzzy rules to effectively track the
global MPP of a PV system.3

SIMULATION RESULTS FOR THE MPPT
METHODS AND DISCUSSION

In this study, the tracking performance and
accuracy of the Inc. Cond. and RR-FLC methods
were compared using MATLAB simulations. The
Inc. Cond. method is based on a comparison of how
the voltage and current change and tracks the MPP
by changing the operating PV voltage depending on
a chosen voltage step size. In this study, a relatively
large step size (3.5 V) as well as a smaller step size
(0.5 V) were chosen to highlight the resulting
differences in tracking performance and conver-
gence speed. Additionally, the range of membership
functions of the RR-FLC was adjusted to 3.5 V for
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comparison with the Inc. Cond. method with the
same step size.

The performance results for the Inc. Cond.
method with step size of 0.5 V and 3.5 V as well as
the RR-FLC control method are shown in Fig. 8 for
standard test conditions (1 kW/m2, 25�C).

As shown in Fig. 8, the Inc. Cond. MPPT method
with step size of 3.5 V showed the best response
iteration rate but worst accuracy performance due
to the larger oscillations around the MPP. The
tracking speed for the Inc. Cond. (3.5 V), Inc. Cond.
(0.5 V), and RR-FLC method was 11, 68, and 45
iterations, respectively. According to these results,
the iteration rate of the Inc. Cond. (3.5 V) method
was 6.18 (68/11) times faster than the Inc. Cond.
(0.5 V) method and 4.09 (45/11) times faster than
the RR-FLC method. In the standard test condition,
the maximum power of the PV panel is 150 W.
Nevertheless, the Inc. Cond. (3.5 V) found a maxi-
mum power of 142.988 W. Therefore, the accuracy
of this this method is approximately 95.33%, worse
than that of the Inc. Cond. (0.5 V) or RR-FLC MPPT
method. The simulation results in terms of response
iteration rate, tracking performance and efficiency,
tracking speed, complexity, and implementation
cost are presented and compared in Table II.

Although Inc. Cond. methods are easier to imple-
ment and have low costs, their tracking efficiency
and performance are not as good as those obtained
using the RR-FLC method. In addition, the tracking
speed of the Inc. Cond. methods varies with the
parameters used to obtain the reference voltage,
and they cannot find the global MPP in partial
shading conditions. Although the RR-FLC also
cannot track the global MPP, this can be achieved

by modifying the fuzzy linguistic variables and rules
for partial shading conditions.

The generated energy can be calculated from
Fig. 8 using the generated power and time duration.
Each iteration requires some time, which depends
on the clock frequency of the processor and the code
written to accomplish the task. Therefore, an iter-
ation is taken as a unit to calculate the energy. The
energy obtained at the end of the simulation of the
PV panel under the standard test condition is shown
in Fig. 9.

According to the results of these simulations, the
RR-FLC MPPT method exhibited the best perfor-
mance in terms of energy extraction. After 2000
iterations, the RR-FLC showed the best energy
efficiency with 298.206 kW 9 iterations. The simu-
lation results for the energy comparison are pre-
sented in Table III.

To highlight the performance of the RR-FLC
MPPT method, simulation results for different solar
irradiance values (1 kW/m2, 0.8 kW/m2, 0.6 kW/m2,
and 0.4 kW/m2) at fixed temperature (30�C) are
presented in Fig. 10. The Inc. Cond. (0.5 V) method
exhibits better tracking efficiency than the Inc.
Cond. (3.5 V) method but a slower response rate
than the RR-FLC or Inc. Cond. (3.5 V) method.
Additionally, the oscillations around the MPP
remain. The RR-FLC method exhibits a better
response rate than the Inc. Cond. (0.5 V) method,
and the best tracking efficiency performance
(99.99%). In addition, no oscillations around the
MPP occur. Hence, the RR-FLC MPPT method
offers an increase in the tracking efficiency perfor-
mance by 4.66% compared with the Inc. Cond.
MPPT method. Therefore, the RR-FLC method is

Fig. 5. (a) Current–voltage of PV panel and the corresponding sum of angle conductance and angle of increment of conductance characteristic
curves. (b) Power–voltage of PV panel and the corresponding sum of angle conductance and angle of increment of conductance characteristic
curves.
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more convenient for practical PV applications due to
its enhanced tracking performance, fewer oscilla-
tions, and acceptable response rate compared with
the Inc. Cond. method. In addition, the RR-FLC
method requires fewer rules in the fuzzy rule
table and is simpler than conventional FLC meth-
ods. Hence, the results of this study show that the
proposed RR-FLC method represents a better option
for MPPT due to its simplicity, response rate, and
tracking performance compared with the Inc. Cond.
and conventional FLC-based MPPT methods for
uniform environmental conditions.

CONCLUSIONS

Generating power from photovoltaic systems has
become popular, because they represent a sustain-
able, clean, and abundant generation technology.
Hence, extraction of the maximum amount of
available power has become an important issue for
PV systems. Power generation by PV systems
depends on atmospheric conditions such as solar
irradiance and temperature. Thus, MPPT methods
play an important role in operating PV systems at
maximum efficiency under atmospheric changes. In
literature, researchers have developed various

Fig. 6. (a) Input membership functions of the RR-FLC. (b) Output membership functions of the RR-FLC. (c) Flowchart for the RR-FLC.
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MPPT methods to identify the optimum operating
point at which PV panels can extract the maximum
available power for the current conditions. In this
study, a traditional Inc. Cond. method with differ-
ent step sizes was compared with a method based on
reduced-rule compressed fuzzy logic control (RR-
FLC) that requires only a single input and less
computing power than conventional FLC-based
MPPT methods. The performance of the different
MPPT methods under uniform environmental

conditions was investigated and compared. The
tracking accuracy and performance efficiency are
discussed in detail based on MATLAB simulations
for a 150-W PV panel. The results of the simulations
reveal that the RR-FLC MPPT method exhibits a
fast response rate, no oscillations around the MPP,
and better tracking accuracy, and is more conve-
nient than the Inc. Cond. MPPT method. The RR-
FLC MPPT method achieves an improvement in the
tracking accuracy of 4.66% compared with the Inc.

Fig. 7. (a) Fuzzy rules for the defined linguistic variables for the RR-FLC. (b) PV power–voltage and angle MPPT diagram for proposed RR-FLC-
based MPPT method.

Fig. 8. Performance of Inc. Cond. and RR-FLC MPPT methods under standard test conditions (1 kW/m2, 25�C): (a) PV power curves, (b) close-
up of oscillations.

Table II. Comparison of Inc. Cond. and RR-FLC MPPT methods

MPPT type
Iteration

rate
MPP power

(W)
Tracking

accuracy (%)
Tracking

rate
Tracking
efficiency Complexity

Implementation
cost

Inc. Cond. (3.5 V) 11 142.988 95.33 High Low Low Low
Inc. Cond. (0.5 V) 68 149.862 99.91 Low Medium Low Low
RR-FLC 45 149.987 99.99 Medium High High High
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Fig. 9. Energy obtained from the PV panel under standard test condition.

Table III. Comparison of energy results for Inc. Cond. and RR-FLC MPPT methods

MPPT type MPP energy (kW 3 iterations) Energy efficiency (%)

Inc. Cond. (3.5 V) 258.148 95.05
Inc. Cond. (0.5 V) 294.812 98.27
RR-FLC 298.206 99.40

Fig. 10. PV power curves under different solar irradiance values at fixed temperature (30�C).
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Cond. MPPT method under the standard test con-
dition. Hence, it can be concluded that both MPPT
methods provide the maximum power for actual
atmospheric conditions, but the tracking perfor-
mance and response rate of the RR-FLC MPPT
method are more appropriate for uniform environ-
mental conditions due to its simplicity and the lack
of oscillations around the MPP.
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