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Abstract
Land-use change is a crucial driver for achieving a sustainable future. However, the uncertainties of socioeconomic develop-
ment could lead to different changes in the future land-use patterns. Using a spatial downscaling framework, this study aims 
to explore possible land-use patterns that can help achieve sustainable development in the Guangdong–Hong Kong–Macao 
Greater Bay Area, China (the Greater Bay Area). The framework combines the global Shared Socioeconomic Pathways 
(SSPs) scenarios with local land planning policies to model land-use changes. First, the Land Change Modeler was used 
to analyze the land-use changes from 2000 to 2010 and build transition potential submodels each of which demonstrates 
transition potential of different land-use classes. Second, future projections were made for the “business-as-usual” scenario 
and five localized SSP scenarios that were downscaled from global scenarios and modified based on the local land planning 
policy. Hong Kong was considered a typical case in the Greater Bay Area that could be used to demonstrate the application 
of the projected land-use maps by comparing the biocapacity and ecological footprint and estimating the carbon emissions 
associated with land use. The results of the future projections of land use made under six future scenarios indicated that 
there is a significant expansion in the urban area under all the scenarios, with varying degrees of decrease in cropland and 
forest among the different scenarios. Moreover, a land-use change also led to the change in local biocapacity and carbon 
emissions. Our analysis indicated that in achieving sustainable development not only urban area and cropland should be 
involved for consideration but should also cover the balance between all land-use classes, and three policy implications were 
proposed based on our findings.

Keywords  Sustainable development · Land-use change · Scenario analysis · Land Change Modeler · Localized shared 
socioeconomic pathways

Handled by Garry Peterson, Stockholm Resilience Centre, 
Sweden.

 *	 Xiangyun Shi 
	 xiangyun.shi@ge.see.eng.osaka-u.ac.jp

	 Takanori Matsui 
	 matsui@see.eng.osaka-u.ac.jp

	 Chihiro Haga 
	 chihiro.haga@ge.see.eng.osaka-u.ac.jp

	 Takashi Machimura 
	 mach@see.eng.osaka-u.ac.jp

	 Shizuka Hashimoto 
	 ahash@mail.ecc.u-tokyo.ac.jp

	 Osamu Saito 
	 o-saito@iges.or.jp

1	 Division of Sustainable Energy and Environmental 
Engineering, Graduate School of Engineering, Osaka 
University, Rm# 413, M3 Building of Sustainable Energy 
and Environmental Engineering, 2‑1, Yamadaoka, Suita, 
Osaka, Osaka 565‑0871, Japan

2	 Department of Ecosystem Studies, The University of Tokyo, 
1‑1‑1 Yayoi, Bunkyo‑ku, Tokyo 113‑8657, Japan

3	 Institute for Global Environmental Strategies, 2108‑11 
Kamiyamaguchi, Hayama, Kanagawa 240‑0115, Japan

http://orcid.org/0000-0001-6457-3826
http://crossmark.crossref.org/dialog/?doi=10.1007/s11625-021-01011-z&domain=pdf


1978	 Sustainability Science (2021) 16:1977–1998

1 3

Introduction

Scenario analysis is widely recognized as a powerful tool 
for assessing and investigating the changes in social, cli-
matic, and environmental systems (Kok et al. 2019; IPBES 
2016a) to support governments in developing strategies 
to achieve the 17 Sustainable Development Goals (SDGs) 
and development planning (Allen et al. 2017). For this 
purpose, multiple scenarios have been created to explore 
alternative futures. For instance, the shared socioeconomic 
pathways (SSPs), which were catalyzed by the Interna-
tional Panel on Climate Change (IPCC) (Nakicenovic et al. 
2014) in 2010, are comprehensive global frameworks that 
can make significant advances from the previous scenarios 
(Estoque et al. 2019) and provide a wide range of informa-
tion on possible future socioeconomic developments (Van 
Ruijven et al. 2014; Jones and O’Neill 2016). The SSPs 
have been developed by climate change research commu-
nity and describe five different plausible pathways, with 
varying degrees of mitigation and adaptation potentials 
(O’Neill et al. 2017; Riahi et al. 2017). The pathways are 
as follows: SSP1–sustainability (taking the green road); 
SSP2–middle of the road; SSP3–regional rivalry (a rocky 
road); SSP4–inequality (a road divided); and SSP5–fossil-
fueled development (taking the highway) (O’Neill et al. 
2017). SSP1 and SSP5 are relatively optimistic trends with 
high levels of human development and economic growth, 
as well as efficient environmental management, whereas 
SSP3 and SSP4 are relatively pessimistic trends with poor 
social development and environmental protection (Haus-
father 2018) (see O’Neill et al. (2017) for more details on 
SSPs).

Land use and land cover (LULC), being an important 
and direct driver of global environmental changes, is cru-
cial for achieving sustainable development (Kindu et al. 
2018; Ruben et al. 2020; Wang et al. 2018; Acheampong 
et al. 2018; Díaz et al. 2020). Thus, the spatio-temporal 
dynamic analysis and projection of LULC were considered 
as effective ways to understand the changes in LULC (Lu 
et al. 2019; IPBES 2016b). Moreover, the SSPs provided 
LULC scenarios based on several assumptions, such as 
land productivity, food consumption, and land regula-
tions (Popp et al. 2017), thus enabling the exploration of 
different land-use changes and their consequences in the 
context of fundamental future uncertainties (Riahi et al. 
2017). Furthermore, there are growing attentions in the 
SSPs applications to regional and local scales for serv-
ing to assist policy makers in developing robust climate 
change adaptation strategies and national or subnational 
planning, while also providing researchers working at 
regional, national, and subnational levels with multi-
ple pathways (Palazzo et al. 2017; Valdivia et al. 2015; 

O’Neill et al. 2020). For instance, based on the SSPs, Chen 
et al. (2020a) used the Global Change Analysis Model 
and a land-use spatial downscaling model to generate a 
new global gridded land-use data set. Gomes et al. (2020) 
used an interdisciplinary approach to develop spatially 
explicit projections of LULC under various SSPs in the 
Zona da Mata, Brazil, to help in the regional development 
and forest conservation planning. Hewitt et al. (2020) used 
SSP1 and SSP5, which were downscaled from Europe, at a 
regional level to study the impacts and trade-offs of future 
land-use changes in Scotland, UK. Wang et al. (2018) ana-
lyzed and projected the changes in LULC of the Tokyo 
metropolitan area, Japan from 2007 to 2037 based on the 
spatiotemporal simulation and Cellular Automata-Markov 
Model.

In China, the LULC changes of the past 2 decades have 
been arguably the most widespread in the history of the 
country (Yirsaw et al. 2017). Unprecedented urban devel-
opment poses a huge challenge to sustainable development. 
Therefore, numerous studies were conducted to project 
future land-use changes and provide references and sug-
gestions to identify sustainable pathways and make policy 
decisions (Chu et al. 2018; Song et al. 2020; Lin et al. 2020; 
Dong et al. 2018). For instance, Liu et al. (2017) proposed a 
future land-use simulation (FLUS) model to simulate multi-
ple land-use scenarios in China. Liao et al. (2020) performed 
land-use simulations using the FLUS model under plant 
functional type classification in the context of various SSPs 
in China. Chen et al. (2019b) combined an urban growth 
simulation model with a multiregion input–output model to 
explore the teleconnections between the future urban growth 
of China and its impacts on the ecosystem services under 
different SSPs. However, the previous land-use projections 
related to China were performed on a national/provincial 
scale, with medium to coarse resolution (e.g., 1 × 1 km2) 
(Dong et al. 2018; He et al. 2017). As these land-use projec-
tions made with a coarse resolution can lead to an underesti-
mation of the influence of urbanization (Liao et al. 2020), a 
downscaled simulation at a higher resolution was required.

Thus, this study aimed to project the future land-use pat-
terns at a higher resolution to explore the SSPs implications 
and the possible land-use changes caused by urban develop-
ment on SDG 11: sustainable cities and communities. For 
this purpose, we proposed a spatial downscaling framework 
that couples the global SSPs narratives and local land plan-
ning policy using a land change modeling method to simu-
late the future land-use scenarios.
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Study area

The Guangdong–Hong Kong–Macao Greater Bay Area 
(Greater Bay Area) was used as the research object for the 
simulations of future land-use scenarios, it represents one 
of the most prominent and fastest growing regions of China 
(Hasan et al. 2020). However, for a long period, the urban 
development activities in the region have been concentrated 

in near-shore areas, and the ecosystem of the region has 
undergone degradation (Li and Wang 2019), such as an 
ecological deficit, due to an increased ecological footprint 
(WWF 2019). Therefore, the Greater Bay Area was cho-
sen for a case study. The Greater Bay Area comprises the 
two special administrative regions, namely, Hong Kong 
and Macao, and nine municipalities, namely, Guangzhou, 
Shenzhen, Zhuhai, Zhongshan, Jiangmen, Zhaoqing, Fos-
han, Huizhou, and Dongguan in the Guangdong Province, 

Fig. 1   Location of the Greater Bay Area, China
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covering an area of approximately 56,000  km2. Its total 
population was estimated to be over 71 million by the end 
of 2018 (Greater Bay Area 2018). The Greater Bay Area is 
surrounded by mountains on three of its sides and is bor-
dered by the sea on its southern side. Moreover, it has the 
Pearl River Delta plain at its center (Fig. 1). Most of its 
area is at an elevation that is less than 200 m above sea 
level. The Greater Bay Area is the fourth largest bay area in 
the world, following San Francisco, New York, and Tokyo 
Bay Areas. Being one of the most open and economically 
vibrant regions of China, the Greater Bay Area is the key to 
the strategic planning of the development blueprint of the 
country and will develop into an international first-class bay 
area and a world-class city cluster (Central Committee of the 
Communist Party of China 2019).

In addition, Hong Kong was used as an example to dem-
onstrate the application of the projected land-use maps 
owing to the fact that it is among the top cities in the world 
in terms of per capita consumption of goods and resources 
(WWF 2013). The rapid growth of its population and econ-
omy places a heavy burden on land supply, which is being 
overcome by the reclamation of land from the sea (Asia 
2020). In 2018, its total population was 7.48 million (DSEC 
2020), and its total land area was approximately 1,110 km2. 
Hong Kong occupies only 1.98% of the Greater Bay Area 
(Fig. 2), although its population is approximately 10.54% of 
the total population of the Greater Bay Area. Being a devel-
oped and typically high-consumption city of the Greater Bay 
Area, Hong Kong could be used to demonstrate the sustain-
able development of cities. Therefore, we have confined our 
observations to Hong Kong.

Materials and methods

Figure 3 presents the framework used in the study. The core 
feature of the framework is the spatial downscaling simula-
tion that can be used in the projections of future land-use 
scenarios. It combines the global SSPs narratives with the 
local land planning policy using a land change modeling 
method. Two types of outcomes were projected using the 
Land Change Modeler (LCM) software, which is an inte-
grated module of TerrSet 18.31 (Clark labs 2020). One out-
come consists of the business-as-usual (BaU) land-use map, 
which represents the continuation of the past trends in the 
Greater Bay Area and could be directly generated using its 
default transition probability matrix without any interven-
tions (Fig. 3). The other outcome represents land-use maps 
under various global SSPs combined with the local land 
planning policy and used the 1-km resolution future land-
use gridded maps. These maps were projected by Liao et al. 
(2020) and Li et al. (2016) as initial reference data to adjust 
the transition probability matrix to generate outcomes at a 
300-m resolution, thereby achieving spatial downscaling. 
Considering the implementation period of the current local 
land planning policy and roughly the same pattern of popu-
lation distribution from 2020 to 2030 (Wang et al. 2014), 
2030 was selected as the time horizon in the scenario simu-
lations. Furthermore, the nature reserves and future popula-
tion distribution maps were used as the planning constraints 
and incentives to further shape the spatially explicit future 
land-use patterns. Finally, Hong Kong was used as an exam-
ple to demonstrate the application of the projected land-use 
maps. The following section describes the reasons for choos-
ing the LCM and its specific operations.

Fig. 2   Location of the Hong Kong Special Administrative Region, China
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LCM

Out of the various methods used for scenario building, the 
Markov chain modeling is the most common approach used 
to quantify future changes, particularly in pattern-based 
models (Rimal et al. 2018; Mas et al. 2018; Vázquez-Quin-
tero et al. 2016). The Markov chain modeling calculates 
the transition areas/probability matrix via cross-tabulation 
between the land-use categories of two maps (Olmedo and 
Mas 2018). The LCM is being applied in many disciplines 
(Eastman and Toledano 2018) and is being widely used to 
project land-use changes under different future scenarios/
land-use policy interventions (Shoyama et al. 2019; Aung 
et al. 2020). The LCM is an effective and powerful model 
owing to its Markov chain-based neural network (Hasan 
et al. 2020; Kumar et al. 2015). Therefore, we selected the 
LCM (version 18.31) to project the land-use patterns of the 
Greater Bay Area for 2030. Four major subcomponents of 
the LCM (Fig. 3) were used: (1) land change analysis, (2) 

transition potential modeling, (3) change projection, and (4) 
planning.

Step 1: Land change analysis

Two land-use maps of 2000 and 2010 (Fig. 3; Table 1) were 
utilized in the land change analysis. Six land-use classes 
were identified, namely, cropland, forest, bush and grass-
land, urban area, barren land, and water. The land transi-
tions were identified based on the calculated gains and losses 
of the land-use classes. Land transitions in areas less than 
10 km2 in extent were disregarded; only the dominant transi-
tions that included 99% of the transitions were used for the 
modeling.

Step 2: Transition potential modeling

Two setups of the transition submodels, namely, the sub-
model structure and simulation approach, were employed 
to compute the transition potentials. Initially, 14 potential 

Fig. 3   Research framework. LU stands for land use and MLPNN 
for multilayer perceptron neural network. The yellow, red, cyan, and 
green solid lines indicate data collection, LCM simulation, coupling 
of global SSPs narratives with the local planning policy, and applica-

tion that is based on projected land-use maps, respectively; the blue, 
yellow, red, and pink dashed lines denote the four subcomponents of 
LCM
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independent drivers (Fig. 4) related to land-use changes were 
selected. Then, using Cramer’s V approach that can measure 
the association between each driver and each land class, 12 
strongly associated variables exceeding 0.2 in value were 
identified (Hashimoto et al. 2019) to build the submodel 
structure.

The submodel has three options for the simulation 
approach, namely, multilayer perceptron neural network 
(MLPNN), similarity-weighted instance-based machine 
learning (SimWeight), and logistic regression. However, 
both the SimWeight and logistic regression approaches 
can perform only one transition per submodel, whereas 
the MLPNN can run multiple transitions (up to nine) per 
submodel (Eastman 2015) and robustly simulate nonlinear 
relationships (Shoyama et al. 2019). Therefore, the MLPNN 

simulation was adopted to model the land-use transitions 
from 2000 to 2010.

Step 3: Change projection

The changing quantity of each transition can be modeled to 
generate a plausible future land-use map through a Markov 
chain or specification of the transition probability matrix 
(Eastman 2015). The BaU case in the present study was 
generated using the default transition probability matrix 
without any modifications (Fig. 3). The LCM can produce 
two modes of change projection, namely, hard and soft pro-
jections. A hard projection is a commitment to a specific sce-
nario. Contrarily, soft projection is a continuous mapping of 
the degree of vulnerability to change in the 0–1 range, with 
high values indicating high susceptibilities to change. The 

Table 1   Data sources

Due to the fact that the population projection maps of the SSPs that were created by Chen et al. (2020b) do not involve Hong Kong and Macao 
and based on the data obtained from IIASA (2018), the population projection maps of these two areas were computed using the spatial distribu-
tion pattern of the population in 2020. Please refer to supplementary material for more details

Name Time Resolution Organization Source

Land-use and land cover map 2000, 2010, 2015 300 m ESA-CCI https://​www.​esa-​landc​over-​cci.​org/?q=​node/​158
Road map 2013 Shape file OpenStreetMap https://​downl​oad.​geofa​brik.​de/
River map – Shape file Resource and Envi-

ronment Science 
and Data Center, 
China

http://​www.​resdc.​cn/​data.​aspx?​DATAID=​221

DEM 2019 30 m ASTER-GDEM;
JAXA-DEM

https://​ssl.​jspac​esyst​ems.​or.​jp/​ersdac/​GDEM/E/
https://​www.​eorc.​jaxa.​jp/​ALOS/​en/​aw3d30/

Nature reserves 2015 Shape file National Earth Sys-
tem Science Data 
Center, China

http://​www.​geoda​ta.​cn/​data/​datad​etails.​html?​
datag​uid=​12020​98539​34500​&​docId=​9768

Population map 2010, 2020 100 m Worldpop https://​www.​world​pop.​org/​geoda​ta/​listi​ng?​id=​69
Population projection maps in SSPs 2030 100 m Chen et al. (2020b)

Fig. 4   Variables used for build-
ing the submodels of the LCM. 
Evidence likelihood is effective 
for incorporating categorical 
variables into an analysis (East-
man 2015) and can be generated 
in the variable transformation 
utility panel of the LCM

https://www.esa-landcover-cci.org/?q=node/158
https://download.geofabrik.de/
http://www.resdc.cn/data.aspx?DATAID=221
https://ssl.jspacesystems.or.jp/ersdac/GDEM/E/
https://www.eorc.jaxa.jp/ALOS/en/aw3d30/
http://www.geodata.cn/data/datadetails.html?dataguid=120209853934500&docId=9768
http://www.geodata.cn/data/datadetails.html?dataguid=120209853934500&docId=9768
https://www.worldpop.org/geodata/listing?id=69
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soft projection indicates the extent to which an area has the 
conditions adequate to undergo changes, without showing 
what exactly will change (Eastman 2015). Therefore, hard 
projection was adopted to assess the predictive performance 
under the BaU scenario.

Step 4: Planning constraints and incentives

The constraints and incentives, which are embedded in the 
planning subsection of the LCM, can be specified for each 
of the transitions to enable the integration of change alloca-
tion into the projection process thus making the model more 
robust (Eastman 2015) and can shape the future land-use 
pattern further. Zero values on the map relate to absolute 
constraints, values between zero and one to disincentives, 
values equal to one as no-constraints, and values greater than 
one to incentives. In the study, two types of maps were con-
sidered as the constraints and incentives: (1) the population 
distribution maps under SSPs were used to create constraint 
and incentive layer by dividing the future population projec-
tion map for 2030 (100 m resolution) (Chen et al. 2020b) by 
the population distribution map for 2020 (100 m resolution) 
(Worldpop 2020). The total population of the Greater Bay 
Area for 2030 was estimated to be 99,575,075 by SSP1; 
101,190,772 by SSP2; 102,183,566 by SSP3; 98,826,910 by 
SSP4; and 99,993,406 by SSP5 (Table 3). In 2020, the popu-
lation of the area was 63,050,321; (2) the nature reserves in 
the Greater Bay Area (Table 1) were specified as constraints 
by assigning a value of zero to indicate that development 
was not allowed in the areas.

Correlating land‑use modeling with local land 
planning policy‑coupled SSPs

The land transition probability matrix in the LCM could be 
edited to facilitate future projections and was determined 
by two key factors (Fig. 3): (1) future land demands and 
(2) the conversion cost matrix describing the difficulty of 
converting from the current land-use class to the target class 
(Dong et al. 2018; Liu et al. 2017). Therefore, land-use mod-
eling and scenarios could be correlated by adjusting the two 

factors according to the local land planning policy and SSPs 
narratives.

First, with regard to the future land demands in the 
Greater Bay Area under the different SSPs, the studies by 
Liao et al. (2020), Li et al. (2016), and Li and Chen (2020) 
were used as the main reference points. Liao et al. (2020) 
projected the future land-use maps of China at a resolution 
of 1 km under the plant functional type classification of the 
SSPs. Therefore, the future areas of forest, urban area, bar-
ren land, and water could be calculated directly using the 
ArcGIS pro (version 2.2) software to extract the Greater Bay 
Area from China. Furthermore, the policy document named 
Letter of support for the Guangdong–Hong Kong–Macao 
Greater Bay Area and Shenzhen to explore the reform of 
natural resources (People’s government of Guangdong 
province 2020) was introduced by the Ministry of Natural 
Resources in 2020. It urges the local government to adopt 
the cultivated land requisition–compensation balance policy 
to develop built-up land. Accordingly, if the local cultivated 
land is converted into built-up land, a piece of land of the 
same size and quality has to be reclaimed in another region 
for farming, thus guaranteeing the balance of cultivated land 
throughout the country (The National People’s Congress of 
the PRC 2019). Thus, the demand for cropland was adjusted 
considering this important policy and according to Li and 
Chen (2020), who projected the future impacts of the crop-
land balance policy of China under different SSPs. The bush 
and grassland area was determined based on the demands for 
the five land-use classes and the 1-km global land-use data 
set (Li et al. 2016). In this way, the future land demands for 
the six land-use classes of the Greater Bay Area could be 
determined for 2030 (Table 2).

Second, the conversion cost matrix had to be determined 
in two steps: (1) combining SSPs narratives with local land 
planning policy to qualitatively determine the difficulty lev-
els of land-use conversion and (2) quantifying those diffi-
culty levels. In the first step, the policy documents named 
Land Planning of Guangdong Province (Department of 
Natural Resources of Guangdong Province 2017, 2018) and 
Letter of support for the Guangdong–Hong Kong–Macao 
Greater Bay Area and Shenzhen to explore the reform of 

Table 2   Land demands (km2) 
in the Greater Bay Area in 2030 
under each SSPs, categorized 
according to land-use class

The BaU case was generated using the default transition probability matrix in the LCM (Fig. 3 and Step 3), 
therefore, no extra adjustment of land demand or conversion cost matrix was required for BaU

Cropland Forest Bush and 
grassland

Urban area Barren land Water

SSP1 20,567 19,746 2,373 9,561 50 3,461
SSP2 18,387 21,080 3,354 9,327 149 3,461
SSP3 17,158 21,463 4,872 8,703 101 3,461
SSP4 20,335 19,960 2,386 9,471 145 3,461
SSP5 20,539 20,112 2,006 9,471 169 3,461
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natural resources (People’s government of Guangdong prov-
ince 2020) were used as the references. The future land-
use policies relevant to the period around 2030 were then 
extracted and taken as a reference for SSP1 as the sustainable 
development of the Guangdong province was integrated into 
a strategic goal (People’s government of Guangdong prov-
ince 2019). The difficulty of combining land-use narratives 
(Popp et al. 2017) (Table 3) with the local land planning 
policy under each SSP can be at one of three levels: difficult, 
moderate, and easy (Table 4). In the second step, SSP2 was 
considered to be the basic reference, and the conversion cost 
matrix derived from Liu et al. (2017) was assumed to be the 
SSP2 conversion cost matrix (Table 5) as it was estimated 
based on the opinions of local experts and the analysis of 

historical land use. Next, 1.5, 1.0, and 0.5 were identified as 
the difficult, moderate, and easy levels, respectively, using 
test methods. Considering the qualitative difficulty level of 
land-use conversion in each SSP (Table 4) and the values of 
the three difficulty levels used to adjust the SSP2 conversion 
cost matrix, the conversion cost matrices for SSP1, SSP3, 
SSP4, and SSP5 were obtained (Tables S1–S4).

Finally, after defining the future land demands and con-
version cost matrix for each SSP, the linear programming 
(LP) method was used to determine the land transition prob-
ability matrices for each SSP (Table S5–S9) using the solver 
function of Microsoft Excel (Plus 2019 version). The LP 
approach for determining the land transition probability 
is a relatively new method employed in scenario analysis 

Table 4   Land-use conversion difficulty levels in the Greater Bay Area under each SSP

The superscripts a, b, and c indicate that the policy was derived from Letter of support for the Guangdong–Hong Kong–Macao Greater Bay Area 
and Shenzhen to explore the reform of natural resources, Land Planning of Guangdong Province (2016–2030), and Land Planning of Guangdong 
Province (2016–2035), respectively

Land-use conversion SSP1 SSP2 SSP3 SSP4 SSP5 Reference policy

Transition from cropland to urban area Moderate Moderate Easy Easy Easy The cultivated land requisition–compensa-
tion balance policya,b,c

Transition from cropland to others Difficult Moderate Easy Moderate Moderate Implement the strictest cropland protection 
systemb,c

The increase in well-facilitated farmland Easy Moderate Difficult Difficult Easy Promote the development of well-facilitated 
farmlandb,c

Transition from forest to cropland Easy Moderate Easy Easy Easy The cultivated land requisition–compensa-
tion balance policya,b,c

Transition from forest to others Difficult Moderate Easy Moderate Moderate Restore forest ecosystemb,c

The increase in forest Easy Moderate Difficult Difficult Moderate Expand forest coverb,c

The increase in urban built-up land Moderate Moderate Easy Moderate Moderate Improve the urbanization rate while strictly 
controlling the approval of new built-up 
landb,c

The increase in rural built-up land Difficult Moderate Easy Difficult Difficult Revitalize the existing rural built-up land; 
the abandoned houses and hollow villages 
in rural areas will be demolished and 
reclaimed into new built-up land for urban 
developmentb,c

Transition from barren land to built-up 
land

Easy Moderate Difficult Easy Easy

Transition from water to others Difficult Moderate Easy Moderate Moderate Strictly protect the water ecological space 
along the shoreline of the water area 
and prohibit the reclamation of lakes or 
encroachment on river coursesb,c

Table 5   Conversion cost matrix 
of SSP2

The table was derived from Table 1 provided by Liu et al. (2017)

Land-use classes Cropland Bush and 
grassland

Forest Water Urban area Barren land

Cropland 0.000 0.100 0.900 0.800 0.100 0.400
Bush and grassland 0.500 0.000 0.800 0.400 0.300 0.100
Forest 0.700 0.300 0.000 0.990 0.990 0.800
Water 0.900 0.900 0.900 0.000 0.990 0.500
Urban area 1.000 1.000 1.000 1.000 0.000 1.000
Barren land 0.900 0.500 0.990 0.800 0.300 0.000
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(DasGupta et al. 2019). The derivation of the land transition 
probability matrix M (= [mij]), where the mij values denote 
the land transition probability from land-use class i to j for 
a given period, was proposed by Hashimoto et al. (2019).

Based on all the processes described above, the land-use 
maps of the Greater Bay Area under the different SSPs could 
be projected for 2030 using the LCM.

The land-use narrative was derived from the work by 
Popp et al. (2017). The narratives of population growth and 
urbanization level were derived from the work by Jones and 
O’Neill (2016). The demographic factors driving popula-
tion change in countries were categorized into the follow-
ing groups as a function of the fertility and income levels: 
high fertility, low fertility with high income (i.e., as in the 
member countries of the Organization for Economic Coop-
eration and Development), and low fertility. The population 
projections of the Greater Bay Area in 2030 under SSPs 
were derived from the work by Chen et al. (2020b), and 
their spatial distribution maps were used to shape the future 
land-use patterns in LCM, please see the section “Step 4: 
Planning constraints and incentives” for details.

Biocapacity calculations under various SSPs

Biocapacity (BC) expresses the supply of resources and eco-
logical services, whereas the ecological footprint (EF) is a 
measure of the human demand for resources and ecological 
services (Wackernagel and Rees 1996). BC and EF could be 
used as indicators for the examination of the possibility of 
achieving sustainable development (Moran et al. 2008). In 
this study, the BC values for the six land-use classes were 
calculated based on the land-use maps projected for 2030 
under each SSP. The values were compared with the BC 
and EF values of 2015 to estimate the extent of the sustain-
able trend. The BC value was calculated using the following 
equation (see Borucke et al. (2013) for the methodological 
details):

where BC (gha/cap) is the per capita biocapacity; Ai (ha), 
the area available for the land-use class i; N, the popula-
tion; and YFi (wha/ha) and EQFi (gha/wha), the yield factors 
and equivalence factors of the land-use class i, respectively 
(Table 6). The units “gha” and “wha” stand for global hec-
tare and world average hectare, respectively [see Global 
footprint network (2020a) and the Working Guidebook to 
the National Footprint and Biocapacity Accounts (NFAs) 
(Global footprint network 2019) for more details.]

The yield factors were derived from the study by Liu 
et al. (2010) and the other equivalence factors from the NFA 
(Global footprint network 2019). The original equivalence 
factors of grassland and bush were 0.46 and 1.29, respec-
tively, and the corresponding yield factors were 2.71 and 
1.03, respectively. As grassland and bush were grouped into 
one land-use class in this study, they were represented by 
average values.

Carbon emissions coming from land use

Being a typical human activity, land use has influenced 
the global carbon balance by changing the natural carbon 
sources and sinks, such as forest, grassland, and cropland 
(Caspersen et al. 2000; Houghton et al. 2012). However, 
with the increased industrialization and urbanization, 
changes in the land-use patterns are causing increased car-
bon emissions (Zhang et al. 2018). Therefore, the carbon 
emission trend associated with land use under each SSP was 
estimated (Yang et al. 2020; Cao and Yuan 2019) using the 
following equation:

where Es (tC.y−1) denotes carbon emissions occurring 
under Scenario s; Asi (ha), the area of land-use class i under 

(1)BC =

∑

i

Ai

N
⋅ YFi ⋅ EQFi,

(2)Es =

∑

i

Asi ⋅ �i,

Table 6   Equivalence and yield 
factors of different land-use 
classes

Land-use classes Cropland Forest Bush and 
grassland

Water Urban area Barren land

Equivalence factors 2.52 1.29 0.88 0.37 2.52 2.52
Yield factors 1.65 1.03 1.87 2.71 1.74 1.74

Table 7   Carbon emission coefficient [in tC/(ha y−1)] of each land-use class

Land-use class Cropland Forest Bush and grassland Urban area Barren land Water

Value 0.422 − 0.644 − 0.021 40.73 − 0.005 − 0.253
Reference (Yang et al. 2019) (Yang et al. 2019) (Shi et al. 2012) (Shi et al. 2012) (Shi et al. 2012) (Shi et al. 2012)
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Scenario s; and δi, the carbon emission (absorption) coef-
ficient (tC/(ha y−1)) of a given land-use class i. The carbon 
emission (absorption) coefficients are shown in Table 7.

Results

Historical land‑use changes and transition modeling

From Table 8, it can be seen that all land-use classes 
except urban area experienced both a gain and a loss; 
urban area recorded only an increase in the land area 
(3,018 km2). The contributors to the net increase in the 
urban area, in the descending order of their contributions, 
are cropland (2000 km2), bush and grassland (847 km2), 
forest (95 km2), water (73 km2), and barren land (3 km2).

In the study, 26 transitions (covering 99% of the total 
transitions) and persistence were grouped into five sub-
models (Table S10). The MLPNN method demonstrated 
good performance. All of the accuracy rates of the sub-
models were higher than 0.800. Moreover, all the tran-
sitions showed a high skill measure with the lowest at 
0.631 (transition from water to bush and grassland) and 

the highest at 1.000 (transition from forest to cropland and 
cropland to forest).

Using historical changes and transition potential sub-
models, the LCM could determine how the 12 variables 
(Fig. 4) influenced future changes and the magnitude of 
those changes. The extent of land-use transitions in 2030 
was then calculated for the BaU scenario. Based on BaU 
scenario model, land-use projections for different SSPs 
were generated by adjusting the land transition probability 
matrix as shown in Fig. 3 and as described in the section 
“Correlating land-use modeling with the local land plan-
ning policy-coupled SSPs”.

Assessment of predictive performance of the model

The projected land-use map of 2015 and the actual land-
use map of 2015 were used to calculate the confusion 
matrix (Table 9). The overall accuracy and Kappa coeffi-
cient (Mohammady et al. 2015) were 0.96 and 0.93, respec-
tively. Precision and recall are two important model evalu-
ation metrics (Saxena 2018). Precision is the fraction of the 
images that project a particular land-use class that turns out 
to actually have that land-use class; recall is the fraction 
of images with a particular land-use class that have been 
projected to have that land-use class (Leung and Newsam 

Table 8   Past land-use changes 
(km2) and their percentages 
(given within parenthesis) in 
the Greater Bay Area from 2000 
to 2010

Land-use class 2000 2010 Gain Loss Net change

Cropland 22,603 (40.54) 20,839 (37.37) 336 − 2,100 − 1,764
Forest 23,283 (41.76) 23,096 (41.42) 508 − 696 − 188
Bush and grassland 3,191 (5.72) 2,261 (4.06) 408 − 1,337 − 929
Urban area 2,886 (5.18) 5,904 (10.59) 3,018 0 3,018
Barren land 6 (0.01) 3 (0.01) 0 − 3 − 3
Water 3,789 (6.80) 3,655 (6.56) 25 − 158 − 133
Total 55,758 55,758

Table 9   Validation of predictive performance of the model

Decimal figures of area were converted to the nearest integers

Land-use classes Projected land-use map in 2015 Recall

Cropland Bush and 
grassland

Forest Water Urban area Barren land Area (km2)

Actual land-
use map in 
2015

Cropland 19,526 8 93 2 876 0 20,506 0.95
Bush and grassland 36 1,627 283 6 312 0 2,264 0.72
Forest 147 243 22,563 10 16 0 22,979 0.98
Water 15 28 7 3,520 30 0 3,600 0.98
Urban area 285 20 15 48 6,037 1 6,406 0.94
Barren land 0 0 0 0 0 1 1 1.00
Area (km2) 20,008 1,927 22,962 3,586 7,271 3 55,758

Precision 0.98 0.84 0.98 0.98 0.83 0.53 Overall accuracy: 0.96
F score 0.96 0.78 0.98 0.98 0.88 0.70 Kappa: 0.93
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2012). Furthermore, the F score enables the combination 
of the precision and recall metrics into a single measure 
that captures both properties (Brownlee 2020), it is calcu-
lated as (2 × Precision × Recall)/(Precision + Recall). The 
F scores of cropland (0.96), forest (0.98), urban area (0.88), 
and water (0.96), which constitute the largest proportion of 

the land area in the Greater Bay Area, were very high. By 
contrast, the F score of bush and grassland (0.78) and barren 
land (0.70) were relatively low. However, these two land-use 
classes do not significantly affect the predictive accuracy as 
their contributions to it are small. Therefore, the validation 

Fig. 5   Land-use change flow in the Greater Bay Area for three time slices: 2000, 2010, and 2030 BaU map

Fig. 6   Projected land-use maps of the Greater Bay Area in 2030 under various SSPs at a 300-m resolution
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demonstrated that the proposed model has a high predictive 
ability.

Future land‑use changes under different scenarios

The historical trends of land-use changes in the Greater Bay 
Area (Fig. 5) from 2000 to 2030 demonstrate that, in gen-
eral, the dominant land-use classes were cropland, forest, 
and urban area. Moreover, the proportion of land classified 
as urban area continuously and significantly increased; crop-
land, bush, and grassland experienced a significant decline, 
and forest exhibited a relatively small decrease. The conver-
sion of cropland into urban area was a major contributor 
to urban development; approximately 22% of cropland had 
been converted into urban area between 2000 and 2030.

The spatial land-use distribution pattern of each scenario 
has not significantly changed (Fig. 6); thus, urban develop-
ment still revolves around Pearl River Delta, which is sur-
rounded by cropland, with forest predominantly located on 
its north side. The proportions of cropland, forest, and urban 
area are the highest. In the BaU scenario, which assumes 
the continuation of past trends without any constraints or 
incentives, the proportions of urban area (19.4%) and for-
est (40.2%) are larger than those under the SSP scenarios 

(Table 10; Fig. 7), whereas the proportion of bush and 
grassland (2.5%) is relatively low. In the SSPs, cropland and 
urban area were the largest in SSP1, being 1.16 and 0.88 
times the size of BaU, respectively, followed by their respec-
tive areas in SSP5 and SSP4. Contrarily, the forest area in 
SSP1 (19,747 km2) was relatively low. In SSP3, the urban 
area (8,703 km2; 0.80 times the size of BaU) and cropland 
(17,159 km2; 0.97 times the size of BaU) were the lowest. 
Significantly, only in SSP3, cropland was smaller than that 
in BaU.

Assessment of Hong Kong under various SSPs

The projected land-use maps of Hong Kong were extracted 
from those of Greater Bay Area using ArcGIS pro (the pro-
jected land-use maps can be obtained for other metropoli-
tan regions, such as Shenzhen, Guangzhou, and Macao). 
As shown in Fig. 8, Hong Kong has five land-use classes. 
Although the areas of the different land-use classes depend 
on the scenario considered, the land-use spatial distributions 
under different SSPs are similar. The forest, and bush and 
grassland areas under SSP1, SSP2, SSP4, and SSP5 are less 
than the respective areas under SSP3. The urban area under 
SSP3 has become small and the cropland area has shrunk 

Table 10   Land-use areas of 
the Greater Bay Area in 2030 
under different SSPs and BaU 
(in km2). The figure given 
within the brackets denotes 
the proportion with respect to 
that observed under the BaU 
assumption

Scenarios Cropland Forest Bush and 
grassland

Urban area Barren 
land

Water

BaU 17,728 22,414 1,396 10,829 3 3,388
SSP1 20,568 (1.16) 19,747 (0.88) 2,372 (1.70) 9,557 (0.88) 3 (1.00) 3,511 (1.04)
SSP2 18,386 (1.04) 21,080 (0.95) 3,354 (2.40) 9,325 (0.86) 3 (1.00) 3,610 (1.07)
SSP3 17,159 (0.97) 21,463 (0.96) 4,871 (3.49) 8,703 (0.80) 3 (1.00) 3,559 (1.05)
SSP4 20,336 (1.15) 19,959 (0.89) 2,386 (1.71) 9,468 (0.87) 3 (1.00) 3,606 (1.06)
SSP5 20,538 (1.16) 20,112 (0.90) 2,006 (1.44) 9,468 (0.87) 3 (1.00) 3,631 (1.07)

Fig. 7   Proportion of each land-
use class of the Greater Bay 
Area under various SSPs and 
BaU assumption
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Fig. 8   Projected land-use maps of Hong Kong in 2030 under various SSPs

Fig. 9   A comparison of the per 
capita ecological footprint (EF) 
of China and Hong Kong in 
2015 and 2030 and a compari-
son of the per capita biocapaci-
ties of China and Hong Kong in 
2015 and 2030 under each SSP. 
(The bar chart and dashed lines 
denote the biocapacity and EF 
in gha/cap, respectively. The 
data pertaining to the biocapac-
ity and EF of Hong Kong in 
2015 were obtained from the 
study by Shi et al. (2020). The 
data pertaining to the EF of 
China in 2015 were derived 
from the Global footprint net-
work (2020b))
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significantly. These results agree with SSPs narratives; 
because of limited land-use regulation the lowest urbaniza-
tion level occurs under SSP3 (Table 3), and the transition 
from cropland to other land-use classes is easy, whereas 
increasing well-facilitated farmland is difficult under SSP3 
(Table 4). Under the other SSPs, the urbanization level is 
central or fast, land-use regulation is medium or strong, and 
the growth of land productivity is high (Table 3).

Future biocapacity of Hong Kong under each SSP 
scenario

As can be seen from Fig. 9, the biocapacities of urban 
area, forest, and cropland are the dominating categories. 
As Table 11 shows, the per capita biocapacity in 2030 
under each of the SSPs has declined from its value in 2015 
(0.0345 gha/cap). In 2015, it has the highest value under 
SSP1 (0.0334 gha/cap) and the lowest value under SSP3 
(0.0286 gha/cap). During the period from 2015 to 2030, 
the per capita biocapacities of cropland under SSP1, SSP4, 
and SSP5 have improved but decreased under SSP2 and 
SSP3. However, the per capita biocapacity of urban area 
has increased (0.01350 gha/cap) only under SSP2, whereas 
under each of the other SSPs, its value is less than or equal 
to its value in 2015 (0.01313 gha/cap). The per capita bioca-
pacities of forests have reduced in 2030 in all SSPs.

Between the per capita EF of Hong Kong in 2015 
(6.14 gha/cap) and that in 2030 under SSP1, which is the 

highest among all the SSPs, a significant gap exists (Fig. 9). 
The per capita ecological footprint of Hong Kong is around 
184 times the per capita biocapacity; this indicates that the 
demands made by the population far exceed the supplies of 
the local ecosystem. In addition, being a developed city, the 
per capita consumption in Hong Kong is approximately 1.7 
times the per capita consumption of China (3.61 gha/cap).

Future carbon emissions from land‑use in Hong 
Kong

From Table 12 and Fig. 10, it can be seen that urban area 
(366.57 tC/ha) and cropland (3.80 tC/ha) are the main con-
tributors to the emissions. The urban area has a decisive 
impact on the carbon emission increase in Hong Kong. 
Contrarily, forest (−  5.80 tC/ha), bush and grassland 
(− 0.19 tC/ha), and water (− 2.27 tC/ha) contributed to 
the absorption of carbon; forests in particular play a major 
role in absorbing carbon. The CO2 emissions from land use 
in 2030 were approximately 8% of the total emissions in 
2015. The highest CO2 emission was under SSP2, which 
was caused by the large emissions that came from the urban 
area (3,797,700 tCO2.y−1); it was followed by the emissions 
under SSP1, SSP5, and SSP4. The emission from crop-
land in SSP5 (27,900 tCO2.y−1) was the largest, whereas 
the emission from cropland in SSP3 (4,000 tCO2.y−1) was 
the smallest. The CO2 absorption from forests were the first 
and second largest under SSP2 and SSP3 (− 145,300 tCO2.

Table 11   Per capita biocapacity 
of Hong Kong in 2015 and 2030 
under each SSP (gha/cap)

Cropland Forest Bush and grassland Urban area Water Total

SSP1 0.00903 0.00895 0.00054 0.01313 0.00171 0.0334
SSP2 0.00650 0.00989 0.00003 0.01350 0.00171 0.0316
SSP3 0.00140 0.01039 0.00351 0.01176 0.00154 0.0286
SSP4 0.00898 0.00903 0.00054 0.01265 0.00188 0.0331
SSP5 0.00871 0.00849 0.00039 0.01192 0.00177 0.0313
2015 0.00749 0.01117 0.00059 0.01313 0.00208 0.0345

Table 12   Carbon emissions/absorptions (102 tC.y−1) from different land-use classes in Hong Kong in 2030 under each SSP. The figure in brack-
ets denotes the value converted to CO2 (102 tCO2.y−1)

The total CO2 emissions in 2015 were derived from The Environmental Protection Department of Hong Kong (2017). The emissions include 
those due to land use, electricity generation, town gas production, transport, industrial processes, product use, and the other end uses of fuel
The values were converted to their nearest integers

Total Cropland Forest Bush and grassland Urban area Water

SSP1 9,666 (35,474) 75 (275) − 355 (− 1,303) − 0.56 (− 2.06) 9,982 (36,634) − 35 (− 128)
SSP2 9,971 (36,594) 54 (198) − 396 (− 1,453) − 0.03 (− 0.11) 10,348 (37,977) − 36 (− 132)
SSP3 8,167 (29,973) 11 (40) − 396 (− 1,453) − 3.52 (− 12.92) 8,585 (31,507) − 30 (− 110)
SSP4 9,218 (33,830) 74 (272) − 355 (− 1,303) − 0.56 (− 2.06) 9,538 (35,004) − 38 (− 139)
SSP5 9,239 (33,907) 76 (279) − 355 (− 1,303) − 0.43 (− 1.58) 9,556 (35,071) − 38 (− 139)
Total CO2 emis-

sions in 2015
416,000
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y−1), respectively, whereas its values under SSP1, SSP4, and 
SSP5 were almost same.

Discussion

Advantages and limitations of the study

The studies by Hasan et al. (2020), Jiao et al. (2019), and 
Song et al. (2020) were similar to the present study with 
respect to the model, study area, and scenarios, respectively. 
Therefore, the scenarios, LULC models, and advantages and 
disadvantages of the methods used by the three previous 
studies mentioned and our study were compared (Table S11) 
to demonstrate the differences of the four studies.

As can be seen from Table S11, the present study has two 
prominent advantages over the other three studies, which are 
listed as follows:

(1) Spatial downscaling framework: this framework can 
also be used for other regions in China, such as Yangtze 
River Delta and Beijing–Tianjin–Hebei Urban Agglom-
eration, or other scenarios to simulate the future land-use 
patterns. The output map with a high resolution could help 
understand the implications of global environmental changes 
and greenhouse gas (GHG), which are crucial for study-
ing sustainable development (Solecki and Oliveri 2004). 

Among the various land-use classes, the urban and agri-
cultural land use are the two most commonly recognized 
high-level classes of land use (Zhu et al. 2019). A map with 
an improved resolution can provide detailed and accurate 
land-use information for urban planning, environmental 
monitoring, and governmental management (Rawat and 
Kumar 2015). For instance, a 300-m resolution map can 
be used to observe the impact of urbanization on the land 
system in terms of space and time (Liu et al. 2020; van Vliet 
2019), thereby helping decision-makers and stakeholders to 
design and coordinate sustainable urban development plans 
(Chapa et al. 2019).

(2) Elaboration of qualitative and quantitative methods of 
correlating LCM with localized SSPs: this is the most chal-
lenging part of scenario-based land-use modeling and could 
make a significant impact on the projected results. However, 
the three previous studies did not make this elaboration. The 
qualitative and quantitative methods proposed in this study 
could be improved by considering additional factors, such 
as demographic, environmental, and economic factors, that 
would facilitate a more comprehensive and integrated simu-
lation method for land-use change projection.

The study also had several limitations. Future infrastruc-
ture development, such as the construction of new roads, 
was not included in the future projections made in the study, 
which can affect the spatial patterns of urban expansion and 

Fig. 10   Spatial distributions of the carbon emissions (absorptions) in Hong Kong in 2030 under each SSP
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associated land-use changes under the different scenarios. 
Besides, the yield factor and equivalence factor of the bio-
capacity would vary, depending on the level of technology 
and socioeconomic development of the SSP considered. For 
instance, owing to the improvements in agricultural produc-
tivity (Table 3), the yield factor can be relatively high in 
SSP1 and SSP5 and could thus lead to a large local bio-
capacity. However, due to data limitations, the biocapacity 
was calculated for each scenario using the same set of yield 
factors (2001) and equivalence factors (2019). In the section 
“Correlating land-use modeling with the local land planning 
policy-coupled SSPs”, we referred to Liao et al. (2020), Li 
and Chen (2020), and Li et al. (2016) in adjusting future 
land demands because reference data for all land-use classes 
could not be obtained from a single source. To maintain 
data consistency, all references were selected in accord-
ance with SSPs narratives. The Chinese research commu-
nity can establish a unified and localized SSPs database for 
simulating and applying future projections. Although GHG 
includes CO2, CH4, N2O, and fluorinated gases (Ritchie and 
Roser 2017; United States Environmental Protection Agency 
2018), in this study, only CO2 emissions were considered 
and estimated only in terms of the land-use factor. Other 
emission factors, including economic development, popu-
lation, energy consumption, and production, also require 
consideration.

Verification and validation

As shown in Table 3, from among the different socioeco-
nomic development pathways possible in the future, urbani-
zation will rapidly proceed under SSP1 and SSP5, whereas 
population growth will become relatively low with good 
land-use regulation and agricultural productivity improve-
ments. Under SSP4, the urbanization level is relatively fast, 
and only high- and middle-income countries or upper/mid-
dle classes would be able to regulate land use and stimulate 
productivity. Under SSP2, land-use regulation, productiv-
ity, and population growth are all at a medium level with 
concentrated urbanization. However, SSP3 represents the 
worst-case scenario, where population growth stands in stark 
contrast with slow urbanization, low land-use regulation, 
and low productivity.

The results obtained for biocapacity (Fig. 9; Table 11) 
are compatible with the SSPs narratives previously men-
tioned. The gaps among the biocapacities under different 
SSPs are mainly due to the variations in their cropland and 
urban areas. The urban area growth in SSP3 is lower than 
that in either SSP1 or SSP5, due to the differences in the 
human development trends caused by factors such as popu-
lation and GDP growth (Li et al. 2019; Hausfather 2018; 
He et al. 2017). In addition, due to the pressure exerted by 
population growth and rapid rate of urbanization, China has 

implemented strict cropland protection and balance policies 
to ensure food security (Li and Chen 2020). Therefore, in 
the Greater Bay Area, the two largest cropland areas that 
support the sustainable development of the human society 
are under SSP1 and SSP5, followed by the cropland areas 
under SSP4 and SSP2.

However, what is good for the sustainable development of 
human society need not necessarily be good for the nature. 
The rapid development of the urban area and the implemen-
tation of cropland balance policies could be disadvantageous 
for low-carbon development. As presented in Table 12, the 
carbon emissions from land use under SSP2, SSP1, and 
SSP5 are the highest. According to the analysis of historical 
land-use transitions (Fig. 5), cropland is the main land class 
that can meet the requirements of urban expansion. How-
ever, in the future, the cost of urban sprawl will be indirectly 
transferred from cropland to other land classes, such as by 
the shrinking of forest, and bush and grassland, leading to a 
relatively low demand for forest in SSP1 (Table 2) due to the 
implementation of strict cropland protection and cultivated 
land requisition–compensation balance policy under SSP1 
(Table 4). The loss of vegetation would also lead to a decline 
in carbon absorptions and thus will not be conducive for 
achieving carbon neutrality before 2060 (Mallapaty 2020).

Policy implications

As indicated below, the implications of future sustainable 
development can be explored by considering the future land-
use projections made by this study.

Biocapacity optimization

As shown in Eq. (1) and Table 6, biocapacity is determined 
mainly by two factors: land area and land productivity 
(WWF 2019). The biocapacity would enhance if the two 
key drivers could be improved. Our results demonstrate that 
the areas of different land-use classes would vary depend-
ing on the scenario (Figs. 6 and 8), and that with limited 
land-use change regulation (SSP3), both the local bioca-
pacity and cropland biocapacity would decline significantly 
(Fig. 9). By contrast, the strict control of land-use conver-
sions would mitigate the degradation of local biocapacity 
(SSP1 and SSP4); the local biocapacity of cropland under 
SSP1 is high because of improved agricultural productivity 
(Table 3). Nevertheless, the level of agricultural industriali-
zation in the Greater Bay Area is still low, with backward 
agricultural socialization service systems and an imbalance 
in the development of different cities (Wan and Han 2019; 
ScienceNet.cn 2019; Gu 2019). Therefore, according to 
the results of our analysis, the biocapacity in the Greater 
Bay Area can be significantly improved by enhancing the 
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productivity of agriculture and the regulation of land-use 
conversions.

Mitigation of CO2 emissions

Urban area and cropland are the main sources of emissions 
(Fig. 10), whereas vegetation-covered areas and water are 
the main contributors to carbon absorptions. Thus, the three 
highest CO2 emissions from land use occur under SSP2, 
SSP1, and SSP5 because the urban and cropland areas under 
these three scenarios are the largest of the corresponding 
areas under the five scenarios. Under SSP3, the emissions 
are low because the urban area and cropland under the sce-
nario are small with large vegetation-covered areas. Thus, 
the green and blue spaces are important and effective in 
mitigating CO2 emissions. However, according to Tables 8 
and 10, the green and blue spaces have been declining since 
2000. The trend would continue into the future. To mitigate 
CO2 emissions and achieve carbon neutrality before 2060, 
more attention would be required to the construction of blue-
green infrastructure while building cities in the Greater Bay 
Area.

Further improvements

The cultivated land requisition–compensation balance policy 
was released in 1997 (The National People’s Congress of the 
PRC 2019). Although it has been upgraded from a quantity- 
and quality-oriented policy to an ecological balance-oriented 
policy (Han et al. 2018), various issues, such as inequities 
in crossregional transitions and imbalance of cultivated land 
quality, continue to appear. A large proportion of reclaimed 
cultivated land, which was not suitable for paddy cultiva-
tion, has been provided in mountainous areas to compensate 
for the loss of paddy land in the plains (Chen et al. 2019a; 
Tang et al. 2020; Gu et al. 2019). Moreover, when we con-
sidered this policy in our future land-use projections for the 
Greater Bay Area (Table 4), we found that it was benefi-
cial mainly for developing urban area and protecting crop-
land rather than maintaining a balance among all land-use 
classes. For instance, the cost of urban sprawl is indirectly 
transferred from cropland to forest, and bush and grassland 
(as shown in the section “Verification and validation”). In 
this way, not only the biocapacity of cropland could would 
not be maintained but also the capacity of carbon absorption 
would decrease, which would be detrimental to both socio-
economic and environmentally sustainable development. 
Therefore, the current ecological balance mechanism and 
regulatory regime require further improvement by consid-
ering urban area and cropland, and the balance among all 
land-use classes.

Future prospects

Currently, scenarios about socioeconomic future pros-
pects, such as the SSPs, are playing a major role in mak-
ing projections (Nilsson et  al. 2017). However, these 
scenarios have limitations in their applicability to biodi-
versity and nature research (Pereira et al. 2020; Rosa et al. 
2017). To fill the gap, nature-centered scenarios, includ-
ing the Nature Futures Framework (NFF), developed by 
the Intergovernmental Science-Policy Platform on Biodi-
versity and Ecosystem Services (IPBES), were proposed. 
The NFF describes positive relationships between people 
and nature, from multiple aspects, such as nature as cul-
ture, nature for society, and nature for nature (Lundquist 
et al. 2020), to capture interlinkages of social-ecological 
systems across biodiversity, ecosystem functions and ser-
vices, and human well-being (IPBES 2016b; Rosa et al. 
2020). In Japan, a new research project named Predicting 
and Assessing Natural Capital and Ecosystem Services 
(PANCES), which uses an integrated social-ecological 
system approach, was launched to predict and assess the 
natural capital and ecosystem services under national-scale 
future scenarios (Saito et al. 2019). A strong international 
cooperation is also being established. The IPBES-IPCC 
co-sponsored workshop, which was the first collaboration 
between IPBES and IPCC, was held in December 2020 to 
build a multidisciplinary expert group to meet both cli-
mate change- and biodiversity-related goals (IPBES 2020). 
Therefore, the combination of socioeconomic scenarios 
and nature-centered scenarios will become more produc-
tive toward the sustainable development of cities in the 
future.

Conclusion

This study aimed to project future land-use patterns at a 
relatively high resolution to explore SSPs implications and 
the possible land-use changes due to urban development. 
Through a spatial downscaling framework that combines 
global SSPs narratives with local land planning policies, 
using a land change modeling method, the study revealed 
that all of the scenarios experienced a significant expan-
sion of urban area at varying degrees of decrease in crop-
land and forest, thereby leading to considerable differences 
in the levels of local biocapacity and carbon emissions. 
The effects of intervention policies, such as the local land 
planning policy and cultivated land requisition–compen-
sation balance policy, were examined, and our analysis 
revealed that they were beneficial mainly for developing 
urban area and protecting cropland rather than maintaining 
a balance among all land-use classes. Our findings would 
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contribute to the improvement of intervention policies 
related to the research area.
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