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Abstract
Architecture, Engineering, Construction, Operation and Ownership (AECOO) team up in a multi-disciplinary collaborative

system to create buildings and infrastructure. The participating disciplines have reached a state in which traditional

methods and forms of input data introduce entropy that compromises sustainable construction in larger projects. It became

difficult to reach planned optimum project duration and costs this way. New approaches based on the systematic digi-

talization of the building lifecycle, from design to demolition, can solve the problem by involving the concepts of building

information modeling (BIM) systems and big data. Previous research on BIM and big data only studied the potential for

construction performance. In addition to extending research into systems’ thinking and technical sustainability of big visual

data, this paper extends our previous work in the area by introducing a new conceptual and technical framework for

sustainable management of construction site big visual data.

Keywords Construction site monitoring � Big visual data � Building information modelling � Man–Machine–Environment

System Engineering � ICT framework

Introduction

A construction site is an engineering phenomenon where

many mechanistic workflows interoperate in a predicted

manner (Beardsworth et al. 1988). The predicted behavior

is the result of the model-based view that engineers use

when they design buildings and infrastructure. The model-

based engineering approach in Architecture, Engineering,

Construction, Operation and Ownership (AECOO) ranges

from modeling labor productivity (Thomas et al. 1990), to

model-based design and engineering (Rebolj et al. 2008),

to information-based modeling (Suermann et al. 2009), and

to critical thoughts about the building information

modeling (BIM) approach (Turk 2016). Information-based

modeling allows for more complex construction projects,

therefore the risk of them not progressing on schedule has

become a big concern. Monitoring complex transdisci-

plinary activities on the construction site is a pressing

problem that challenges practitioners and researchers to

address change management, as it affects people and their

customs, and practices and achieve shorter project duration

and minimum project costs (Omar and Nehdi 2016).

Unplanned events during the construction phase may

lead to undesired consequences, like safety risks (Keng and

Razak 2014), and risks of delays and schedule overruns

(Arashpour et al. 2015). To minimize the disruptive effects

of the events, continuous monitoring of all scheduled

activities on the construction site must be ensured. The

monitoring process involves manual data collection

obtained by direct human observation and/or automated

data collection, i.e., measurements (Paolo Rocchi 2016),

which result in large datasets.

Many construction projects lose the benefits of carefully

designed construction schedules, because they ignore pre-

cise monitoring. This is a paradox, because the software

tools allow for a complex construction schedule design
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(time overlap of activities, determination of critical paths,

analysis and simulation of the schedule), which, on the

other hand, makes it difficult to effectively control while

using traditional approaches (direct human observation,

reporting) due to the large amount of activities and infor-

mation. Therefore, construction projects used measuring of

the indirect indicators of the construction progress, such as

recording workers’ productivity on the construction site

with the use of various devices, e.g., access registration,

monitoring material delivery to the construction site, cost

accounting, monitoring activities with additional staff (in-

terviewers), etc. In the last ten years, improved smart

sensors and digital cameras have enabled automated onsite

measurements, data acquisition, and image capture (Pod-

breznik and Rebolj 2005; Kim et al. 2013b).

The constant activity of people, computers, machines,

sensors, and any other data-generating devices or agents

produce and store an enormous amount of information that

needs careful and extensive analysis to become useful.

Nowadays, engineering processes, such as building con-

struction, have become sources of the big data (Raguseo

2018). The data are mainly unstructured, such as docu-

ments, spreadsheets, digital pictures and videos, acquired

signals and measurements, and have to be fed back into

BIM systems to steer the project management as required.

Actually, BIM can be seen as the main contributing big

data technology (Eastman et al. 2011). With the advance-

ment of BIM, data from the construction site can be used

for the comparison and validation of the onsite situation

with the referential digital model (BIM).

The digital link between the building geometry and the

project schedule is formed via a BIM 4D model, which

represents a temporal synchronization between the product

(building) and a process model (tasks at construction site,

(Chau et al. 2004; Rebolj et al. 2008)). This concept has

been developed to aid effective construction management

(Kim et al. 2013a). Project planning, construction progress

monitoring and decision-making are all supported by the

BIM 4D model. However, development and the use of BIM

4D models do not solve the problem of manual data

gathering and time-consuming schedule updating proce-

dures. Creating a detailed BIM 4D model for a project is a

very demanding and time-consuming task (Meža et al.

2014). The same stands for keeping the model up to date,

which is also a manual and labor-intensive task (Pod-

breznik and Rebolj 2005; Kim et al. 2013a). Despite these

problems, it is necessary to keep the model up to date to

use it for the purpose of project progress tracking and as a

basis for decision-making (Navon and Sacks 2007). From

the project perspective, accurate construction progress

measurement is critical for the success of a building project

(Akhavian and Behzadan 2012; Kim et al. 2013b).

As the project progress tracking and oversight are so

crucial, there is a clear motivation for the automation of

onsite information gathering as well as the automation of

BIM 4D model updates. Hence, several technologies have

been developed for automated data collection. These

technologies include laser scanning of construction sites

(Bosché 2010; Akula et al. 2013; Zhang and Arditi 2013;

Bosché et al. 2015; Wang et al. 2015), GPS-based location

tracking (Jiang et al. 2015), the use of RFID technology, or

bar codes (Navon and Sacks 2007), augmented reality

(Wang et al. 2013), and the application of video cameras

(Podbreznik and Potočnik 2010, 2013; Brilakis et al. 2011;

Kim et al. 2013a; Golparvar-Fard et al. 2013; Yang et al.

2015).

When research is focused on accuracy, correctness and

timely information delivery, the price of data collection

becomes an important issue. The use of video cameras is

one of the most cost-efficient approaches of data collection

for construction (Brilakis et al. 2011; Rodriguez-Gonzalvez

et al. 2014). Effective price performance can also be

achieved using hybrid solutions where several heteroge-

neous data sources are combined into a system to attain a

higher quality of collected information. Such systems allow

low-cost equipment to be used without losing output

quality (Kuipers et al. 2014).

Big visual data have significant potential for change

management by comparing the as-built with as-planned by

BIM (Han and Golparvar-Fard 2017). Collections of ima-

ges can come from static fixed-location cameras and

dynamic drone-borne, robot-borne, or man-worn photo-

graphic devices. Sophisticated computer-vision algorithms

have been derived to register any kind of images to BIM-

generated views to show the project progress, visualize

possible deviations, and follow the scheduled activities.

This elevates the project management to a higher-quality

level by decreasing the chance of human mistakes due to

the complexity and diversity of the problems. The inter-

activity of man and machine introduces a characteristic

cybernetic loop which enhances the technical and techno-

logical processes and results considerably, but lacks envi-

ronmental, social, and global components.

The introduction of the Man–Machine–Environment

System Engineering (MMESE) paradigm opened up a new

perspective and included environmental feedback regard-

ing the design and management of engineering projects.

MMESE primarily focuses on the relationship between

man, machine and the environment, and looks for an

optimum from safety, high efficiency and economy

standpoints: ‘‘man’’ referring to working people as the

subject in the workplace, e.g., operators, decision-makers;

‘‘machine’’ being the general name for any object con-

trolled by man, e.g., tools, machinery, computers, systems

and technologies; and the ‘‘environment’’ describing the
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specific working conditions under which man and machine

interact, e.g., temperature, noise, vibration, hazardous

issues, etc. (Long and Dhillon 2016). Although the pro-

posed approach represents a step further in the area of

Sustainability Science (Saito et al. 2017), it only focuses on

the local project issues, such as incorporating the potential

risks in local environments to the project decision-making

process and monitoring those conditions that may, for

example, endanger men, destroy equipment, or degrade the

environment itself (Xiaoyan and Zhongpeng 2014).

On a global scale, however, the construction industry’s

concern has leaned lately against improving the social,

economic and environmental indicators of sustainability.

Studies of Life Cycle Assessment (LCA) contribute to the

optimization of these aspects, from the extraction of raw

materials to the final disposal of waste building materials

(Ortiz et al. 2009). LCA is based on the long-term moni-

toring of all activities on construction sites in particular. By

analyzing the large datasets collected from various projects

in different places and under different conditions, the main

factors that jeopardize sustainability can be extracted and,

consequently, they can be properly handled over time in

subsequent projects elsewhere. This can only be achieved

through a knowledge exchange in a participatory trans-

disciplinary approach (Westberg and Polk 2016).

This paper focuses on a transdisciplinary approach that

orchestrates the domains of project management, building

information modeling, building construction based on a

shared building information model and construction

schedule, and knowledge engineering facilitated through

the new ICT framework. The framework upgrades the

ideas of MMESE and was initially verified within a field

experiment on a construction site where the domains’ big

data (site images) were automatically collected and pro-

cessed. The big data collected are limited to images of the

externally visible building elements. Our approach includes

applied research with science–practice relationships. In

Sect. 2, a methodology and a new framework for sustain-

able management of big visual data is described, Sect. 3

deals with experiments and results, while Sect. 4 discusses

the proposed approach, from the sustainability point of

view in particular, and concludes the paper with recom-

mendations for sustainable management of construction

site big data.

Methodology for sustainable management
of construction site big visual data

A quick reflection on today’s computer-aided technologies

will show that individual IT approaches involved in the

cybernetics man–machine paradigm cannot meet the

requirements of sustainability. The MMESE context

circumvents this deficiency by deploying a wider spectrum

of computer technologies being connected and integrated

into continuous development with respect to local envi-

ronmental parameters. This propels a broad interdisci-

plinary interaction, even if just the technology and

engineering areas are considered. Take, for example,

information systems, databases, data mining, which on one

hand manage today’s enormous amounts of data, and

imaging technologies, pattern recognition, computer

vision, computer graphics, computer communications, and

self-learning systems, that, on the other hand, process the

data and turn them into information.

A single construction site perspective is not enough for

the introduction of a sustainable framework. The con-

struction site, where designers, architects, investors,

builders, electrical and mechanical engineers, informatics

engineers and environmentalists meet, is a component in a

much more complex system of living environment, social

development and entrepreneurial engagement. They con-

tribute to the framework that implies a sequence from the

off-site BIM 4D model to the actual onsite construction

works, where monitoring and consequential corrections of

the construction works yield big datasets. Over time, a

wide range of data is collected from several different

construction sites and construction projects, including vital

information on the success and effectiveness of the

implementation (technical, financial, environmental, sus-

tainability, etc.). This way, an increasingly more efficient

knowledge base can grow, which enables the following

projects to be launched more optimally and implemented

more efficiently. Not only the experience of individual

people counts, but also the digital knowledge assets pro-

vided by computers can be incorporated into the validation

of decisions.

It is important to build on past knowledge, which

today’s computer technology can store successfully and use

for better decision-making in the future. Specifically, we

can talk about growing knowledge bases that contain the

knowledge, performance and effects of construction pro-

jects, such as BIM models, actual situations and comple-

mentary information, which are crucial when aiming at

sustainability that can be added over time, not only during

construction, but also later during the use and maintenance

of facilities.

Taking into account all of the important issues men-

tioned above, we derived a new sustainable framework

based on big data that accompany the life cycles of engi-

neering and construction projects. Experimental setups and

protocols will be exemplified in the next section.

The core of the proposed framework performs data

acquisition. The most important is the visual information

captured in videos with lower resolution and time-lapse

photography with higher resolution. Supplementary data
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are provided by different sensors that measure the local

environment parameters on the construction site, such as

temperature, humidity, wind speed, and noise. Videos and

images need much more computer resources than sensory

data when stored, transferred, and processed. It would be

difficult to install suitable computer performance on a

construction site for several reasons, mostly due to the lack

of clean, air-conditioned rooms, protection, security, and

difficult maintenance. At the same time, online data

transferring with wide bandwidth links, e.g., optical

cabling, is a rare commodity on construction sites. The

solution we propose is dedicated computer hardware that

integrates enough local storage to save acquired data dur-

ing a required time interval, say one working day. The

device is connected to a mobile network to upload data to a

powerful network server. Even if the uplink is interrupted

due to an inferior quality of communication signals,

today’s performances can cover data transfers during less

busy periods if a single data (visual and sensory) stream is

sent through a single link.

Although low-cost high-resolution cameras, e.g., GoPro

(Park et al. 2017) may be used in the place of the imaging

device described, we decided differently for the reasons

explained in the Discussion section. We designed and

constructed a special recording unit (RU) whose software

supports the following main properties and tasks (Zazula

et al. 2013):

• A general-purpose portable computer equipped with a

large data repository, input facilities for analogue and

digital video and image acquisition, smart sensor

connections, and an output GSM module; it collects,

stores locally, and uploads the data periodically from a

construction site;

• A photographic device adapted for streaming video and

acquiring simultaneous time-lapse full-resolution

images;

• Hermetic housing with special cooling systems to

protect the electronic equipment and guarantee opera-

tion even in aggravated circumstances.

Data from one or several RUs are transferred to and

permanently stored on a network server. The server site is

divided into three layers: application, application server,

and data layer (Fig. 1). The server runs the applications

that extract information, help decision-making, and support

sustainable improvement of subsequent projects, all based

on databases in the data layer.

The RUs periodically push data to the site controller,

which stores them in a data repository. A data processor

pulls data from the data repository for transformation,

validation and data cleansing before writing the data onto

an intermediate data repository. A data reasoner leverages

implicit knowledge from the intermediate data repository

using a reasoner relying on a domain knowledge model.

We began testing the proposed approach with a devel-

opment of modules based on computer-vision algorithms to

properly visualize the scenes, recognize moving subjects

and their trajectories, fuse several images of the same

scene, reconstruct the as-built objects and compare them

with the as-planned information in BIM. The next section

introduces two construction sites where we verified the

implementation of the framework illustrated by Fig. 1.

Experiments and results

Two field experiments were involved in the initial verifi-

cation of the methodology proposed in Sect. 2. The first

construction site of a lookout tower called Vinarium was

remotely monitored throughout its building phase. Vinar-

ium’s BIM model (Tibaut et al. 2015) was prepared in the

design phase and a detail of it is outlined in the right side

panel of Fig. 2. The BIM model resides in the knowledge

base of the proposed framework (see Fig. 1). The corre-

sponding situation on the construction site is depicted in

the left side panel of Fig. 2. It is captured by a RU and is

stored in the data repository of the proposed framework in

Fig. 1. Figure 3 is also an example of an as-built project

situation (left panel) and the corresponding as-planned

BIM visualization (right panel) showing the Vinarium

tower in its final form. The second construction site, the

Medical faculty, was used to experiment with the recog-

nition of people, which contributes to the sustainable col-

lection of big visual data (see Fig. 6 below).

The Vinarium lookout tower experimental setup

The Vinarium tower was built as a reinforced concrete

building with steelwork consisting of an assembly of

structural steel columns.

A single RU was initially planned at a fixed distance

from the construction site. We expected that manually

increasing the elevation of the RU would be done during

with the tower’s growth. But, this would have two draw-

backs: (a) due to the RU’s viewing angle, the whole

building would not be seen during the later construction

phases; and (b) by only having one-view images of the

construction site available, a 3D reconstruction of the

building elements could only be inferred from comparisons

with the BIM-induced information. Therefore, we installed

two RUs at the same distance of approximately 30 m from

the tower (a RU is depicted in Fig. 4). The elevation of the

two RUs was different to cover the upper and lower part of

the facility independently.
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Each RU incorporated a Zoltac portable computer with a

1,8 GHz dual-core processor, 3 G bytes of memory, and

the 32-bit Lubuntu 12.04 operating system. A Nikon

COOLPIX L120 camera was controlled by a special

hardware controller we developed to force constant low-

resolution (640 9 480 pixels) video streams and

simultaneous time-lapse high-resolution (4320 9 3240

pixels) images (Zazula et al. 2013). A GSM modem was

connected to the computer to establish an uplink with a

powerful data server.

The separate video streams and time-lapse still images

were buffered locally on the RUs’ storage. RUs uploaded

Fig. 1 Technical framework for management of construction site big visual data

Fig. 2 Construction works

(construction site ‘‘Lookout

tower Vinarium’’, left)

monitoring with the as-planned

BIM model (right)

Fig. 3 The as-built lookout

tower Vinarium (left) and

corresponding as-planned BIM

model (right)
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the recorded images via a GSM link to the site controller.

When the line was too busy, or even broken, the data

transfer was delayed and completed during more relaxed

periods, such as overnight. The images were then stored in

the raw image repository (Data Repository in Fig. 1). Low-

resolution videos were tentatively processed by our track-

ing software, while pairs of time-lapse high-resolution still

images were being taken in a synchronous way by the two

RUs and were merged by a pre-processor on the server first

(saved by the data processor to the intermediate data

repository in the proposed framework, Fig. 1). The streams

of merged images are accessible through a web application

(monitoring, application layer) as depicted in Fig. 5. In our

experiment, 52,852 pairs of time-lapse still images

(170 GB of storage) were taken in regular time intervals of

5 min during the 199 project days. This was the input to

our computer-vision processing algorithms as explained in

the next subsection.

Processing of onsite images

As two onsite RUs were used in our experiment, the first

processing step was merging pairs of images uploaded to

the Data Repository and storing the resulting image in the

intermediate data repository, as denoted in Fig. 1. We

applied the image stitching pipeline algorithm, which was

implemented in the OpenCV (Open Source Computer

Vision Library, https://opencv.org) and derives from the

well-known algorithm for automatic panoramic image

stitching using invariant features (Brown and Lowe 2007).

The algorithm takes the two images from the two corre-

sponding RUs at the same time and stitches them into a

single resulting image with a given height (1500).

Videos and sequences of time-lapse images were further

processed by computer-vision algorithms. They are divided

Fig. 4 Recording unit as mounted at the construction site

Fig. 5 Web application for managing construction site big visual data
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in two groups: (a) the scanning of video streams extracts

information on detected objects, their motion and structure;

(b) the analysis of full-resolution time-lapse images

enhances the 3D reconstruction of the objects. The algo-

rithms belong to the data processor that reads images from

the data repository to store the resulting outputs onto the

intermediate data repository, as proposed by the framework

in Fig. 1.

Video analysis at the Maribor Medical Faculty
construction site

The resolution of the images in the video streams is kept

fairly low due to a massive transfer that must be supported

by the communication lines from construction sites to the

data server. In our experiments, the VGA resolution was

selected. In the starting phase, our video analysis took

advantage of simple approaches to detect motion in images

(Kolarič 2013). The problem of moving light sources or

reflections may decrease motion detection considerably.

Therefore, we pre-processed videos using homomorphic

filters first to eliminate illumination changes (a filtered

image is depicted in Fig. 6). Image intensity differences in

blocks of subsequent images point out the regions of

motion. Due to the input noise in images, the images of

differences may also be very noisy. However, detection

peaks belong to moving objects. We deployed Gaussian

thresholding to construct the regions of moving objects,

and they took part in the construction of trajectories for

moving objects throughout the intervals of visibility in the

videos.

An additional task of object detection was the recogni-

tion of people. The regulations on public access to personal

information forbid spreading video or image material

containing humans without their formal consent. It would

be very impractical to expect construction-site workers to

sign formal consents concerning visual information

obtained of them while present on a construction site. The

way we solved this problem involves the fact that con-

struction-site workers move a lot of the time. Indeed, there

are other moving objects besides humans, but by masking

all of them, we are able to hide human forms. An example

from the construction site is given in Fig. 6.

Our simple approach to track the moving objects did not

entirely fulfill the expectations on reliability and accuracy.

The reasons and possible upgrades are discussed in the

Discussion section. We compared the algorithm-based

detections with human observations statistically. Sensitiv-

ity (Se) and precision (Pr) were computed as follows:

Se ¼ TP

TPþ FN

Pr ¼ TP

TPþ FP

where TP stands for true positive, i.e., all correct detec-

tions, FN for false negative for all missed moving objects,

and FP for false positive for all detections of non-moving

objects (erroneous image regions). The overall sensitivity

and precision yielded 0.89 and 0.61, respectively.

Time-lapse, high-resolution images of as-built
for comparison with as-planned in BIM

The two RUs mounted on the Vinarium construction site

covered the same parts of the scene from different angles.

Multiple views obtained this way could support 3D scene

reconstruction by well-known structure from motion

algorithms (Ponce and Forsyth 2012). However, we tested

a different approach that combines onsite images and the

views on BIM-generated models from different camera

poses, i.e.. its position and orientation.

The zoom of the cameras in our RUs are not allowed to

change. This way, cameras can be calibrated in the lab

environment before they are taken to the construction site.

Also, radial distortions were eliminated. A further simpli-

fication is possible due to the fact that RUs with cameras

are static and remain in the same place on the construction

site throughout the building project. Thus, the pose of the

cameras in regard to the construction scene does not

change and can be determined once the RUs are mounted.

Periodic verification of the obtained pose is beneficial

anyway. When the cameras’ poses are known, their rela-

tionship with the BIM-generated models is based on a

coarse-to-fine alignment of the as-built and as-planned

views.

The initial coarse position and orientation of the RUs

was obtained manually. Then, we placed the initial BIM-

generated model, as obtained from the knowledge base of
Fig. 6 An example of recognizing and masking the moving objects

on a construction site, some of them being workers
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the proposed framework in Fig. 1, according to the estab-

lished cameras’ positions and virtually projected its com-

ponents onto the cameras’ planes. The coordinates of all of

the visible corners were included in a cloud of model

points. Another cloud of points stems from the corre-

sponding real images as obtained from the intermediate

data repository of the proposed framework in Fig. 1,

characterizing the corner points, too. We detected those by

the Harris corner detector. By selecting the corresponding

points in both point clouds, a coarse initial alignment

related to the real-world images to the BIM-generated

models, and vice versa (Lin and Fang 2013). The infor-

mation is saved in the intermediate data repository of the

proposed framework in Fig. 1.

For the given images (Fig. 7), a finer matching with the

model was achieved by edge detection and aligning the

building components as described in (Čuš-Babič et al.

2018). These are ready in the intermediate data repository

for the as-built, real-world images and in the knowledge

base for the 4D BIM-planned model as proposed by the

framework in Fig. 1. The ratio of overlapping edges of

visible components depends on image quality and the

success of the detection applied, but it primarily indicates

the existence of as-built components in regard to the BIM-

planned components (comparison done between the situa-

tions synchronized in time by the Data Reasoner of the

proposed framework in Fig. 1). The overall overlap of the

edges equal 66.7% in our case. By setting the threshold for

an edge in as-built images to be recognized as planned at

22%, an overall recognition rate of as-planned components

yielded 97%.

We discuss how the described approach can be upgraded

and how it can contribute to the sustainability in the next

section.

Discussion and conclusions

From the broader systems approach perspective, our paper

emphasizes the interdependence of different discipline

fields embracing AECOO and human activities. We want

to associate natural sciences with social, economic and

humanistic influences. New innovative approaches in

construction related to all the disciplines and fields of

computer science, informatics, etc., are the focus of our

research. Economic aspects are implicitly related, from the

point of view of improving the quality of construction

projects with optimized costs and long-term effects on

local and global economies. It is less obvious that systems

that collect and record all relevant big data from previous

projects in a form that enables fast hardware browsing,

connectivity and learning provide the basis for sociological

studies and social progress for the benefit of an individual.

Above all, it is important to emphasize the reduction of

adverse environmental impacts and the environmental

component of the technological framework system that we

proposed. Human-friendly technical solutions, technolo-

gies and the environment are more humane and, in fact,

direct individuals from a day-to-day struggle for survival to

the principles of humanity.

The approach we followed in our research and devel-

opment is based on big datasets collected by the RUs on

Fig. 7 Construction site image

edge detection overlapped with

the transparent wire-frame

geometry from the as-planned

BIM model: the red edges are

detected in as-built images,

while the green edges belong to

the as-planned BIM-related

information, both synchronized

in time
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various construction sites in various circumstances. As

explained, the automated acquisition of images and envi-

ronmental signals was achieved by the design of our own

RUs. The initial experiments focused on imaging only, but

the hardware and system software are ready to support a

variety of additional sensors connected in construction-site

piconets.

An explanation is also necessary concerning the choice

of the cameras in RUs. Low-cost quality sports cameras are

available, such as the GoPro (Park et al. 2017), which

support fast video recording and time-lapse high-resolution

imaging as well. Indeed, recorded data can be transferred to

another device in close proximity, but the stand-alone

operation is rather limited by the amount of data. This

means that a more powerful computer must support the

camera’s operation. Even if this support could be offered

by today’s smartphones, the needed amount of local data

storage in case of saturated uplinks exceeds the phones’

capabilities. A decision in favor of a portable computer

seemed logical, and since we had a patented setup with a

photographic device instead of a video camera, we

deployed it in our experiments.

We owe additional clarification of the algorithm for

tracking the moving objects. The one we applied is rather

simple, which was dictated by our wish to run it in real

time. It showed considerably low precision; therefore, a

better solution was looked for. Fast and accurate object

recognition software has been reported to be on smart-

phones lately, which has a remarkable recognition rate of

various objects and scenes on single still images. The

algorithm is based on deep-learning neural networks (Zhu

et al. 2017). To train the network properly, a huge amount

of annotated referential images of all possible objects must

be available. Opposed to the training databases that have

been built for everyday human surroundings, including

persons, animals, vehicles, etc., no similar database on

building-construction components and construction-site

elements is available to the best of our knowledge. Nev-

ertheless, our further research will involve the recognition

and tracking of objects based on deep-learning approaches.

This can lead to more reliable information on material

flows, personal engagement and interaction, the utilization

of machines, and activities that may cause environmental

danger.

Once all project-related data are gathered into the

intermediate data repository Fig. 1, the data reasoner

compares it to the information obtained from the knowl-

edge database, which includes BIM 4D models too. Not

only are the discrepancies between the as-planned and the

as-built detected, but subsequent decision-making is also

based on the stored conditions for sustainable construction.

Any technological and technical solution is critically

evaluated according to sustainability. If the sustainability

was jeopardized, a change of solution would be suggested.

In addition to that, our future research will adopt the

Earned Value Management (EVM) approach (Project

Management Institute 2013) that drives the systematic

project management process by being based on the com-

parison of work performed and work planned based on the

as-built visual big data and the BIM 4D from our system,

respectively. Using the input data, the following EVM

metrics (performance indicators) can be calculated at any

given time in the project:

• Budgeted cost for work scheduled (BCWS) is value of

the work planned to be accomplished (planned value),

• budgeted cost for work performed (BCWP) is value of

the work accomplished (earned value),

• actual cost of work performed (ACWP) is cost of the

work accomplished (actual cost).

Our approach has impact on the economic, social and

environmental sustainability factors for the broader con-

struction site context. Contribution to economic sustain-

ability starts with the consumption of the monitoring

results from our system (Fig. 1), which gives automated

input for calculation of the EVM status indicators:

• % schedule = BCWS�100/total budget at completion,

• % complete = BCWP�100/total budget at completion,

• % spent = ACWP�100/total budget at completion.

If EVM metrics like cost efficiency (= BCWP/ACWP)

and schedule efficiency (= BCWP/BCWS) have favorable

positive values, this means that the estimate of total cost at

completion meets the total allocated project budget.

Direct benefits of such agile construction project man-

agement are reduced management costs, project running

costs, maintenance costs and better productivity. Indirect

benefits are gained through improved satisfaction of clients

(residents, tenants) and better image and reputation of

construction industry, which enables repeat business. Fas-

ter response to unplanned events and improvement of client

satisfaction has an economic impact, but also improve

social and environmental performance.

Generally, social impacts are difficult to measure but

they usually go along with economic benefits. Filtered

images from the big visual dataset as collected with our

system impact the social sustainability, because they can be

used for public presentation of building progress with the

aim to engage local people and to develop public trust. For

a construction company, this can minimize trouble and

maximize support during construction. Construction pro-

ject disturbances cannot be always avoided and that is

where communication to the surrounding community and

businesses complemented with the up-to-date visual

information from construction site can minimize negative
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impact. Use of the video analysis for identification of

moving objects on construction site can anonymously

identify movements of workers, equipment and supplies.

As for the movement of workers, analysis of their move-

ment trajectories can improve health and safety standards

on the construction site and optimize workers’ efforts in the

workplace. The right working environment is also the basis

for good relationships, which maximizes satisfaction and

productivity.

The approach and the system we propose also impact

some of the environmental sustainability factors related to

the environmental performance, which includes:

• Design-phase considerations related to the embodied

energy in materials and components for the building.

Environmental evaluation data is obtained from the

during the early construction project phases and is

particularly accurate for the off-site construction of

building component, which are then transported and

assembled on the construction site. The information can

then be stored in the BIM model (Antón and Dı́az

2014). If available, this information can implicitly be

accessible with our system through the available BIM

model.

• Air (dust and fumes) and noise pollution measurement

on the construction site can be performed with algo-

rithms used for dust detection and additional noise level

sensors that can be integrated in RUs (Fig. 4). The data

can then be compared with the thresholds for health-

harmful pollution levels stored in the knowledge base

(Fig. 1) and trigger air quality alert to the site manager.

• Vehicle movements recorded by the RUs (Fig. 4) can

be used to identify vehicles and relate them to the

supply chain tasks modeled in the BIM 4D model (e.g.,

off-site constructed modular building components

minimize waste on construction site).

• Monitoring of waste emerging from the construction

site could partly be performed with our system if

additional detection algorithms would be developed

for identification of waste sources. This upgrade

would assist site manager in estimation of the volume

of waste leaving the construction site to a certified

disposal site.

The importance of properly analyzing big visual data

obtained from construction sites has been shown by (Han

and Golparvar-Fard 2017). When the deviations of the as-

built from the as-planned are at least known on a daily

basis, in many cases, practically in real time, the project

management can decide promptly and with regard to the

sustainability requirements. A variety of situations may

appear, some supported by previously known solutions

saved in a general knowledge base (according to the

proposed framework in Fig. 1), some not yet met and have

to be decided on the spot.

All decisions and their semantics upgrade the knowl-

edge base. It becomes a source of valuable information for

Sustainability Science after a project is finished. We

believe that a lot of important information can be made

public from such project databases, although disclosure

restrictions are imposed by the participating companies.

We are going to develop this idea along with the future

construction project based on our RUs and supporting

software.

The research will have an impact on the follow-up

stages of construction projects coming after new con-

struction, like refurbishment, operation and demolition,

because there will be less deviation from the as-planned

projects. Better construction project monitoring will allow

for the realization of the planned sustainability criteria of

the construction projects, like the sustainability assessment

method, environmental assessment rating, etc.

As a beneficial side effect of our project, the Vinarium

BIM model could also be used for other potentially inter-

ested groups—for instance, to create a digital experience

for visitors.

Our research outcomes attracted the interest of both

construction practitioners (i.e., investors, consultants) and

transdisciplinary research domains (i.e., system integra-

tion, BIM, computer vision, big data management,

knowledge management, construction scheduling, sus-

tainability in building lifecycle). This undoubtedly calls

for further applied research, and the participation of all

those stakeholders is crucial for developing the idea of

managing big visual data as presented here towards the

construction projects entirely supported by the sustain-

ability science.
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Čuš-Babič N, Podbreznik P, Rebolj D, Tibaut A (2018) Image and 4D

model-based automated construction activity tracking—4D-ACT

system real case study

Eastman C, Teicholz P, Sacks R, Liston K (2011) BIM handbook: a

guide to building information modeling for owners, managers,

designers, engineers and contractors

Golparvar-Fard M, Heydarian A, Niebles JC (2013) Vision-based

action recognition of earthmoving equipment using spatio-

temporal features and support vector machine classifiers. Adv

Eng Inf 27:652–663

Han KK, Golparvar-Fard M (2017) Potential of big visual data and

building information modeling for construction performance

analytics: an exploratory study. Autom Constr 73:184–198.

https://doi.org/10.1016/j.autcon.2016.11.004

Jiang H, Lin P, Qiang M, Fan Q (2015) A labor consumption

measurement system based on real-time tracking technology for

dam construction site. Autom Constr 52:1–15

Keng TC, Razak NA (2014) Case studies on the safety management at

construction site. J Sustain Sci Manag 9:90–108

Kim C, Kim B, Kim H (2013a) 4D CAD model updating using image

processing-based construction progress monitoring. Autom

Constr. https://doi.org/10.1016/j.autcon.2013.03.005

Kim C, Kim C, Son H (2013b) Automated construction progress

measurement using a 4D building information model and 3D

data. Autom Constr 31:75–82. https://doi.org/10.1016/j.autcon.

2012.11.041
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