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ABSTRACT

In quantum computing, the computation is achieved by linear operators in
or  between  Hilbert  spaces.  In  this  work,  we  explore  a  new  computation
scheme, in which the linear operators in quantum computing are replaced
by  (higher)  functors  between  two  (higher)  categories.  If  from  Turing
computing to quantum computing is the first quantization of computation,
then this new scheme can be viewed as the second quantization of compu-
tation. The fundamental problem in realizing this idea is how to realize a
(higher)  functor  physically.  We  provide  a  theoretical  idea  of  realizing
(higher) functors physically based on the physics of topological orders.

Keywords  quantum  computation, categorical  computation, topological
order

 1   Classical and quantum computation

n

Classical  computation  or  Turing  computation  can  be
summarized mathematically as the computation of func-
tions between sets. More precisely, for any positive integers
, and

a function f : {0, 1}n → {0, 1}n,

S

f

S

we design a finite set of gates , each of which is also a
function  between  two  sets,  such  that  can  be  realized
by a circuit constructed from the gates in . The classical
computer is physically possible because we can realize or
simulate a function between two sets physically through
a circuit consisting of a family of more elementary physi-

cally realizable functions (i.e., gates).

n

The quantum computation can be summarized mathe-
matically  as  the  computation  of  linear  maps  (or  linear
operators).  More  precisely,  for  any  positive  integers ,
and

a linear map F : (C2)⊗n → (C2)⊗n,

F

{0, 1}
C2

|0⟩ |1⟩ {0, 1}
|0⟩ |1⟩ |a⟩

we  design  a  finite  set  of  gates,  each  of  which  is  also  a
linear  map  between  two  finite  dimensional  Hilbert
spaces,  such  that  can  be  physically  realized  by  a
quantum circuit of gates. A quantum computer is physically
possible because we can physically realize linear operators
in Hilbert spaces. A quantum computation is a physical
way  of  realizing  parallel  computation  via  quantum
mechanics.  The  idea  is  to  replace  the  bit  by  a
qubit ,  which  can  be  viewed  as  a  linear  span  of  two
states  and .  Different  from ,  the  states  in  a
qubit are much more than  and . A generic state 
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is a superposition of them, i.e.,

|a⟩ = a0|0⟩+ a1|1⟩ =
(

a0

a1

)
, ∀a1, a2 ∈ C.

|a⟩ |0⟩
|1⟩

|0⟩ |1⟩ F : C2 → C2

It  means  that  can  be  in  either  the  state  or  the
state  with potentially non-trivial  probabilities.  Using

 and , a linear map  can be expressed as
a matrix.

F :

(
a0

a1

)
7→

(
F00 F01

F10 F11

)(
a0

a1

)

=

(
F00a0 + F01a1

F10a0 + F11a1

)
.

F

F (|0⟩) F (|1⟩)
This linear operator  that realizes the parallel compu-
tation of both  and  at the same time can be
viewed  as  a  probabilistic  circuit  (or  quantum  circuit),
which can be simulated by a family of more elementary
linear operators called quantum gates.

 2   The idea of categorification

The  idea  of  categorification  was  originated  from  the
second quantization in physics. Second quantization has
a long history. It is a way to obtain higher dimensional
quantum field theories (QFT) from quantum mechanics,
which can also be viewed as a 0+1D (spacetime dimen-
sion) QFT. In the early 90’s of the 20th century, Crain
and  Frenkel  introduced  the  idea  of  categorification
aiming  at  constructing  higher  dimensional  QFTs  [1].
Roughly speaking, the categorification can be viewed as
a mathematical  formulation of  the second quantization.
The  process  of  categorification  lifts  lower  categorical
structures  to  higher  categorical  structures.  The  idea  of
categorification  that  we  need  in  this  work  is  rather
simple and can be summarized by the following diagram:
 

 
 

where we use “c” to represent the process of categorifica-
tion.

K0

K0

Remark 2.0.1. The  reversed  process  is  called  de-cate-
gorification and can be realized by computing a generalized
notion of “dimension” also called -group in mathematics
(see [2] for a recent review). For example, the -group
of a 2-category is a 1-category, that of a 1-category is a
vector space, and that of a vector space is its dimension
(i.e., a number).　　　　　　　　　　　　　　　　　♢

n

n

Therefore, we see that if we categorify the usual quantum
computation,  we  should  obtain  the  computation  of -
functors  between -categories.  This  new  computation

n

can be called a second quantized computation or a cate-
gorified  quantum  computation,  or  perhaps,  even  better
an -categorical computation.

1

C

Now we explain why a 1-categorical computation can
be viewed as a parallel quantum computation. We recall
the  definition  of  a -category.  For  the  convenience  of
physical applications, 1-categories and 1-functors are all
assumed to be -linear.

CDefinition 2.0.2. A 1-category  consists of

Ob(C) = {a, b, c, · · · }
a, b, c ∈ C

1) a set of objects ;  (We often use
 for simplicity.)

homC(a, b) C
(a, b) a, b ∈ C f ∈ homC(a, b)

a b

a
f−→ b f : a → b

2) a vector space  over  for each orders pair
 and ; (a vector  is called a

morphism  from  to  and  is  often  denoted  by
 or ).

1a ∈ homC(a, a)3) a distinguished vector ;
C ◦ a, b, c ∈ C4) a -linear composition map  for :

homC(b, c)⊗C homC(a, b)
◦−→ homC(a, c)

g ⊗C f 7→ g ◦ f ;

satisfying the following conditions:

(h ◦ g) ◦ f = h ◦ (g ◦ f) a
f−→ b

g−→ c
h−→ d1)  for all ;

f ◦ 1a = f 1b ◦ f = f f : a → b2)  and  for all .　　　　　■

If  readers  encounter  the  notion  of  a  category  for  the
first  time,  it  is  useful  to  keep  in  mind  the  following
picture of the basic structures in a category.

(2.0.1)

Example 2.0.3. We provide three most useful examples
of 1-categories.

Vec
C a, b, c, · · ·

homVec(a, b)

a b

1a : a → a

1)  is  the  1-category  of  finite  dimensional  vector
spaces over . Its objects  are finite dimen-
sional  vector  spaces,  and  are  precisely
the space of  all  the linear maps from  to .  The
composition  maps  are  the  usual  composition  of
linear  maps,  and the identity morphism 
is the identity linear map.
Rep(G)

G

G

G

Vec

2)  is the 1-category of finite dimensional repre-
sentations  of  a  finite  group .  More  precisely,  its
objects are finite dimensional representations of 
and  1-morphisms  are  linear  maps  that  intertwine
the -actions.  The  compositions  and  the  identity
morphisms are the same as those in .
VecG G

G C
|G|

Vec VecG = ⊕g∈GVecg

3)  is  the  1-category  of  finite  dimensional -
graded vector spaces for a finite group . As a -
linear 1-category, it is a direct sum of -copies of

, i.e., .

n CRemark  2.0.4. An -category  can  be  described  by
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homC(a, b) (n− 1)

◦ (n− 1)

the same diagram in (2.0.1)  except that the hom space
 now  becomes  an -category  and  the

composition map  now becomes an -functor  (see
Remark 2.0.8).　　　　　　　　　　　　　　　　　　♢

F : C → DDefinition 2.0.5. A 1-functor  between two 1-
categories consists of

F : Ob(C) → Ob(D)1)  a  map  (we  slightly  abuse  the
notation here);

Fa,b : homC(a, b) → homD(F(a),F(b))

a, b ∈ C

2) a linear map  for
all ;

satisfying the following conditions:

Fa,a(1a) = 1F(a) a ∈ C1) , for all ;
Fb,c(g) ◦Fa,b(f) = Fa,c(g ◦ f) f ∈ homC(a, b),

g ∈ homC(b, c)

2)   for  all 
.　　　　　　　　　　　　　　　　■

F

∀a, b, c ∈ C

We provide an intuitive picture of such a 1-functor 
by the following diagram: ,

(2.0.2)

F

Fa,b a, b ∈ C

Then one can see immediately that if we can physically
realize  the  1-functor ,  it  automatically  realizes  all
linear maps  for all  at the same time. In this
sense,  a  1-functor  can be viewed as  a  parallel  quantum
computing.

V ∈ VecExample  2.0.6. For  a  given  vector  space ,  we
can define two 1-functors as follows:

−⊗ V : Vec → Vec a 7→ a⊗ V a ∈ Vec
(a

f−→ b) 7→ (a⊗ V
f⊗1V−−−−→ b⊗ V )

f

1)  by  for an object 
and  by  for  a
morphism .
−⊕ V : Vec → Vec a 7→ a⊕ V a ∈ Vec

(a
f−→ b) 7→ (a⊕ V

f⊕1V−−−−→ b⊕ V )

f

2)  by  for an object 
and  by  for  a
morphism .　　　　　　　　　　　　　　　　♦

ϕ : F → G

F,G : C → D

{ϕa : F(a) → G(a)}a∈C ϕb ◦F(f) =

G(f) ◦ ϕa f ∈ homC(a, b)

CAT

Remark  2.0.7. A  natural  transformation 
between  two  1-functors  is  a  family  of
morphisms  such  that 

 for all morphism . All 1-categories
(as  objects),  1-functors  (as  1-morphisms)  and  natural
transformations  (as  2-morphisms)  form  a  2-category
denoted by .　　　　　　　　　　　　　　　　　♢

n n

F : C → D

homC(a, b) (n− 1) Fa,b

(n− 1) n

(n− 1) Fa,b a, b ∈ Ob(C)
n

(n− 1)

Remark 2.0.8. An -functor between two -categories
 can be illustrated by the same diagram (2.0.2)

except that  is now an -category and 
is  now  an -functor.  Then  one  can  see  that  an -
functor realizes all -functors  for all 
at  the  same  time.  In  this  sense,  an -functor  can  be
viewed as a parallel -categorical computing.　　　♢

A  natural  categorification  of  the  one-dimensional

C Vec
n Cn

Vecn n Vec
Vecn

⊗
⊠

Vecm ⊠ Vecn = Vecmn

vector  space  is  and  a  natural  categorification  of
the -dimensional  vector  space  is  the  product  (or
equivalently, the direct sum)  of  copies of . A 1-
category  in  the  form  is  referred  to  as  a  finite
semisimple 1-category or separable 1-category. Then the
categorification  of  tensor  product  of  vector  spaces  is
Deligne’s  tensor  product  of  1-categories,  i.e.,

.  A 1-categorical  computation is
therefore defined to be

a 1-functor F : (Vec2)⊠n → (Vec2)⊠n,

Vec2where  is better referred to as a 1-categorical bit (or
a 1-cabit).

Vec2

n n nVec2 nVec
n n

Vec nVec = Σn−1Vec =
ΣnC n

n

n nVec

Remark 2.0.9. A direct  generalization of  1-categorical
computation  is  to  replace  the  1-categorical  bit  by
an -categorical bit (or an -cabit) , where  is
the -category  of -vector  spaces  and  can  be  obtained
from  by  repeated  delooping  (i.e., 

) [3]. In general, there are more choices for -categorical
bits. For example, an -categorical bit can be chosen to
be  a  separable -category,  which  is  different  from 
in general [4].　　　　　　　　　　　　　　　　　　♢

 3   Physical realization of a 1-functor

n

In this section, we explain that a theoretical idea of realizing
a  1-functor  physically  by  the  physics  of  topological
orders  (see  [5]  for  a  review  of  topological  orders  and
references therein). The first topological orders that were
discovered in physics labs are in 2d (spatial  dimension)
fractional  quantum  Hall  systems.  Since  this  work  only
discusses  a  theoretical  idea,  we  assume  that  physical
materials  that  realize  topological  orders  are  abundant.
Throughout this work, d represents the spatial dimen-
sion.

(X, x) X

x

Consider  the  physical  configuration  of  topological
orders depicted in the first picture in Fig. 1. It depicts a
(potentially  unstable)  anomaly-free  1d  (spatial  dimen-
sion) topological order, together with a 0d boundary. By
the  mathematical  theory  of  topological  order  (see  for
example  [6]),  the  0d  boundary  can  be  mathematically
described  by  a  pair ,  where  is  a  separable  1-
category (i.e.,  a  finite  semisimple 1-category)1) and  is

 
F : X → XFig. 1  The physical realization of a 1-functor .

X1)More precisely,  should be a unitary finite semisimple 1-category.
 We hide the unitarity requirement for convenience because the
 unitarity is not essential in the understanding of our ideas.
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X x

X

an object in . Physically, this  is a particle-like topo-
logical defect located at the boundary, and 1-morphisms
in  can be viewed as instantons.

X X

Fun(X,X) F,G Fun(X,X)

F

x F(x)

F

According  to  the  boundary-bulk  relation  [6, 7],  the
categorical  description  of  the  bulk  is  the  center  of  that
of  a  boundary.  As  a  consequence,  the  1d  topological
order  in  the  first  picture  in Fig.  1 can be  described by
the  1-category  of  1-functors  from  to ,  denoted  by

.  Objects  in  are  particle-like
topological  defects  in  this  1d  topological  order.  The
fusion of two such defects corresponds to the composition
of two 1-functors.  Given such a particle-like defect,  say

, if we push it to the boundary, then it fuses with the
boundary particle  and change it  to  (see Fig.  1).
In other words, a 1-functor  can be realized by a creating
a particle-like defect in the 1d topological order followed
by  a  fusion  process.  Creating  a  defect  in  a  topological
order  can  be  physically  achieved  by  inserting  an  impu-
rity. The whole process can be simplified to inserting an
impurity in the neighborhood of the boundary.

X1 X2

X = X1 ⊕X2

Remark  3.0.1. In  this  way,  we  realize  any  1-functors
between two different separable 1-categories  and 
because  they  are  just  the  special  cases  when

.　　　　　　　　　　　　　　　　　　♢

Fun(X,X)

X X ̸= Vec Fun(X,X)

idX Fun(X,X)

homFun(X,X)(idX, idX) C
Fun(X,X)

All (anomaly-free) 1d topological orders can be mathe-
matically described by  for some separable 1-
category . When ,  is a multi-fusion
1-category  instead  of  a  fusion  1-category  (see  a  review
[8]). Mathematically, it means that the identity 1-functor

 is not a simple object in , or equivalently,
≄ .  Physically,  it  means  that  the

multi-fusion 1-category  describes an unstable
phase,  which  can  flow  to  a  stable  one  if  we  introduce
certain  perturbation  to  the  phase  [6].  In  this  case,  this
unstableness  demands  fine  tuning,  which  makes  the
physical realization not fault tolerant.

C

P,Q

C (X, x)

P Q C

P,Q

X

This problem can be solved by replacing the potentially
unstable  physical  configuration  depicted  in  the  first
picture in Fig. 2 by a stable higher dimensional physical
configuration as depicted in the second picture in Fig. 2.
In  this  new  configuration,  labels  an  anomaly-free  2d
topological order, and  label two 1d gapped boundaries
of ,  and  the  same  pair  is  now  realized  as  a
domain  wall  between  and .  Mathematically,  is  a
modular  tensor  1-category  [9],  and  are  fusion  1-
categories. All separable 1-category  can be realized as
a  corner  of  this  configuration  by  properly  selecting

P,C,Q

Fun(X,X)

F : X → X

(M,m) P (N, n) Q

R C (M,m),R, (N, n)

(X, x) (X,F(x))

F : X → X

M,R,N

.  The second picture  in Fig.  2 can reproduce  the
first picture by a dimensional reduction process (i.e., by
closing  the  fan).  After  the  dimensional  reduction,

 is  unstable  as  a  1d  phase,  but  before  the
dimensional  reduction,  everything  is  stable.  Then  a  1-
functor  can  be  realized  by  introducing  a  0d
domain wall  in  and a 0d wall  in , and a
1d  domain  wall  in ,  then  pushing 
down  to  the  corner  (i.e.,  squeezing  the  triangle  to  a
point) such that they fuse with  to give 
[10].  In  reality,  this  process  can  be  achieved  by  simply
inserting new materials in a highly controlled way in the
neighborhood  of  the  corner  directly.  All  1-functors

 can  be  physically  realized  in  this  way  by
properly  selecting .  We  believe  that  this  way  of
doing  computation  is  fault  tolerant  because  topological
defects are stable under the perturbation of local opera-
tors.

x,F(x) ∈ X

However, as one can see, such a “1-functor” does not
realize  any  parallel  quantum  computing  because  only
two  objects  appear  in  above  process.  It  is
not  surprising  because  a  0d  boundary  is  essentially  a
quantum  mechanics  system.  In  order  to  achieve  the
second quantization of quantum computing, we need to
consider  higher  dimensional  topological  orders.  A  more
realistic realization of 1-functor is given in the discussion
of Fig. 3 and Fig. 4 (see also Remark 4.0.4).

CAT
A {homA(a, b)}a,b∈A

Remark 3.0.2. A physical realization of 1-functor does
not demands that of 1-category as a prerequisite because
“a  physical  realization  of  1-functors” should  be  viewed
as  a  realization  of  1-morphisms  in  a  2-category  that  is
only  equivalent  to  the  2-category .  However,  the
ingredients of a 1-category , i.e.,  and
composition  maps,  do  have  physical  meanings  as  the
spaces of instantons and the fusion of instantons, respec-
tively  (see  an  expository  review  [11]).  The  space  of
instantons  can  also  be  viewed  as  the  space  of  ground
state  degeneracy  (GSD)  by  the  state-field  correspon-
dence. Unfortunately, it is not clear to us how to experi-
mentally extract or control the information of instantons
in spacetime directly. It is also not clear if it is necessary
because  categorical  computation  demands  us  to  think
about  everything,  including  information  storage  and
processing,  not  in  the  usual  set-theoretical  way  by
manipulating  instantons  but  in  a  categorical  way  by
manipulating functors. We leave this issue to the future.
　　　　　　　　　　　　 　　　　　　　　♢

 4   Higher categorical computation

n n

n = 2

Above  ideas  generalize  to  higher  categories  and  higher
functors  via  higher  dimensional  topological  orders  but
with  important  new  features.  We  first  generalize  the
discussion  in  Section  3  to -functors  between -cate-
gories, then we give more details on the  case.

 
Fig. 2  These figures illustrate the idea of fixing the unstable
problem in Fig. 1.
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n C

a, b, c, · · · homC(a, b) (n− 1)

(n− 1)

n

n F : C → D (n− 1)

Fa,b : homC(a, b) → homD(F(a),F(b))

n

(n− 1)

Roughly speaking, an -category  consists of a set of
objects ,  the  hom  space  is  an -
category, the identity 1-morphisms and the compositions
of  morphisms  (as -functors)  satisfying  more
complicated axioms (recall Remark 2.0.4). We prefer not
to give details. An -functor is defined similarly to a 1-
functor  (recall  Remark  2.0.8).  In  particular,  an
-functor  consists  of  all -functors

 at  the  same  time.
Therefore,  an -categorical  computation  can  be  viewed
as  a  parallel -categorical  computation.  The  first
major challenge for above ideas to work is to figure out
how to realize higher functors physically.

X n

x X

(X, x)
(n− 1)

n

Fun(X,X) n

n F : X → X

n

C (n+ 1)

n = 2

Using  the  same Fig.  1,  now  let  be  a  separable -
category  [4,  Definition  3.3]  and  an  object  in .  The
pair  now  describes  a  potentially  anomalous

D  (spatial  dimension)  topological  order  [3, 4, 6].
By the boundary-bulk relation, its d bulk is again given
by ,  which  is  now  a  multi-fusion -category.
An -fucntor  labels  a  topological  defect  of
codimension 1 in the d bulk, and can be realized physically
in  the  same  way  as  illustrated  in Fig.  1 and Fig.  2,
where  should be viewed as an D bulk phase. We
provide more details later for  cases.

n = 1

Vec n

n ≥ 2

n

n

n

n

x y

Unlike the  case where a separable 1-categories is
simply  a  finite  product  of ,  a  separable -category
does  not  have  such  a  decomposition  when .  In
general,  a separable -category is  a finite  direct  sum of
indecomposable  separable -category  [3, 4, 12, 13].  An
indecomposable separable -category is  connected by 1-
morphisms. In other words, there is only one connecting
component.  In  general,  an  indecomposable  separable -
category can have infinitely many simple objects. Its full
subcategory  consisting  of  only  two objects  and  can
be illustrated by the following diagram:

hom(x, x) hom(y, y) (n− 1)

hom(x, y), hom(y, x) (n− 1)

n

where  and  are  multi-fusion -
categories,  and  are  separable -
categories. Therefore, the notion of a separable -category
can be defined inductively.

2Rep(Z2)

Example  4.0.1. We  illustrate  an  example  of  an  inde-
composable separable 2-category  by the following
diagram [12].

x = 1l y = 1lc
2Rep(Z2) hom(1l, 1l) = Rep(Z2)

Z2

where  and  denote  the  only  two  simple
objects in , and  is the 1-category
of  finite  dimensional  representations  of  the -group,

hom(1lc, 1lc) = VecZ2
Z2

1l
1lc 2Rep(Z2)

G = Z2

and  is  the  1-category  of -graded
vector spaces. All other objects are finite direct sum of 
and . The separable 2-category  has a physical
meaning in 3d finite gauge theory with the gauge group

 [14].　　　　　　　　　　　　　　　　 ♦

n

n

(n− 1)

Remark 4.0.2. The classification of separable -categories
is not known. It was known that a separable -category
is  the  representation  category  of  a  multi-fusion -
category [3, 4, 12]. Unfortunately, even the classification
of fusion 1-categories is not known.　　　　　　　　♢

n ≥ 2

n nVec2

n n

Therefore, when , there is no canonical choice of
an -categorical  bit.  The simpest  choice  is  (recall
Remark 2.0.9), but this choice does not exhibit the richness
of -categorical computation. An -categorical computa-
tion is then should be defined as

an n-functor F : X → X,

X nwhere  is a separable -category.
(X, x)

(n− 1) homX(x, x)

n F : X → X

(n− 1) homX(x, x) homX(F(x),F(x))

(n− 1)

n = 2 n

Importantly,  the  data  is  essentially  equivalent
to the multi-fusion -category  [3, 4]. The
above physical realization of an -functor  can
also  be  viewed  as  a  physical  realization  of  a  monoidal

-functor from  to . This
physical realization of a monoidal -functor can be
stated as a precise mathematical theorem (see [15, Theorem
3.2.3] for  and [16] for general ).

n

Remark 4.0.3. Topological  orders  were  proposed  long
ago to provide the physical realization of the fault tolerant
quantum computation [17, 18] (see for example [19] for a
review  and  references  therein).  Our  proposal  suggests
that the physics of topological orders might allows us to
do -categorical computations in a fault tolerant way. ♢

Although the physical realization of topological orders
cannot  go  beyond  3d  (spatial  dimension),  it  is  already
very  interesting  and  rich  in  1d  and  2d  cases  because
anomalous  1d  topological  orders  and  2d  topological
orders  are  abundant.  In  the  rest  of  this  paper,  we
further  illustrate  the  idea  for  anomalous  1d  topological
orders because it is experimentally realizable either as a
gapped  domain  wall  in  a  2d  fractional  quantum  Hall
system  or  a  gapped  boundary  in  a  toric  code  model
achieved in quantum simulation (see for example [20, 21]
and references therein).

(X, x) X

x ∈ X

A := homX(x, x)

F : A → B A

B

An  anomalous  1d  topological  order  can  be  described
by a pair , where  is a separable 2-category and

 is  a  distinguished  object2).  Equivalently,  it  can
also be described a fusion 1-category , the
objects  of  which  are  particle-like  topological  excitations
(or topological defects). We illustrate the idea of physically
realizing  a  monoidal  1-functor  from  to
another multi-fusion 1-category  in Fig. 3.

A

A

Since the 1d topological order  is anomalous, it can
only  be  a  gapped  boundary  of  a  2d  topological  order,
whose particle-like topological excitations form a braided
fusion 1-category given by the Drinfeld center of  [6, 7,
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Z1(A)

A C

F

F

22],  denoted  by .  Consider  a  gapped  domain  wall
between the bulk of  and the anomaly-free 2d phase 
labeled by . The particle-like topological excitations on
the wall form a multi-fusion 1-category still  denoted by

.
a1, · · · , an

F

A

B := F ⊠Z1(A) A

Topological excitations  in the anomalous 1d
topological  order  can  be  arranged  to  be  separated  with
equal  distance.  According  to  [15,  Theorem  3.2.3],  the
gapped domain wall or the fusion category  determines
(actually is equivalent to) a monoidal functor from  to

 defined by

a 7→ 1lF ⊠Z1(A) a ∈ F ⊠Z1(A) A = B, ∀a ∈ A,

1lF
F

A

C F C

A F A

C A

A

F

C F

where  denotes the trivial particle (or the tensor unit)
in .  In  other  words,  a  physical  realization  of  above
functor can be achieved by (1) fusing a 2d phase with a
gapped boundary onto the bulk of  such that a new 2d
phase  and a gapped domain wall  between  and the
bulk  of  are  created;  (2)  fusing  with .3) In  a
special  case  coincides  with  the  bulk  of ,  one  can
replace the step (1) by selecting a line in the bulk of 
then modifying the microscopic physics along the line to
create a gapped domain wall  directly.  Note that this
modification might be achieved by a macroscopic process
(e.g.,  gluing new materials or chemicals along the line).
Since both  and  are many-body systems, this type of
computation need manipulate infinitely degrees of freedom
in the thermodynamics limit and is thus a second quantized
computation.

ai ∈ A

A

F

Remark 4.0.4. If we fix the location of  as in Fig.
3, we can ignore the monoidal structure on  and view

 as a physical realization of a 1-functor.　　　　　　♢

A

Z1(A) = A ⊠A

F

For  example,  it  is  possible  to  control  and  arrange
anyons  in  2d  in  the  experiments  of  fractional  quantum
Hall  systems  (see  for  example  [23]  and  references
therein).  As  depicted  in Fig.  4,  by  simply  arranging
these  anyons  in  fractional  quantum Hall  systems  along
the dashed line in Fig. 4, we obtain a realization of  in
Fig.  3,  where  is  now  a  double  layered
fractional  quantum  Hall  system.  An  example  of  is

F′ F′′

F = F′ ⊠F′′

realized  by  two  1d  domain  walls  and  sitting  on
the two sides of the dashed line as depicted in Fig. 4, i.e.,

.

Remark 4.0.5. The idea illustrated in Fig. 3 and Fig. 4
can be automatically generalized to 3d topological orders
to give a physical realization of monoidal 2-functors.　　
　　　　　　　　　　　　　　　　　　　　♢

The  theoretical  idea  we  present  here  is  still  far  from
an experimental realization. At this stage, it is too early
to  tell  if  the  categorical  computation  is  technologically
possible or impossible. It depends on the future develop-
ment of the physics of topological phases, the discovery
of  new  topological  materials  and  the  technology
advances  in  controlling  and  engineering  topological
defects. We also do not know if it can be more efficient
than  classical/quantum  computation.  However,  we
believe that this theoretical idea deserves some attentions
from theorists who are working closely with experimen-
talists.  Moreover,  theoretically,  it  seems  rather  obvious
that categorical computation is suitable or very likely to
be powerful in computing (higher) categories and (higher)
functors. On the other hand, it is not clear how to simulate
a  category  or  a  functor  by  a  classical  computer  or  a
quantum computer.

We  believe  that  it  is  worthwhile  to  make  this  naive
idea available to experts so that more ideas and discussion
can follow. For example, many natural questions can be
asked  based  on  the  proposal  of  this  work,  such  as  the
details  of  the  physical  realization,  in  what  sense  the
computation  can  be  made  “universal”,  what  possible
gates  are,  what  the  complexity  theory  of  categorical
computation is, etc..

Remark  4.0.6. We  want  to  remind  readers  that  the
higher categorical computation is fundamentally different
from  the  quantum  computing  based  on  the  braidings
between  anyons  or  higher  dimensional  topological
defects  in  higher  dimensional  topological  orders.  Both
fusion matrices and braiding matrices for higher dimen-
sional topological defects are the defining data of certain
natural transformations between higher functors. There-
fore,  it  might  be  possible  to  use  fusions  or  braidings  of
higher  dimensional  topological  defects  to  simulate  or

 
Fig. 3  The idea of physically realizing a monoidal 1-functor.

 
F : A → B

a 7→ 1lF′ ⊠A a⊠A 1lF′′ ∈ B

Fig. 4  The idea of realizing a monoidal functor 
defined by  in a 2d fractional quantum
Hall system.

x2)Without loss of generality, we can assume  is indecomposable.
F A F

A

3)One way to realize “fusing  with ” is to create  in a neighborhood
 of .
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compute certain categorical structures. It is very interesting
to  explore  the  relation  or  possible  interaction  between
these two different ideas of computing. We will leave it
to the future.　　　　　　　　　　　　　　　　　　♢
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