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Although the no-cloning theorem forbids perfect replication of quantum information, it is sometimes
possible to produce large numbers of replicas with vanishingly small error. This phenomenon, known
as quantum superreplication, can occur for both quantum states and quantum gates. The aim of
this paper is to review the central features of quantum superreplication and provide a unified view
of existing results. The paper also includes new results. In particular, we show that when quantum
superreplication can be achieved, it can be achieved through estimation up to an error of size
O(M/N2), where N and M are the number of input and output copies, respectively. Quantum
strategies still offer an advantage for superreplication in that they allow for exponentially faster
reduction of the error. Using the relation with estimation, we provide i) an alternative proof of
the optimality of Heisenberg scaling in quantum metrology, ii) a strategy for estimating arbitrary
unitary gates with a mean square error scaling as logN/N2, and iii) a protocol that generates
O(N2) nearly perfect copies of a generic pure state U |0〉 while using the corresponding gate U only
N times. Finally, we point out that superreplication can be achieved using interactions among k
systems, provided that k is large compared to M2/N2.
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1 Introduction

The no-cloning theorem [1, 2] is one of the cornerstones
of quantum information theory, with implications per-
meating the entire field [3, 4]. Most famously, the im-
possibility of copying non-orthogonal quantum states

∗Special Topic: Quantum Communication, Measurement, and

Computing (Eds. G. M. D’Ariano, Youjin Deng, Lu-Ming Duan
& Jian-Wei Pan).

provides a working principle for quantum cryptography
with applications to key distribution [5, 6], unforgeable
banknotes [7], and secret sharing [8]. The no-cloning the-
orem forbids perfect cloning. A natural question, origi-
nally asked by Bužek and Hillery [9], is how well cloning
can be approximated by the processes allowed by quan-
tum mechanics. The question is relevant both to crypto-
graphic applications and to the foundations of quantum
theory, shedding light on the relationship between quan-
tum and classical copy machines [10–15] and providing
benchmarks that certify the advantages of quantum in-
formation processing over classical information process-
ing [16–20]. Due to the broad spectrum of applications,
the research into optimal cloning machines is still an ac-
tive and fruitful line of investigation [21].

Among the cloning machines allowed by quantum me-
chanics, one can distinguish two types: deterministic and
probabilistic machines. Deterministic machines produce
approximate copies with certainty, whereas probabilistic
machines sometimes produce a failure message indicat-
ing that the copying process has gone wrong. In general,
probabilistic machines can produce more accurate copies
at the price of a reduced probability of success. For ex-
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ample, Duan and Guo [22] showed that a set of non-
orthogonal states can be cloned without error as long as
they are linearly independent. More recently, Fiurášek
[23] showed that probabilistic cloners can offer an advan-
tage even for linearly dependent states, including, e.g.,
coherent states of harmonic oscillators with known am-
plitude. Ralph and Lund [24] proposed a concrete optical
setup achieving noiseless probabilistic amplification and
cloning of coherent states. The possibility of noiseless
probabilistic amplification was later extended to the case
of a Gaussian-distributed coherent state amplitude [19].
Although the probability of success vanishes as the ac-
curacy increases, nearly perfect amplification of coherent
states has been observed experimentally for small values
of the amplitude [25–28].

The recent developments in probabilistic amplification
and cloning of coherent states motivate the search for
new scenarios where non-orthogonal states can be cloned
with vanishingly small error. In [29], we considered the
task of cloning clock states, that is, quantum states gen-
erated by time evolution under a known Hamiltonian.
Here, the cloner is given N identical copies of the same
clock state and attempts to produce M = M(N) copies.
Inspired by the asymptotic framework of information
theory, we considered the scenario whereN is large. Here,
the main question is how fast M(N) can grow under the
condition that the copying process is reliable, meaning
that the global error of all the output copies vanishes in
the large-N limit. For deterministic cloners, we showed
that the number of reliable copies has to scale as

M(N) = N [1 + f(N)] with lim
N→∞

f(N) = 0 . (1)

That is, the number of extra copies produced by the
cloner must be negligible compared to the number of in-
put copies. This result can be seen as an asymptotic no-
cloning theorem, which extends the original no-cloning
theorem from perfect cloners to cloners that become per-
fect in the asymptotic limit. The asymptotic no-cloning
theorem originates from the requirement that the error
vanishes globally on all the clones. By using tomography,
it is generally easy to produce copies that individually
have an error vanishing on the order of 1/N . However,
this does not guarantee that the error vanishes at the
global level. Indeed, the errors accumulate when mul-
tiple copies are examined jointly. Consequently, only a
cloner satisfying Eq. (1) can have a vanishing error at
the global level. For probabilistic cloners of clock states,
the situation is different; the number of reliable copies
produced by a probabilistic machine can scale as

M(N) = N [1+f(N)] with f(N) = Θ
(
N δ

)
, δ < 1 .

(2)

When δ is zero, this means that the number of extra
copies scales as N , evading the limitation posed by the
asymptotic no-cloning theorem. When δ is larger than
zero, the number of extra copies grows faster thanN , and
one can produce up to M = Θ(N2) copies. In both cases,
we refer to this phenomenon as superreplication, empha-
sizing that the number of extra copies grows beyond the
limits imposed by the asymptotic no-cloning theorem.
Note, however, that the number of output copies allowed
by Eq. (2) can grow at most at a rate M = Θ

(
N2−ε

)
,

where ε is an arbitrarily small constant. In finite dimen-
sions, the quadratic replication rate is the ultimate limit
for superreplication of clock states, in close connection
with the Heisenberg limit in quantum metrology [29, 30].

In addition to producing a large number of extra
copies, probabilistic cloners exhibit better scaling of the
error, which vanishes as exp[−cN2/M(N)] for a suitable
constant c > 0 depending on the particular set of clock
states under consideration. In contrast, the error for
deterministic machines can scale at most as 1/N4 [29].
The benefits of probabilistic cloners, however, are not
without cost. The price to pay is a very small proba-
bility of success; precisely, the probability of superrepli-
cation has to be small compared to exp [−M/N ]. This
fact severely limits the ability to observe superreplica-
tion, especially when M grows much faster than N . Nev-
ertheless, the cloner can be devised in such a way that,
when superreplication fails, the original input state is
almost undisturbed. Precisely, Winter’s gentle measure-
ment lemma [31] implies that the error introduced by the
failure of superreplication scales as O

(√
psucc

)
, where

psucc is the probability of success. For superreplication
processes with δ > 0, this means that the error intro-
duced by the failure of superreplication vanishes faster
than exp

[−N δ/2
]
. As a consequence, the state resulting

from failed superreplication can still be used to achieve
standard, deterministic cloning with asymptotically op-
timal performance; for large N , the error exp

[−N δ/2
]

is
covered by the error introduced by deterministic cloning.
In summary, superreplication is a rare event, but trying
to observe it does not prevent the application of standard
deterministic cloning techniques.

Interestingly, the limitation on the probability of suc-
cess is lifted if we consider the problem of cloning gates
instead of states. Cloning a quantum gate means simu-
lating M uses of it while actually using it only N < M

times. A no-cloning theorem for quantum gates was
proven by D’Ariano, Perinotti, and one of the authors
[32], who showed that no quantum protocol can perfectly
clone a generic quantum gate. Recently, Dür et al. [33]
analyzed the cloning of phase gates, i.e., unitary gates,
by describing the time evolution with a known Hamilto-
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nian. They devised a quantum network that simulates up
to N2 uses of an unknown phase gate by using it only N
times. The network works deterministically and has van-
ishing error on average over all input states. We refer to
this phenomenon as gate superreplication. The discovery
by Dür et al. opened the question of whether superrepli-
cation can be achieved not only for phase gates, but also
for arbitrary quantum gates. In Ref. [34], we answered
the question in the affirmative, constructing a univer-
sal quantum network that replicates completely unknown
unitary gates. The network has vanishing error on almost
all input states, except for a vanishingly small fraction
of the Hilbert space. These “bad states” can be charac-
terized explicitly, making it easy to identify applications
where gate superreplication can be safely employed.

In this paper, we review the key facts about super-
replication of states and gates, unifying the ideas pre-
sented in the literature and emphasizing the connections
between superreplication and other tasks, such as esti-
mating quantum gates and generating states using gates
as oracles. In addition to this review, the paper contains
a number of new results:

1) We show that whenever quantum superreplication
is achievable, it can also be achieved through es-
timation. However, the error for estimation-based
strategies will vanish according to a power law,
whereas the error for genuine quantum strategies
vanishes faster than any polynomial.

2) We establish an equivalence between the optimal-
ity of Heisenberg scaling in quantum metrology and
the ultimate limit on the rate of superreplication,
which is encapsulated in Eq. (2). On the one hand,
Heisenberg scaling implies the impossibility of pro-
ducing more than M = O(N2) copies of a clock
state with vanishing error [29]. On the other hand,
here we prove the converse result, showing that the
limit on the replication rate set by Eq. (2) implies
the optimality of Heisenberg scaling.

3) We explore the possibility of achieving superrepli-
cation without acting globally on all N input copies
and on M −N additional blank copies. Specifically,
we consider strategies where the N input copies
are divided into subgroups and each subgroup gen-
erates new copies, mimicking a scenario in which
groups of cells fuse together and then split into ap-
proximate clones. For replication strategies of this
form, we show that interactions among groups of
O(M2/N2−ε) particles are necessary and sufficient
to achieve superreplication. With respect to the
original superreplication protocol, the modified pro-

tocol reduces the size of the interactions by a factor
M/N2−ε, which is asymptotically large for all the
replication rates allowed by Eq. (2).

4) We construct a simple protocol that estimates an
unknown unitary gate with a mean square error
of logN/N2. The protocol uses gate superreplica-
tion to produce M = Θ(N2/ logN) copies and gate
tomography to estimate the gate within a mean
square error of size 1/M . The resulting scaling of
the error is close to the optimal scaling 1/N2 [35–
38].

5) We analyze the task of generating M copies of a
quantum state U |0〉 given N uses of a completely
unknown unitary gate U [34]. In this setting we
show that M = Θ(N2−ε) copies of the state can be
generated with fidelity going to one in the large-N
limit for every ε > 0.

6) We examine replication of quantum gates in the
worst case over all possible input states. In the
worst-case scenario, we establish an asymptotic no-
cloning theorem for quantum gates, which states
that the number of reliable copies of the gate scales
as M(N) = N [1 + f(N)], where f(N) vanishes in
the large-N limit.

The paper is organized as follows. Section 2 introduces
the task of asymptotic cloning and precisely analyses the
phenomenon of quantum state superreplication. Section
3 analyses the relationship between state superreplica-
tion and quantum metrology. Section 4 discusses the
scale of the interactions needed for state superreplica-
tion. In Section 5, we review the existing results for su-
perreplication of quantum gates. Several applications of
gate superreplication are presented in Section 6. Finally,
conclusions are drawn in Section 7.

2 Quantum state superreplication

Deterministic cloners. Although perfect cloning of
non-orthogonal quantum states is forbidden by the no-
cloning theorem [1, 2], approximate cloning can be re-
alized to various degrees of accuracy, depending on the
set of states to be cloned [10–15]. Consider a scenario in
which one is given N identical systems, each prepared
in the same state |ψx〉, and the goal is to generate M
systems in a state close to M perfect copies of the state
|ψx〉. For the moment, we assume the cloning process
to be deterministic, meaning that it produces approxi-
mate clones with unit probability. Mathematically, a de-
terministic cloner is described by a completely positive
trace-preserving linear map C, a.k.a. a quantum channel,
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sending states on the Hilbert space H⊗N to states on the
Hilbert space H⊗M , where H is the Hilbert space of a
single copy. The cloning accuracy can be quantified as
the average fidelity between the ideal state of M perfect
copies and the actual output state of the cloner. Explic-
itly, the average fidelity is given by

Fdet[N→M ]=
∑

x

pxTr
[|ψx〉〈ψx|⊗MC (|ψx〉〈ψx|⊗N

)]
,

(3)

where px is the prior probability of the state |ψx〉. The
quantum channel that maximizes the fidelity is the opti-
mal N -to-M cloner for the ensemble {|ψx〉 , px}. In gen-
eral, the form of the optimal channel varies for different
ensembles, depending on both the states and their prior
probabilities.

Example: the equatorial qubit cloner. The gen-
eral settings of optimal cloning can be nicely illus-
trated in the example of equatorial qubit states [39–
41]. Here, the ensemble consists of states of the form
|ψt〉 = (|0〉+ e−it|1〉)/√2, where θ is drawn uniformly at
random from the interval [0, 2π). The input state can be
expanded as

|ψt〉⊗N =
1

2N/2

N∑

n=0

√(
N

n

)
e−int|N,n〉,

where {|N,n〉 | n = 0, . . . , N} is the orthonormal basis
of the Dicke states, which are defined as

|N,n〉 :=
1

√
N !n! (N − n)!

∑

π∈SN

Uπ |0〉⊗(N−n) |1〉⊗n ,

where π is a permutation of N qubits, Uπ is the unitary
operator that implements the permutation π, and the
sum running over the symmetric group is SN .

For convenience of discussion, we focus on the case
where both N and M are even. In this case, the optimal
cloning channel has the simple form C(ρ) = V ρV †, where
V is the isometry, which is defined as [41]

V |N, N
2

+m〉 = |M,
M

2
+m〉 , m ∈

[
−N

2
,
N

2

]
.

Plugging the above relation into the definition of the av-
erage fidelity (3), one obtains the optimal value

Fdet[N →M ]

=
1

2N+M

⎡

⎣
N/2∑

m=−N/2

√(
N

N
2 +m

)(
M

M
2 +m

)
⎤

⎦

2

≈ 2
√
MN

M +N
N,M � 1 . (4)

The asymptotic no-cloning theorem. Inspired by
the asymptotic framework of information theory, we now
focus on quantum cloners in the limit N → ∞. We model
the cloning process as a sequence of cloners (CN)N∈N

,
where CN transforms N copies into M(N) approximate
copies for a given function M(N). We call the cloning
process reliable if the cloning fidelity goes to one in the
asymptotic limit, namely,

lim
N→∞

Fdet[N →M(N)] = 1 .

The key question here is how many extra copies can be
produced reliably. Can we produce N extra copies or
more? To provide a rigorous answer, we define the rate
of a cloning process as

α := lim inf
N→∞

log[M(N) −N ]
logN

.

That is, if the rate is α, the number of output copies
grows as M(N) = N + Θ(Nα). We say that a cloning
rate α is achievable if and only if there exists a reliable
cloning process that has a rate equal to α. For a given set
of states, the task is to find the maximum achievable rate
over all cloning processes. For deterministic processes,
the following theorem tightly limits the number of copies
that can be produced reliably.

Theorem 1 (Asymptotic no-cloning theorem for quan-
tum states [29]). No deterministic process can reliably
clone a continuous set of quantum states at a rate α � 1.

The intuition for the proof comes from the standard
quantum limit of metrology [30], which limits the preci-
sion of deterministic estimation of a parameter t encoded
into N product copies of a state |ψt〉. The standard quan-
tum limit states that the mean square error vanishes as
c/N , where c is a constant that depends on the encoding
t 
→ |ψt〉. Intuitively, a deterministic cloner that violates
Theorem 1 would contradict the standard quantum limit,
because one could increase the precision by first cloning
the probe states and then measuring them.

The argument based on the standard quantum limit of
metrology is partly heuristic. A complete argument can
be made for clock states, i.e., quantum states of the form

|ψt〉 = e−itH |ψ〉 , t ∈ R , H† = H .

The argument is conceptually independent of the stan-
dard quantum limit and allows one to prove a strong
converse of the asymptotic no-cloning theorem.

Theorem 2 (Strong converse of the asymptotic no-
cloning theorem [29]). Every deterministic process that
clones clock states at a rate α > 1 will necessarily have
a vanishing fidelity in the large-N limit.
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The asymptotic no-cloning theorem implies that a de-
terministic cloning process cannot produce more than
a negligible number of extra replicas in the asymptotic
limit. Let us check a few examples. The first example is
the cloning of equatorial qubit states introduced earlier
in the paper. In the large-N limit, the cloning fidelity is
given by F ≈ 2

√
MN/(M+N); cf. Eq. (4). It is straight-

forward to see that any achievable cloning rate must
be smaller than one. Another example is the universal
cloning of pure states. For d-dimensional quantum sys-
tems, the optimal fidelity is F =

(
d+N−1

N

)
/
(
d+M−1

M

)
[42].

For large N and M , the fidelity scales as (N/M)d−1 and
converges to one if and only if the cloning rate satisfies
the condition α < 1. The example of universal cloning
shows that one can always find a deterministic process
that reliably produces M = N + Θ(N δ) copies for every
desired exponent δ > 0.

It is important to stress that the asymptotic no-cloning
theorem holds for continuous sets of states but does not
place any restriction on the cloning rate of discrete sets
of states. For example, every finite set of quantum states
can be cloned with vanishing error in the large-N limit,
no matter how large M is [15]. Hence, for finite sets of
states, every rate is achievable.

Probabilistic cloners. The asymptotic no-cloning the-
orem poses a stringent limit on the ability to replicate
information. In the following we will see that the limit
can be broken by allowing the cloner to be probabilistic.

To analyze probabilistic cloners, it is useful to intro-
duce the notion of a quantum instrument [43, 44]. A
quantum instrument consists of an indexed set of com-
pletely positive, trace non-increasing maps (a.k.a. quan-
tum operations), {M1,M2, . . .}. When an input state ρ
is fed into the quantum instrument, the quantum oper-
ation Mi occurs with probability pi = Tr[Mi(ρ)], and
the instrument outputs a quantum system in the state
ρ′ = Mi(ρ)/pi. In the context of our cloning problem, we
consider a quantum instrument consisting of two quan-
tum operations, Myes and Mno, where Myes describes
the realization of a successful cloning process. When act-
ing on the N -copy input state |ψx〉⊗N , the probabilistic
cloner succeeds with probability

p(yes|x) = Tr
[Myes(|ψx〉〈ψx|⊗N )

]
, (5)

in which case it produces the M -copy output state

ρ′x = Myes(|ψx〉〈ψx|⊗N )/p(yes|x) . (6)

Conditional on the success of the cloning process, the
average fidelity is equal to

Fprob[N →M ] =
∑

x

p(x|yes)Tr
[|ψx〉〈ψx|⊗M ρ′x

]
,(7)

where p(x|yes) is the conditional probability given by
Bayes’ rule. Inserting Eqs. (5) and (6) into the above
expression, we obtain the explicit formula

Fprob[N →M ]

=
∑

x pxTr
[|ψx〉〈ψx|⊗MMyes(|ψx〉〈ψx|⊗N )

]
∑

y py Tr [Myes(|ψy〉〈ψy|⊗N )]
. (8)

The maximum fidelity over all possible quantum instru-
ments represents the ultimate performance allowed by
quantum mechanics, even if the probability of success is
arbitrarily small. In the following, we will focus on the
maximum fidelity in the asymptotic limit of large N and
M .

Superreplication of equatorial qubit states. Let
us start from the simple example of equatorial qubit
states. In this case, the optimal probabilistic cloner is
given by a quantum instrument with successful opera-
tion Myes(ρ) = QρQ† given by

Q |N, N
2

+m〉 =

√√
√
√

(
M

M
2 +m

)

(
M

M+N
2

)(
N

N
2 +m

) |M,
M

2
+m〉 ,

m ∈
[
−N

2
,
N

2

]
(9)

(recall that we are assuming that N and M are even
for simplicity). Inserting the expression for the optimal
cloner into the fidelity (8), we obtain the optimal value

Fprob[N →M ] =
1

2M

N/2∑

m=−N/2

(
M

M
2 +m

)

� 1 − 2 exp
(
−N2

2M

)
, (10)

where we have used Hoeffding’s inequality. One can im-
mediately see that any cloning rate α < 2 is achievable;
in this case, the cloning error vanishes faster than the
inverse of any polynomial in N . Interestingly, such rapid
decay of the error is impossible for deterministic cloners,
whose error can vanish at most as 1/N4 [29]. In sum-
mary, allowing the cloner to claim failure yields two ad-
vantages: i) the cloning rate can be boosted beyond the
limits of the asymptotic no-cloning theorem, and ii) the
cloning error vanishes as N at a speed that could not be
achieved by deterministic cloners. The contrast between
deterministic and probabilistic cloners can also be seen in
the non-asymptotic setting; for example, when N = 20
and M = 120, the probabilistic fidelity maintains the
high value of 94.52%, whereas the deterministic fidelity
drops to 69.39%.

The optimal probabilistic cloner dramatically outper-
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forms all deterministic cloners in terms of rate and ac-
curacy. However, these advantages have a cost; the price
to pay is that the probability of success vanishes in the
large-N limit. For example, the probability of success for
the qubit cloner of Eq. (9) is given by

pyes[N →M ] =

∣
∣〈ψt|⊗MQ|ψt〉⊗N

∣
∣2

|〈ψt|⊗NQ†Q|ψt〉⊗N |2

=
1

2N
(

M
N+M

2

)
N/2∑

m=−N/2

(
M

M
2 +m

)
, ∀t ∈ [0, 2π) .

Using Stirling’s approximation, one can see that the
above probability satisfies the asymptotic equality

pyes[N →M ] ≈ e−N (ln 2− N
M ) , N �M .

This example indicates a trade-off between the cloning
rate and the success probability. In the following, we will
see that such a trade-off is a generic feature of state su-
perreplication.

General case: superreplication of quantum
clocks. Superreplication of equatorial qubit states can
be generalized to the broad family of clock states of the
form |ψt〉 = e−itH |ψ〉 with t ∈ R and H† = H . For ev-
ery family of clock states, one can find a probabilistic
N -to-M cloner that achieves a fidelity [29]

Fprob[N →M ] � 1 − 2K exp
(
−2p2

minN
2

M
+

4N
MK

)

independently of t. Here, K is the number of distinct en-
ergy levels of the HamiltonianH , and pmin is the smallest
non-zero probability in the probability distribution of the
energy for the state |ψ〉. It is immediately obvious that
every cloning rate α < 2 is achievable, and thus that
clock states can be superreplicated. Again, the cloning
error vanishes with N faster than the inverse of every
polynomial—a rapid scaling that could not be achieved
by deterministic cloners. In other words, the probabilistic
cloner produces not only more but also better replicas.

The exponential decay of the success probability is a
necessary condition for superreplication of clock states;
indeed, every reliable superreplication process must have
a success probability that is vanishingly small compared
to exp [−M/N ]. In other words, as soon as a cloning
process violates the asymptotic no-cloning theorem, the
probability of the process must vanish in the large-N
limit. A strong converse result can also be proven [29]:

Theorem 3 Every cloning process with rate α � 1 and
success probability of order exp [−M(N)/N ] or larger
will necessarily have vanishing fidelity.

On the other hand, it is possible to show that super-

replication can be achieved with a success probability
pyes > exp

[−M/N1−ε
]

for every ε > 0.
Informally, we can think of superreplication as a lot-

tery where one invests the initial copies of the state in the
hope of obtaining a much larger number of approximate
copies. Despite the low probability of success, the super-
replication lottery has almost no risk of loss; indeed, it
is possible to guarantee that when replication fails, the
cloner returns the N input copies, up to an error that
is vanishingly small compared to exp [−M/(2N)]. This
result follows from the gentle measurement lemma [31].
Because the error is small, the input copies can still be
used for deterministic cloning. Recall that the cloning
error of deterministic cloners vanishes at most as 1/N4.
Hence, the error introduced by the failed attempt at su-
perreplication is negligible compared to the cloning error.
In summary, one can achieve the same asymptotic per-
formance as the optimal deterministic cloning while still
allowing for the chance to observe the exotic superrepli-
cation phenomenon.

Building on this observation, we can construct a cloner
that makes a series of attempts to copy clock states
probabilistically, where every failed attempt results in
slight deterioration of the input copies [45]. This cloner
increases the probability of success, at the price of a per-
formance that decreases with the number of attempts.
In Fig. 1, we show a plot of the fidelity as a function
of the total probability of success for equatorial qubit
states with N = 50 and M = 1000. The plot shows a
high fidelity/low probability region corresponding to the
first attempts and a rapid decrease in the fidelity with
increasing number of attempts.

The Heisenberg limit for superreplication. We

Fig. 1 Replication of equatorial qubit states through successive
attempts of probabilistic cloning. The figure shows the tradeoff be-
tween fidelity and success probability for N = 50 and M = 1000.
The points on the blue line represent successive attempts to gener-
ate M copies through the optimal probabilistic process. The black
dashed line represents the fidelity of the optimal deterministic
cloner. In this example, the errors introduced by failed attempts
cause the fidelity to fall below the optimal deterministic fidelity
when the probability of success becomes larger than 20%.

110304-6 Giulio Chiribella and Yuxiang Yang, Front. Phys. 11(3), 110304 (2016)



REVIEW ARTICLE

have seen that clock states can be superreplicated for ev-
ery cloning rate smaller than two. Higher cloning rates
are forbidden by the following theorem.

Theorem 4 (Heisenberg limit for superreplication [29])
In finite dimensions, no physical process can achieve a
cloning rate larger than two for a set of states containing
clock states.

The limit on the cloning rate originates in the Heisen-
berg limit in quantum metrology [30], which can be ex-
tended to probabilistic strategies in the case of finite-
dimensional systems [29]. The intuitive idea is the follow-
ing: the Heisenberg limit implies that the probabilistic
estimation of t from the state |ψt〉⊗N has a minimum
mean square error scaling as N−2. If one could produce
M = Θ(Nα) clones with sufficiently small error, these
clones could be used to estimate t. Performing individ-
ual measurements of the clones and collecting the statis-
tics, one could make the mean square error as small as
O(1/Nα). Clearly, the Heisenberg limit implies α � 2.

The argument based on the Heisenberg limit is par-
tially heuristic because is relies on the assumption that
the replication error vanishes sufficiently rapidly. How-
ever, it is possible to make a complete argument based
on direct optimization of the probabilistic cloner. This
argument is conceptually independent of the Heisenberg
limit and makes it possible to prove a strong converse
[29].

Theorem 5 (Strong converse of the Heisenberg limit for
superreplication) Every physical process that replicates
clock states with replication rate α > 2 will necessarily
have vanishing fidelity, no matter how small its probabil-
ity of success is.

Note, however, that the restriction to finite-
dimensional systems is essential for the above conclu-
sions. For infinite-dimensional systems, the probabilistic
Heisenberg bound can easily become trivial. For exam-
ple, consider the set of all coherent states with fixed
amplitude r > 0, which can be seen as an infinite-
dimensional example of clock states:

|ψt〉 = e−it a†a |ψ0〉 , |ψ0〉 = e−r2/2
∞∑

n=0

rn

n!
|n〉 ,

where a |n〉 =
√
n |n− 1〉, ∀n ∈ N. Now, coherent states

with known amplitude can be probabilistically cloned
with a fidelity arbitrarily close to 1 [23] by using Ralph
and Lund’s noiseless probabilistic amplifier [24]. This
means that we can pick every function M(N) and build a
probabilistic cloner that transforms N input copies into
M(N) approximate copies with an error smaller than,
say, 1/N . The cloning process constructed in this way is

reliable and can have every desired rate α, thus breach-
ing the Heisenberg limit α < 2. The catch is, of course,
that the probability of success will decay faster for pro-
cesses with a higher rate. Pandey et al. provide a general
bound [46], implying that a replication process with rate
α must satisfy the relation

pyes[N → M ] � exp
[−(α− 1)r2Nα lnN

]
.

State superreplication beyond clock states. Super-
replication of quantum clocks implies superreplication of
other relevant families of states, including the multiphase
covariant states

|ψθ〉 =
√
p0 |0〉 +

d−1∑

j=1

√
pjeiθj |j〉, θj ∈ [0, 2π) ,

∀j = 1, . . . , d− 1 .

To see that these states can be superreplicated, it
is enough to consider the family of clock states
|ψt〉 = e−itH |ψ〉, where |ψ〉 =

∑d−1
j=0

√
pj |j〉, H =

∑d−1
j=0

√
nj |j〉〈j|, and nj is the j-th prime number. With

this choice, the closure of the set {|ψt〉 | t ∈ R} co-
incides with the full set of multiphase covariant states,
{|ψθ〉 | θ ∈ [0, 2π)×d−1}. On the other hand, an N -to-M
cloner for the clock states will achieve a fidelity of

Fprob[N →M ] � 1 − 2d exp
(
−2p2

minN
2

M
+

4N
Md

)
,

pmin ≡ min
j

pj

independently of t. By taking limits, we then obtain that
every multiphase covariant state can be cloned with the
same fidelity.

Another multiparameter family of states that can be
superreplicated is the family of all maximally entan-
gled states. The superreplication of maximally entangled
states will be discussed in detail in Section 5.

It is important to note that not all quantum states
can be superreplicated. First, the symmetry of the input
ensemble can sometimes inhibit superreplication. For in-
stance, if one tries to clone an arbitrary unknown finite-
dimensional state, the probabilistic cloner will yield the
same fidelity as the optimal deterministic cloner [29]. The
lack of probabilistic advantages for universal cloning is an
appealing feature from the viewpoint of the many-worlds
interpretation of quantum mechanics [47] and can even
be viewed as an axiom:

Axiom 1 (Many-Worlds Fairness) The maximum rate
at which a completely unknown state can be cloned is the
same in all possible worlds.

Interestingly, Many-Worlds Fairness rules out the vari-
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ant of quantum mechanics on real Hilbert spaces origi-
nally considered by Stueckelberg [48] and recently an-
alyzed by Hardy and Wootters [49, 50]. The argument
for excluding quantum mechanics on real Hilbert spaces
is the following: if the wavefunction had only real am-
plitudes, then one branch of the wavefunction would al-
low one to superreplicate every state of a quantum bit,
whereas the other branches would not, in violation of
Many-Worlds Fairness. The fact that ordinary quantum
mechanics allows for complex amplitudes results in the
Many-World Fairness property and in the impossibility
of superreplicating completely unknown pure states.

An interesting open question is what are the proba-
bility distributions on the Bloch sphere that allow for
superreplication, interpolating between the uniform dis-
tribution (for which superreplication is impossible) and
a distribution concentrated on the equator (for which
superreplication is possible). Similarly, it is interesting
to wonder whether there exists a family of optimal clon-
ers that interpolate between the optimal universal cloner
and the optimal probabilistic cloner that achieves su-
perreplication. Such interpolation between universal and
non-universal cloning was known in the deterministic
case [51], while the probabilistic case is still open.

Another limitation on superreplication can be ob-
served for coherent states of a harmonic oscillator
parametrized as

|z〉 = e−|z|2/2
∞∑

n=0

zn

n!
|n〉 , z ∈ C .

When z is chosen at random from a Gaussian distribu-
tion p(z) = λ/π e−λ |z|2 , λ > 0, the optimal probabilistic
fidelity is given by [19]

Fprob[N →M ] =

{
(1+λ)N

M , λ < M
N − 1,

1, λ � M
N − 1 .

(11)

From the above expression, we see that the fidelity van-
ishes for all replication rates α > 1. This fact is in stark
contrast to the situation for coherent states with known
amplitude [23, 24], for which every rate is achievable.

Eq. (11) implies that superreplication with a rate
α = 1 is still possible, provided that λ is sufficiently
large. For example, for λ � 1, one can probabilistically
transform N copies into M = 2N copies, thus violat-
ing the asymptotic no-cloning theorem. Here it is impor-
tant to stress the role of prior information; in its absence
(λ = 0), the fidelity of the optimal probabilistic cloner is
equal to the fidelity of the optimal deterministic cloner
originally proposed by Braunstein et al. [52].

3 The relation between state superreplication
and state estimation

Superreplication via state estimation. A funda-
mental fact about quantum cloning is its asymptotic
equivalence with state estimation [10–15]; when the num-
ber of output copies becomes large, the optimal cloning
performance can be achieved by a classical cloning strat-
egy that consists of measuring the input copies and us-
ing the outcome of the measurement as an instruction to
prepare the output copies. In the standard setting, one
fixes the number of input copies N and lets the num-
ber of output copies M go to infinity. For probabilistic
cloning, this scenario has been analyzed by Gendra et
al. [53], who proved the asymptotic equivalence between
probabilistic cloning and probabilistic state estimation.
For clock states that are dense in an f -dimensional
manifold, Gendra et al. showed that the probabilis-
tic fidelity decays as Fprob[N → M ] ∝ (N2/M)f/2 for
M � N2, whereas the deterministic fidelity decays as
Fdet[N →M ] ∝ (N/M)f/2. An open question is whether
probabilistic estimation also makes it possible to achieve
superreplication. We now show that this is indeed the
case.

Consider a classical cloning strategy for the states
{|ψx〉 | x ∈ X} based on probabilistic estimation of the
parameter x and on preparation of the state |ψx̂〉⊗M ,
where x̂ is the estimate. This is not the most general
classical strategy, but it will be sufficient to establish the
possibility of superreplication. The successful quantum
operation is given by

Myes(ρ) =
∑

x̂∈X

|ψx̂〉〈ψx̂|⊗M Tr[Px̂ ρ] , (12)

where {Px}x∈X are positive operators satisfying the nor-
malization condition
∑

x∈X

Px + P? = I

for some operator P? � 0 associated with the unsuccess-
ful outcome of the estimation strategy. The fidelity of the
strategy can be computed using Eq. (7), which gives

Fprob[N →M ] =
∑

x,x̂

p(x|yes) p(x̂|x) |〈ψx̂|ψx〉|2M

= E(|〈ψx|ψx̂〉|2M ) ,

where E denotes the expectation with respect to the
probability distribution p(x, x̂|yes) := p(x|yes) p(x̂|x).
Using the convexity of the function f(y) = yM , we then
obtain the inequality
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E(|〈ψx|ψx̂〉|2M ) �
[
E(|〈ψx|ψx̂〉|2)

]M
,

or equivalently

Fprob[N →M ] � (Fprob[N → 1])M
,

which means that the M -copy fidelity of our measure-
and-prepare strategy is lower-bounded by the M -th
power of the single-copy fidelity. Now, suppose that the
probabilistic single-copy fidelity approaches one as 1/Nβ

for some β > 0, namely,

Fprob[N → 1] � 1 −O

(
1
Nβ

)
.

Then, Bernoulli’s inequality yields the bound

Fprob[N →M ] � 1 −O

(
M

Nβ

)
. (13)

From the bound, it is clear that every replication rate
α < β can be achieved; the fidelity converges to one
as long as M(N)/Nβ vanishes in the large-N limit. In
summary, we have proven the following.

Theorem 6 Let S = {Ux | x ∈ X} be a continuous set
of gates. A probabilistic strategy that estimates the gates
in S with fidelity larger than 1 − O(1/Nβ) can be used
to replicate the states in S at every rate α < β via a
measure-and-prepare strategy.

Theorem 6 applies to arbitrary sets of states and to
probabilistic strategies with arbitrary constraints on the
probability of success. For clock states, assuming no con-
straint on the probability of success, the single-copy fi-
delity of phase estimation exhibits the Heisenberg scal-
ing Fprob[N → 1] = 1 − O

(
1/N2

)
[54]. Hence, the clas-

sical strategy described above achieves superreplication
for every replication rate α < 2. Note, however, that
the classical superreplication strategy has an error that
vanishes with the power law 1/N2−α, whereas the quan-
tum superreplication strategy has an error that vanishes
faster than every polynomial.

Deriving precision limits from superreplication.
We have seen that the replication rate for clock states is
determined by the Heisenberg limit in the probabilistic
case and by the standard quantum limit in the determin-
istic case. On the other hand, we have also seen strong
converse results (Theorems 2 and 5) that prove the opti-
mality of the replication rates without invoking the pre-
cision limits of quantum metrology. In fact, the quantum
metrology limits can be derived from our bounds on the
replication rates. The argument proceeds by contradic-
tion:

1) Suppose that one could violate the standard quan-

tum limit using N copies of the clock state |ψt〉
to estimate the parameter t deterministically with
an error scaling as 1/N1+ε, ε > 0. Then, Eq. (13)
would imply that one can produce M clones with
M = Θ(N1+ε/2), thus violating Theorem 2.

2) Suppose that one could violate the Heisenberg limit
of probabilistic metrology using N copies of the
clock state |ψt〉 to estimate the parameter t proba-
bilistically with an error scaling as 1/N2+ε, ε > 0.
Then, Eq. (13) would imply that one can produce
M clones with M = Θ(N2+ε/2), thus violating The-
orem 5.

In conclusion, we have shown a complete equivalence
between the limits on the scaling of the error in quantum
metrology and the limits on the replication rate set by
Theorems 2 and 5.

4 Superreplication with reduced interaction
size

The divide-and-clone approach. To realize the op-
timal N -to-M probabilistic cloner, a global interaction
involving at least M systems is required. This can be
seen in the example of the equatorial qubit cloner, which
is defined as an evolution acting coherently on the ba-
sis of the Dicke states; cf. Eq. (9). Of course, the need
for interactions among large numbers of systems makes
it challenging to implement cloning. Here we investigate
the possibility of reducing the scale of the interactions.

A simple strategy to reduce the interaction scale is a
“divide-and-clone” strategy in which one divides the in-
put copies into groups and performs optimal cloning on
each group. Suppose that we divide the N input copies
into groups ofN ′ := Θ(Nβ) copies. Applying the optimal
N ′-to-M ′ probabilistic cloner to each individual group,
we then achieve a fidelity

F [N ′ →M ′] � 1 − 2K exp
[
−2p2

min(N
′)2

M ′ +
4N ′

M ′K

]

for each group. The value of M ′ can be chosen in or-
der to reach the desired replication rate; to obtain M

copies overall, one needs M ′ to satisfy the condition
M = M ′N/N ′. For a replication process producing M =
Θ(N1+δ) copies, the condition yields M ′ = Θ(N δ+β).

Because there are N/N ′ groups, the overall fidelity of
this strategy is

F [N →M ] = (F [N ′ →M ′])N/N ′

� 1 − Θ(N1−β) exp
[−Θ

(
Nβ−δ

)]
.

From the above bound, it is immediately clear that the fi-
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delity converges to one whenever β > δ. Hence, quantum
clocks can be superreplicated with interactions among
M ′ = O

(
N2δ+ε

)
= O

(
M2/N2−ε

)
particles for every

desired ε > 0. Now, recall that the original superrepli-
cation strategy [29] requires interactions among O(M)
particles. This means that the modified strategy reduces
the interaction scale by a factor of N2−ε/M .

On the other hand, the modified strategy does not
make it possible to achieve superreplication with inter-
actions among less than Θ(N δ) systems. Indeed, super-
replication can be achieved only if the fidelity of the in-
dividual processes approaches one. By the Heisenberg
limit, this condition is satisfied only if N ′ and M ′ sat-
isfy the asymptotic relation M ′ � (N ′)2. Recalling
that M ′ has to scale as Nβ+δ and that N ′ scales as
Nβ, we then obtain that β > δ is a necessary con-
dition. In summary, the strategy of dividing the input
copies into non-interacting groups achieves superreplica-
tion with M = Θ(N1+δ) output copies if and only if the
size of each group grows faster than N δ = M/N .

A sequential cloning approach. Another approach to
reducing the scale of interactions is to generate clones by
local mechanisms. For example, we can imagine a cloning
process that involves repeated interactions among O(N)
systems. Let us analyze this idea for equatorial qubit
states; here we consider a sequence of cloners that take
N to 2N copies arranged in the following circuit:

Each wire in the circuit represents a composite sys-
tem of N qubits. At each step, the quantum opera-
tion M(N) performs the optimal N -to-2N probabilistic
cloning given by the map

|N, N
2

+m〉 −→
√√√
√

(
2N

N+m

)

(
2N
3N
2

)(
N

N
2 +m

) |2N,N +m〉 ,

∀m ∈
[
−N

2
,
N

2

]
,

as one can see by replacing M with 2N in Eq. (9). In the
following, it will be convenient to express the map as

|N,n〉 −→
√√√
√

(
2N

N/2+n

)

(
2N
3N
2

)(
N
n

) |2N, N
2

+ n〉 , ∀n ∈ [0, N ] .

We now analyze the performance of the sequential

cloner after K − 1 steps, which result in the generation
of KN approximate copies. At the first step, the input
state is the N -copy state

|Ψ t,0〉 =
1

2N/2

N∑

n=0

√(
N

n

)
e−int |N,n〉1 ,

where the subscript 1 indicates the first group of N
qubits. The first cloner transforms |Ψt,0〉 into a state on
the first and second group, yielding 2N qubits in the
state

|Ψt,1〉 = N1

N∑

n=0

√(
2N

N/2 + n

)
e−int |2N, N

2
+ n〉1,2

= N1

N∑

n=0

e−int
∑

x1∈Sn,1

√(
N

n− x1

)(
N

N/2 + x1

)

· |N,n− x1〉1|N, N2 + x1〉2,

where N1 is a normalization constant, and the set Sn,1

is defined via the relation

Sn,K =
{
x := (x1, . . . , xk)

∣
∣
∣
∣ xj ∈

[
− N

2
,
N

2

]
,

j∑

l=1

xl ∈ [n−N,n] , ∀ j ∈ {1, . . . ,K}
}
. (14)

Iterating the cloning process for K − 1 steps, we finally
obtain K groups of qubits in the joint state

|Ψt,K−1〉 = NK−1

N∑

n=0

e−int
∑

x∈Sn,K−1

cn,x

· |N,n−
K−1∑

i=1

xi〉1|N, N2 +x1〉2 · · · |N, N2 +xK−1〉K ,

where cn,x is a coefficient given by

cn,x :=

√√
√
√
(

N

n−∑K−1
i=1 xi

) K−1∏

j=1

(
N

N/2 + xj

)
.

The overall fidelity of the cloner with the state of NK
perfect copies does not depend on t and is given by

Fseq[N → KN ] =
1

2NK

N∑

n=0

∑

x∈Sn,K−1

(
N

n−∑K−1
i=1 xi

)

·
⎡

⎣
K−1∏

j=1

(
N

N/2 + xj

)
⎤

⎦ . (15)

For K > 2, the cloning fidelity (15) is strictly
smaller than the fidelity (8) of the optimal probabilis-
tic cloner. Fig. 2 compares the sequential cloner, optimal
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Fig. 2 Comparison between the three cloners. In this figure we
compare the performance of the network cloner to the one of the
probabilistic cloner as well as the one of the deterministic cloner.
The fidelity is plotted as a function of the output number, fix-
ing the input number to N = 8. The green line (with numerics
represented by red dots) represents the fidelity-output curve for
the network cloner. The blue line (with numerics represented by
red dots) stands for the fidelity-output curve for the probabilistic
cloner, and the black line (with numerics represented by black dots)
stands for the fidelity-output curve for the deterministic cloner.

probabilistic cloner, and optimal deterministic cloner for
N = 8. Note that the fidelity of the sequential cloner
decays quickly with the number of cloning steps. In our
example, the fidelity of the sequential cloner approaches
that of the deterministic cloner as the number of out-
put copies approaches M = N2 = 64. This numerical
result suggests that it may not be possible to achieve su-
perreplication sequentially. However, it is an open ques-
tion whether superreplication can be achieved by the the
sequential cloner or by similar mechanisms. For exam-
ple, one could construct a quantum cellular automaton
for cloning, as proposed by D’Ariano et al. [55]. They
considered a tree-shaped network of deterministic 1-to-
2 cloners. To achieve superreplication, one would have
to extend the model, allowing for probabilistic cloners.
Moreover, symmetry arguments imply that probabilistic
1-to-2 cloners do not offer any advantage over their de-
terministic counterparts [29]. Hence, one has to consider
local cloners with more input copies. An interesting pos-
sibility is to construct a probabilistic cellular automaton
where the building blocks are the optimal k-to-2k prob-
abilistic cloners with k > 1.

5 Quantum gate superreplication

We have seen that state superreplication necessarily has
a vanishing success probability in the asymptotic limit.
Here we analyze the task of replicating quantum gates,
where superreplication can be achieved with unit proba-
bility of success on average over all input states.

Gate superreplication. In many applications, includ-
ing quantum metrology and quantum algorithms, one is

given access to a black box implementing an unknown
quantum gate. In these applications, the uses of the gate
are a resource; indeed, a no-cloning theorem for gates as-
serts that it is impossible to perfectly simulate two uses
of an unknown gate by using it only once [32]. Still, a
natural question is: how well can we simulate M uses of
the unknown gate with N < M uses? Here the problem
is to engineer a quantum computational network that
uses the unknown gate as a subroutine, as in Fig. 3. In
analogy with superreplication of quantum states, we say
that superreplication of quantum gates is possible if and
only if one can find a sequence of networks with the prop-
erty that the simulation error vanishes in the asymptotic
limit and the number of extra copies of the input gate
grows as N or faster. In the following, we will see that
gate superreplication can be achieved deterministically
for almost all input states. The first result of this type
was discovered by Dür et al. [33] for phase gates, that
is, gates of the form

Ut =
d−1∑

n=0

e−i nt |n〉〈n| , ∀t ∈ [0, 2π) .

The performance of the simulation was quantified by the
fidelity between the output state of the simulation and
the output state of M perfect uses of the gate Ut, aver-
aged over t and over all possible input states. Using a de-
terministic network, the authors showed how to simulate
M � N2 uses with asymptotically unit fidelity. This re-
sult can be extended from phase gates to arbitrary gates
[34], as discussed in the following paragraphs.

Universal gate superreplication. Given N uses of a
unitary gate, the goal is to simulate M parallel uses of
the gate. Let us denote by C(N)

U the quantum channel
that results from inserting N uses of the unknown gate
in the cloning network. With this notation, the average
fidelity is given by

Fgate[N →M ]

=
∫

dU
∫

dΨ〈Ψ |(U †)⊗MC(N)
U (|Ψ〉〈Ψ |)U⊗M |Ψ〉 ,

(16)

Fig. 3 Quantum gate cloning. A quantum network for gate
cloning. Given N uses of an unknown unitary gate U (green boxes
on the left), the network (blue boxes on the left) simulates M > N
uses of U (green boxes on the right).
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where dU is the normalized Haar measure over the group
of all unitary gates, and dΨ is the normalized Haar
measure over the manifold of pure M -partite states.
By Markov’s inequality, a simulation with gate fidelity
Fgate[N → M ] � 1 − ε works with fidelity F � 1 − δ on
all pure states except for a small fraction, whose proba-
bility is smaller than ε/δ.

A replication process is described as a sequence of net-
works in which the N -th network transforms N copies of
the unknown gate into M(N) approximate copies. We
say that the replication process is reliable if and only if

lim
N→∞

Fgate[N →M(N)] = 1 .

In other words, for a reliable replication process, one
has F [N → M(N)] � 1 − εN for some εN converging to
zero. Choosing δN =

√
εN , we then have that the replica-

tion process simulates the desired gate with fidelity larger
than 1− εN on all pure states except for a small fraction,
whose probability is smaller than εN/δN =

√
εN . As in

the case of state replication, we say that a process has a
replication rate

α = lim inf
N→∞

log[M(N) −N ]
logN

,

and we say that the rate α is achievable if and only if
there exists a reliable replication process with that rate.

In the following, we will see that every rate smaller
than 2 is achievable. For simplicity, we discuss the case
of qubit gates, although the protocol can be extended
in a straightforward way to unitary gates in arbitrary
finite-dimensional quantum systems.

The key to construction of the universal gate cloning
network is decomposition of the Hilbert space of K
qubits into orthogonal subspaces corresponding to dif-
ferent values of the total angular momentum. In the for-
mula, one has

H⊗K �
K/2⊕

j=0

(Rj ⊗MjK) ,

where j is the quantum number of the total angular mo-
mentum, Rj is a representation space, and Mj is a mul-
tiplicity space [56]. With respect to this decomposition,
the action of K parallel uses of a generic qubit unitary
U has the block-diagonal form

U⊗K �
K/2⊕

j=0

(Uj ⊗ IjK) ,

where IjK is the identity on the multiplicity space MjK .
Note that U⊗K acts nontrivially only in the represen-

tation spaces. This means that essentially, the multiplic-

ity spaces can be eliminated without losing any informa-
tion about U . Likewise, they can be inflated by adding
ancillas. The working principle for simulation of U⊗M

given U⊗N will be to conveniently adjust the size of the
multiplicity spaces, as in the following protocol.

Protocol 1 (Gate superreplication network [34])
The replication network is constructed as follows:

1) Choose an ancilla A such that the rank of IjN ⊗ IA
is no smaller than the rank of IjM for every j ∈
[0, N/2];

2) Compose the gate U⊗N with the identity on A, thus
obtaining the gate U⊗N ⊗ IA =

⊕N/2
j=0 (Uj ⊗ IjN ⊗

IA);
3) Project the resulting gate U⊗N ⊗ IA into the sub-

space

HN =
N/2⊕

j=0

(Rj ⊗MjM ) ⊂ H⊗N ⊗HA,

where the gate acts as

U ′ =
N/2⊕

j=0

(Uj ⊗ IjM ) .

4) Embed the subspace HN into the Hilbert space
H⊗M . With a slight abuse of notation, we use HN

both for the subspace of H⊗N ⊗HA and for the cor-
responding subspace of H⊗M .

5) Given an input state of M qubits, perform a pro-
jective measurement that projects the qubits either
into the subspace HN or into its orthogonal com-
plement H⊥

N . If the qubits are projected into HN ,
then apply the gate U ′. If the qubits are projected
into H⊥

N , then perform the identity.

The network described by Protocol 1 perfectly imi-
tates U⊗M for any state in the subspace HN ⊂ H⊗M .
Now, it is possible to show that a random pure state in
H⊗M has a large overlap with the subspace HN when-
ever M � N2. Indeed, we have the following lemma.

Lemma 1 Let FN be the fidelity between the pure state
|Ψ〉 ∈ H⊗M and its projection |ΨN〉 = PN |Ψ〉/‖PN |Ψ〉‖.
The expectation value of the fidelity over the uniform
measure is given by

E (FN ) =
∫

dΨ 〈Ψ |PN |Ψ〉

=
Tr[PN ]

2M

=
N/2∑

j=0

djmjM

2M
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� 1 − (M + 1) exp
[
−N2

2M

]
.

In the above inequality, dj and mjM are the dimen-
sions of the representation space Rj and the multiplicity
space MjM , respectively. The detailed proof of the last
inequality can be found in the supplemental material of
Ref. [34]. Using the above lemma, it is easy to show that
the fidelity is close to one whenever M is small compared
to N2. Indeed, the cloning fidelity (16) is lower-bounded
as

Fgate[N →M ]

�
∫

dU
∫

dΨ〈Ψ |(U †)⊗MU ′PN |Ψ〉〈Ψ |PNU
′†U⊗M |Ψ〉

=
∫

dΨ (〈Ψ |PN |Ψ〉)2

�
(∫

dΨ 〈Ψ |PN |Ψ〉
)2

= [E(FN )]2

� 1 − 2(M + 1) exp
[
−N2

2M

]
.

In conclusion, the gate fidelity converges to one for all
replication processes with replication rate α < 2, estab-
lishing the possibility of gate superreplication. Similar
bounds can be found for arbitrary d-dimensional sys-
tems, in which case we have

Fgate[N →M ] � 1 − 2(M + 1)
d(d−1)

2 exp
[
−N2

2M

]
,

∀d <∞. (17)

The inequality follows from the concentration of the
Schur–Weyl measure [57, 58], which has applications
in quantum estimation [59] and information compres-
sion [60, 61]. The bound (17) allows one to produce
M = Θ(N2−ε) copies with an error that vanishes su-
perpolynomially fast. In addition, one can produce M =
Θ[N2/ logN ] copies with an error vanishing faster than
1/Nk for every desired k > 0. For this purpose, it is
enough to choose

M =
⌊

N2

2(d2 − d+ k) logN

⌋

so that Eq. (17) becomes

Fgate[N →M ] � 1 −O

(
1

Nk logNd(d−1)/2

)
,

N � d . (18)

Finally, we note that the size of the interactions used in
the superreplication network can be reduced from O(M)

qubits to O(M/N) qubits by dividing the N input gates
into groups of O(N2/M) gates. This fact can be proven
by the same argument as that used for quantum states.

6 Applications of gate superreplication

Superreplication of maximally entangled states.
Inspired by gate superreplication, one can construct a
protocol for superreplicating maximally entangled states
that achieves any cloning rate α < 2 [34]. For qubits,
we can cast an arbitrary maximally entangled state in
the form |ΦU 〉 = (U ⊗ I)|Φ+〉, where |Φ+〉 is the Bell
state, |Φ+〉 = (|00〉+ |11〉)/√2. The replication protocol
works as follows: First, the unitary gate U can be ex-
tracted from the state via a gate teleportation protocol
[62]. The success probability of a single gate extraction
is 1/4, which implies that U⊗N can be extracted from N

copies of the maximally entangled state with probabil-
ity (1/4)N . The extracted gates are then used in the gate
superreplication network, which simulates the gate U⊗M

with vanishing error whenever M grows as Nα, α < 2.
Finally, the approximation of U⊗M is applied locally to
M copies of the Bell state |Φ+〉, thus providing M ap-
proximate copies of the state |ΦU 〉. The fidelity of the
replicas can be bounded as

Fent[N →M ] =
∫

dU 〈Φ+|⊗M (U † ⊗ I)⊗M

·
(
C(N)

U ⊗ I
) (|Φ+〉〈Φ+|⊗M

)
(U ⊗ I)⊗M |Φ+〉⊗M

=
(2M + 1)Fgate[N →M ] − 1

2M

where the relationship between the entanglement fidelity
and the gate fidelity derived by Horodecki et al. [63] was
used. The above equality implies that the fidelity of the
state cloning protocol goes to one if and only if the fi-
delity of gate superreplication goes to one. Therefore, the
above protocol can replicate maximally entangled states
at every rate α < 2.

The idea of gate teleportation followed by gate super-
replication can also be applied to achieve superreplica-
tion of other families of states. For instance, gate su-
perreplication yields an alternative superreplication pro-
tocol for equatorial qubit states. Given N copies of an
equatorial qubit state (|0〉 + e−it|1〉)/√2, one can first
generateN copies of the maximally entangled qubit state
(|00〉 + e−it|11〉)/√2 by applying a CNOT gate to each
input copy. Then, the maximally entangled qubit state
can be superreplicated. Finally, applying a CNOT gate
to each output copy makes it possible to transform the
(approximate) copies of the maximally entangled qubit
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state into (approximate) copies of the equatorial qubit
state. The net result of this protocol is superreplication
of equatorial qubit states.

Similar arguments apply to superreplication of max-
imally entangled states in arbitrary finite dimensions.
Every maximally entangled state can be parametrized as
|ΦU 〉 = (U ⊗ I)|Φ+〉, where |Φ+〉 = 1/

√
d
∑d−1

n=0 |n〉|n〉.
Again, the unitary gate U can be probabilistically ex-
tracted from the state |ΦU 〉 with probability p = 1/d2.
Hence, maximally entangled states can be superrepli-
cated by i) simulating M copies of the gate U and ii)
applying the simulated gates locally to M copies of the
state |Φ+〉. The fidelity is then given by

Fent[N →M ] =
∫

dU 〈Φ+|⊗M (U † ⊗ I)⊗M

·
(
C(N)

U ⊗ I
) (|Φ+〉〈Φ+|⊗M

)
(U ⊗ I)⊗M |Φ+〉⊗M

=
(dM + 1)Fgate[N →M ] − 1

dM
, (19)

where the relationship between the entanglement fidelity
and the gate fidelity [63] is again used. In conclusion,
the cloning fidelity for maximally entangled states ap-
proaches one if and only if the cloning fidelity for uni-
tary gates approaches one. Hence, superreplication of
quantum gates implies (probabilistic) superreplication of
maximally entangled states. In turn, superreplication of
maximally entangled states implies superreplication of
the uniform-weight multiphase states

|ψθ〉 =
1√
d

⎛

⎝|0〉 +
d−1∑

j=1

eiθj |j〉
⎞

⎠ ,

θj ∈ [0, 2π) , ∀j = 1, . . . , d− 1 ,

which are unitarily equivalent to the maximally entan-
gled states |Φθ〉 = 1√

d

(
|0〉|0〉 +

∑d−1
j=1 eiθj |j〉|j〉

)
.

Upper bound on the rate of gate replication. The
relationship between gate replication and replication of
maximally entangled states can be used to derive the ul-
timate limit on the rates of gate replication in finite di-
mensions. The argument proceeds by contradiction: Sup-
pose that it is possible to devise a network that simulates
Θ(Nα) uses of U for α � 2 with vanishing error. Then we
could use it to superreplicate maximally entangled states
at a rate α � 2. Now, the family of maximally entangled
states contains the family of clock states

|Φt〉 = (Ut ⊗ I) |Φ+〉 , Ut =
∑

n

e−int |n〉〈n| .

Replication of these states at a rate α � 2 would contra-
dict Theorem 5, which implies that every cloner with a

rate α � 2 must have vanishing fidelity. Hence, the pos-
sibility of achieving gate superreplication at rates larger
than quadratic is excluded. Note that the above argu-
ment applies not only to deterministic gate replication
networks, but also to probabilistic networks. Using the
correspondence between entanglement fidelity and gate
fidelity, we obtain the following.

Theorem 7 Every physical process that replicates phase
gates with a replication rate α > 2 will necessarily have
vanishing gate fidelity (no matter how small the proba-
bility of success).

An alternative optimality proof for the quadratic repli-
cation rate was presented by Sekatski et al. [64], who de-
vised an argument to bound the replication fidelity based
on the no-signaling principle.

Supergeneration of maximally entangled states.
Gate superreplication can be achieved deterministically,
whereas state superreplication can be achieved only with
a vanishing probability. This sharp difference originates
in the fact that states and gates are inequivalent re-
sources; whereas gates can be used to deterministically
generate states as |ψU 〉 = U |0〉, the converse process
is forbidden by the no-programming theorem [65]. It
is then useful to distinguish between the task of state
cloning, where the input consists of N copies of the state
|ψU 〉 = U |0〉, and the task of state generation, where the
input consists of N copies of the gate U . Determinis-
tic gate superreplication cannot be used to achieve de-
terministic state superreplication, but it can be used to
achieve deterministic state supergeneration, that is, the
generation of up to N2 almost perfect copies of the quan-
tum state |ψU 〉 from N copies of the gate U . A general
supergeneration protocol works as follows:

1) Use a gate superreplication protocol to simulate
M � N2 uses of the gate U .

2) Apply the simulated gates to the state |0〉⊗N .

In general, the protocol can be tailored to the specific
set of states that one wants to generate. For example,
one could have i) clock states, where U is of the form
U = e−itH , ii) maximally entangled states, where U is
of the product form U = VA ⊗ IB with respect to some
bipartition of the Hilbert space, and iii) arbitrary pure
states, where U is a generic unitary gate.

The fidelity of supergeneration depends on the proto-
col used to replicate the gates. For example, the phase
gate replication by Dür et al. makes it possible to su-
pergenerate clock states [33], whereas our universal gate
replication makes it possible to supergenerate maximally
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entangled states of bipartite systems [34]. Interestingly,
universal gate replication does not work for the set of all
pure states parametrized as

{|ψU 〉 = U |0〉 | U ∈ SU(d) , |0〉 ∈ H} .
In this case, the approach of simulating M uses of the
gate U and applying it to the state |0〉⊗N does not work
because the state |0〉⊗N lies in the subspace H⊥

N , where
our gate superreplication network fails. However, we will
see below that arbitrary pure states can be supergener-
ated via a suitable protocol based on gate estimation.

Gate estimation with quasi-Heisenberg scaling.
Supergeneration of maximally entangled states has an
elegant application to quantum metrology. Specifically,
it allows for an easy proof of the fact that an un-
known quantum gate can be estimated with an error
scaling as logN/N2. Here the error is defined as 〈e〉N =
1 − Fest,gate[N ], where Fest,gate[N ] is the fidelity of gate
estimation with N copies, namely,

Fest,gate[N ] =
∫

dU
∫

dÛ pN (Û |U)Fgate(Û , U) , (20)

where pN (Û |U) is the probability distribution resulting
from the estimation, and Fgate(Û , U) is the gate fidelity,
which is defined as

Fgate(Û , U) :=
∫

dψ
∣
∣∣〈ψ|U †Û |ψ〉

∣
∣∣
2

.

We now show that gate superreplication can be used
to achieve estimation fidelity scaling as

Fest,gate[N ] � 1 −O

(
logN
N2

)
. (21)

The proof goes as follows: given N copies of the gate
U , we can produce M = Θ(N2/ logN) copies of the
maximally entangled state |ΦU 〉, with an error vanish-
ing faster than 1/Nk for every desired k > 0; cf. Eq.
(18). In particular, we set k = 2. With this choice, the
error vanishes faster than 1/M , and the M approximate
copies can be used for state estimation, resulting in an
estimate of the maximally entangled state with fidelity

Fest,ent[M ] � 1 −O

(
1
M

)

according to the central limit theorem. Here, the estima-
tion fidelity is defined as

Fest,ent[M ] =
∫

dU
∫

dÛ pM (ΦÛ |ΦU )
∣
∣〈ΦÛ |ΦU 〉

∣
∣2 ,

where pM (ΦÛ |ΦU ) is the probability distribution result-
ing from estimation of a maximally entangled state with
M nearly perfect copies. Now, we regard estimation of

the maximally entangled state |ΦU 〉 with M copies as a
particular strategy for estimation of the unitary gate U
with N copies, meaning that we have

pN (Û |U) ≡ pM (ΦÛ |ΦU ), M = Θ(N2/ logN) .

Then, the estimation fidelity for the maximally entan-
gled state can be easily converted into the gate fidelity
for the corresponding gate using the relation [63]

Fest,gate[N ] =
(d+ 1)Fest,ent[M ] − 1

d
.

Because the state estimation fidelity converges to one
as 1/M , the gate estimation fidelity will also converge
to one as 1/M . Recalling that M scales as N2/ logN ,
this proves Eq. (21). The error scaling 〈e〉 = logN/N2

beats the central limit scaling of classical statistics and
is close to the optimal quantum scaling 1/N2, which was
derived in Refs. [35–37] for qubits and in Ref. [38] for
general d-dimensional systems. The usefulness of our new
derivation is that the proof is much simpler than full op-
timization of the estimation strategy.

Interestingly, for d = 2, an alternative estimation
strategy achieving scaling by logN2/N2 was proposed
by Rudolph and Grover [66]. Their protocol is sequential
and uses unentangled states to reach a quasi-Heisenberg
scaling. It is an open question whether a similar protocol
exists for d > 2.

Universal supergeneration of pure states. We now
show that all pure states can be supergenerated. To this
purpose, we parametrize the manifold of pure states as
{|ψU 〉 = U |0〉 | U ∈ SU(d)}, where |0〉 is a fixed pure
state. To achieve supergeneration, we use a classical
strategy based on estimation of the unknown gate U and
on preparation of the state |ψÛ 〉⊗M conditional on the
estimate Û . The fidelity of this strategy is given by

Fpure[N →M ] =
∫

dU
∫

dÛ pN (Û |U) |〈ψÛ |ψU 〉|2M ,

where pN (Û |U) is the probability distribution resulting
from gate estimation. The above choice of strategy im-
plies that we have the bound

Fpure[N →M ] � (Fpure[N → 1])M
. (22)

Now, note that the single-copy fidelity satisfies the rela-
tion

Fpure[N → 1]

=
∫

dV
∫

dU
∫

dÛ pN(ÛV |UV ) |〈ψÛV |ψUV 〉|2

=
∫

dV
∫

dU
∫

dÛ pN(Û |U) |〈ψÛV |ψUV 〉|2

=
∫

dV
∫

dU
∫

dÛ pN(Û |U) |〈ψV | Û †U |ψV 〉|2
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=
∫

dU
∫

dÛ pN (Û |U)Fgate(Û , U)

= Fest,gate[N ] , (23)

where Fest,gate[N ] is the gate estimation fidelity defined
in Eq. (20), and in the second equality we used the
fact that the optimal gate estimation strategy is covari-
ant [67], i.e., it satisfies the condition pN (ÛV, UV ) =
pN (Û , U) for every Û , U, V ∈ SU(d).

Combining Eq. (23) with the bounds (22) and (21), we
finally obtain

Fpure[N →M ] � 1 −O

(
M logN
N2

)
,

which means that arbitrary pure states can be super-
generated at every rate smaller than quadratic. Because
the above protocol is based on estimation, the error van-
ishes only as a power law. It is an open question whether
there exists a universal quantum supergeneration proto-
col whose error vanishes faster than any inverse polyno-
mial.

Equivalence between gate superreplication and
gate estimation. As in the case of states, superreplica-
tion can be achieved by gate estimation. The argument is
the same as that used to derive Eq. (13); in short, one can
show that every estimation strategy with fidelity scaling
as Fest,gate[N ] = 1 − O(1/Nβ) can be used to achieve
gate replication with fidelity

Fgate[N →M ] � 1 −O(M/Nβ) , (24)

which means that every replication rate smaller than β

can be achieved. In particular, we know from Eq. (21)
that we can choose β = 2 − ε. Hence, every replication
rate smaller than quadratic can be achieved via state es-
timation. Note, however, that the replication error goes
to zero only as a power law, whereas the quantum repli-
cation network has much better scaling of the error.

The connection between gate superreplication and es-
timation can be used to prove the Heisenberg limit [30].
The proof is by contradiction: Suppose that one could
estimate the parameters of a unitary gate with a fidelity
scaling as Fest,gate[N ] = 1 − O(1/N2+ε). Then, Eq. (24)
would imply that one can simulate M = O

(
N2+ε/2

)

copies of the gate, in contradiction to Theorem 7. In
summary, the quadratic scaling of the Heisenberg limit
can be derived solely from considerations regarding the
optimal rates of gate superreplication.

Asymptotic no-cloning theorem for quantum
gates in the worst-case scenario. We have seen that
gate superreplication can be achieved on all input states
except for a vanishingly small fraction. A natural ques-
tion is whether one can find a superreplication protocol

that works on all input states. The problem can be ad-
dressed by evaluating the worst-case fidelity

Fgate,worst[N → M ] = min
|Ψ〉∈H⊗M ,‖|Ψ〉‖=1

∫
dU 〈Ψ |(U †)⊗MC(N)

U (|Ψ〉〈Ψ |)U⊗M |Ψ〉 , (25)

where C(N)
U is the channel implemented by the replication

network. In this setting, we say that a gate replication
process is reliable in the worst case if and only if

lim
N→∞

Fgate,worst[N → M(N)] = 1,

and we say that the replication rate α is achievable in the
worst case if and only if there exists a replication proto-
col that has that rate and is reliable in the worst case.
The supremum over all achievable rates is determined as
follows.

Theorem 8 (Asymptotic no-cloning theorem for quan-
tum gates) For finite-dimensional quantum systems, no
physical process can reliably replicate phase gates at a
rate α � 1 in the worst-case scenario.

Here we give a heuristic proof based on optimal phase
estimation. When an unknown phase gate is used N

times, the optimal estimation strategy has a mean square
error c/N2 for some suitable constant c > 0 [68, 69].
The bound holds for both deterministic and probabilistic
strategies [70], and the fact that the optimal estimation
strategy can be achieved deterministically plays a crucial
role in our argument. Now, suppose that one can produce
M reliable replicas up to an error scaling as 1/Mβ for
some β > 2. In this case, one could use the replicas for
phase estimation, reducing the error to

〈e〉 =
c

M2
+O

(
1
Mβ

)
.

This result follows from the fact that the error of a de-
terministic estimation strategy is a continuous function
of the input state. Because the above strategy cannot be
better than the optimal strategy, we obtain the inequal-
ity

c

N2
� c

M2
+O

(
1
Mβ

)
, (26)

which implies that M can grow at most as M = N +
Θ(Nα) with α < 1. In addition, by Taylor-expanding
the r.h.s. of Eq. (26), we obtain the inequality β < 3−α,
so the error can vanish at most as 1/N3. In summary,
superreplication and exponentially vanishing errors are
forbidden in the worst-case scenario.
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7 Conclusion and outlook

In this paper, we reviewed the phenomenon of superrepli-
cation of quantum states and gates, emphasizing the ap-
plications and connections with other tasks in quantum
information processing. In particular, we clarified the re-
lation between superreplication and the precision limits
of quantum metrology, showing that i) estimation can
be used to achieve superreplication with an error vanish-
ing as O(M/N2), probabilistically in the case of states
and deterministically in the case of gates, ii) gate super-
replication allows for a simpler proof of the quadratic
precision enhancement in the estimation of an unknown
gate, and iii) the optimality of Heisenberg scaling for
estimation of unitary gates can be derived from the ul-
timate limit on the rate of superreplication. In addition,
we showed that N uses of a completely unknown gate
are sufficient to generate O(N2) approximate copies of
the corresponding pure state with an error that vanishes
in the large-N limit.

Among the future research directions, an important
one is the study of replication processes for mixed states
and noisy channels. We expect that in this case there
is also an equivalence between replication and estima-
tion. It is well known that in the presence of noise,
Heisenberg scaling is often inhibited, leading to different
sub-Heisenberg scalings [71–75]. We then expect that the
replication rates will also have intermediate values rang-
ing between α = 1 and α = 2, depending on the type of
noise. The study of superreplication in the noisy case is
also expected to shed light on the optimal strategies for
estimation of noisy channels, the performance of which
is sometimes hard to characterize analytically. Another
interesting research direction is the study of replication
processes that are subject to constraints, e.g., on the
ability to perform joint operations on composite sys-
tems. Recently, Kumagai and Hayashi [76] investigated
the problem of cloning bipartite quantum states using
only local operations and classical communication. When
the state to be cloned is perfectly known, they showed
that the number of extra copies scales as

√
N . Note the

contrast with the situation where the limitations of local
operations and classical communication are not imposed,
in which case one can produce Θ(N δ) extra copies for
every δ < 1. In addition to the constraints due to the
locality of the operations, other physical constraints can
arise from conservation laws, such as energy and an-
gular momentum conservation [77–81]. The search for
energy-preserving cloners was considered in our earlier
work [45], where we identified the optimal operations for
transformation of pure states. In this scenario, it is inter-

esting to examine how the replication rates are affected
by the presence of limited resources or, conversely, what
resources are needed to achieve a desired replication rate.
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A. Aćın, Noisy metrology beyond the standard quantum

limit, Phys. Rev. Lett. 111(12), 120401 (2013)

75. R. Demkowicz-Dobrzański and L. Maccone, Using entangle-

ment against noise in quantum metrology, Phys. Rev. Lett.

113(25), 250801 (2014)

76. W. Kumagai and M. Hayashi, A new family of probability

distributions and asymptotics of classical and locc conver-

sions, arXiv: 1306.4166, 2013

77. M. Ozawa, Conservative quantum computing, Phys. Rev.

Lett. 89(5), 057902 (2002)

78. J. Gea-Banacloche and M. Ozawa, Constraints for quantum

logic arising from conservation laws and field uctuations, J.

Opt. B 7(10), S326 (2005)

79. M. Ahmadi, D. Jennings, and T. Rudolph, The Wigner-

Araki-Yanase theorem and the quantum resource theory of

asymmetry, New J. Phys. 15(1), 013057 (2013)

80. I. Marvian and R. Spekkens, The theory of manipulations

of pure state asymmetry (I): Basic tools, equivalence classes

and single copy transformations, New J. Phys. 15(3), 033001

(2013)

81. I. Marvian and R. W. Spekkens, Extending Noethers theo-

rem by quantifying the asymmetry of quantum states, Nat.

Commun. 5(3821) (2014)

Giulio Chiribella and Yuxiang Yang, Front. Phys. 11(3), 110304 (2016) 110304-19


