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ABSTRACT Impact force identification is important for structure health monitoring especially in applications
involving composite structures. Different from the traditional direct measurement method, the impact force identification
technique is more cost effective and feasible because it only requires a few sensors to capture the system response and
infer the information about the applied forces. This technique enables the acquisition of impact locations and time
histories of forces, aiding in the rapid assessment of potentially damaged areas and the extent of the damage. As a typical
inverse problem, impact force reconstruction and localization is a challenging task, which has led to the development of
numerous methods aimed at obtaining stable solutions. The classical ¢, regularization method often struggles to generate
sparse solutions. When solving the under-determined problem, ¢, regularization often identifies false forces in non-
loaded regions, interfering with the accurate identification of the true impact locations. The popular ¢, sparse
regularization, while promoting sparsity, underestimates the amplitude of impact forces, resulting in biased estimations.
To alleviate such limitations, a novel non-convex sparse regularization method that uses the non-convex ¢,_, penalty,
which is the difference of the ¢, and ¢, norms, as a regularizer, is proposed in this paper. The principle of alternating
direction method of multipliers (ADMM) is introduced to tackle the non-convex model by facilitating the decomposition
of the complex original problem into easily solvable subproblems. The proposed method named ¢, ,-ADMM is applied to
solve the impact force identification problem with unknown force locations, which can realize simultaneous impact
localization and time history reconstruction with an under-determined, sparse sensor configuration. Simulations and
experiments are performed on a composite plate to verify the identification accuracy and robustness with respect to the
noise of the ¢, ,~-ADMM method. Results indicate that compared with other existing regularization methods, the
¢,_,-ADMM method can simultaneously reconstruct and localize impact forces more accurately, facilitating sparser
solutions, and yielding more accurate results.

KEYWORDS impact force identification, inverse problem, sparse regularization, under-determined condition,
alternating direction method of multipliers

even causes irreversible damages [4]. Impact force
identification can help quickly determine where impact

1 Introduction

Composite materials are widely used in mechanical
engineering fields, especially in aeronautical structures
due to their excellent properties such as high specific
stiffness and specific strength [1]. However, composite
structures often suffer from poor impact resistance [2].
When impacted by foreign objects, such as birds, rocks,
and hail, composite structures are prone to barely visible
impact damage (BVID) such as debonding and
delamination [3]. If not detected promptly, BVID seri-
ously threatens the healthy operation of the structure and
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damage is likely to occur and assess the structural
integrity. Therefore, it is indispensable to identify impact
forces acting on composite structures, including
reconstructing their time histories and localizing force
positions. Considering that directly monitoring impact
forces at unknown locations with force sensors is not
feasible, measurable structural responses are used to solve
for impact forces inversely instead [5]. In recent years,
numerous approaches have emerged to address this
challenging inverse problem of impact force
identification [6].

To handle the highly ill-posed inverse problem of
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impact force identification, regularization methods are
commonly employed [7]. As one of the classical
regularization methods, Tikhonov regularization is widely
used for the inverse problem. Jacquelin et al. [8]
conducted a comparative analysis of the effectiveness of
Tikhonov, generalized singular value decomposition,
truncated singular value decomposition methods in
reconstructing impact forces imposed on an aluminum
plate in time domain and stated the condition number of
the transfer function is influenced by the position of
measuring points. Li and Lu [9] localized impact forces
through the Nelder—Mead method and then reconstructed
their time histories using Tikhonov regularization on a
cantilever beam with two accelerometers. Yan et al. [10]
proposed a two-step approach for impact force
identification, which involves an outer loop for impact
localization using a nonlinear unscented Kalman filter
and an inner loop for time history reconstruction using
Tikhonov regularization. Although ¢, regularization
methods like Tikhonov are simple and easy to use, the
identification performance is always poor when dealing
with sparse, under-determined sensor placement cases
[11]. In addition, when applied to impact force
identification, ¢, regularization often identifies false loads
in the non-loaded area, resulting in poor identification
accuracy [12].

With the increasing focus on sparse regularization
methods, some researchers have gradually turned their
attention from the traditional ¢, norm to the study of
solving cost functions based on the £, norm because ¢,
regularization methods enforce sparsity by promoting a
minimum number of nonzero values in the solution,
which is in line with the sparse nature of impact forces in
the joint time—space domain. Thus, these sparse methods
can work well in the case of under-determined sensor
configurations [13]. Because the ¢,-norm minimization
model is convex, it can be solved by convex algorithms,
such as the gradient projection method [14], the interior
point method [15], and the iterative soft threshold
algorithm [16]. Ginsberg and Fritzen [17] simultaneously
identified the impact locations and time histories of
impact forces acting on a simple beam structure by a
direct deconvolution involving an extended ¢,-minimiza-
tion problem. Qiao et al. [18] developed a general sparse
model based on minimizing ¢, norm and accurately
reconstructed single- and two-source impact forces
imposed on a clamped-free shell structure with the
monotonic two-step iterative shrinkage/thresholding
algorithm. To address the inherent defect that ¢,
regularization underestimates the amplitudes of impact
forces, Aucejo and De Smet [19] proposed a novel
regularization method based on a space—frequency
multiplicative approach considering the sparsity of
excitation sources in the space domain and verified this
method on a thin simply supported steel beam. Pan and
Chen [20] improved the identification accuracy of ¢,

regularization by introducing some pseudo forces to
simulate the effects of additional mass loading. However,
the ability of the £, norm to promote sparsity is limited, so
the above ¢,-norm-based methods perform generally in
solving the problem of amplitude underestimation [21].

To alleviate the said limitations of ¢, regularization,
some non-convex penalties have also been exploited in
recent years to solve inverse problems including impact
force identification to enhance sparsity [22-24].
Chartrand and Yin [25] indicated non-convex functions,
such as ¢, quasi-norm (0 < p <1), can retrieve sparser
solutions with fewer measurements than convex ¢,
regularization. Then, Qiao et al. [26] successfully
introduced the non-convex ¢,-norm regularizer into the
impact force identification model, and the non-convex
regularization method solved this large-scale inverse
problem well, which realized the high-precision
reconstruction of impact forces. Aucejo and De Smet [27]
introduced a local regularization term R(f) = fll} (¢
refers to the norm parameter defined in R**) into the
minimization problem, and R(f) is a sparse term when
g<1. Liu et al. [28] used a non-convex penalty to
establish an optimization objective function for impact
force identification and numerically and experimentally
verified it on a stiffened composite structure.

In addition to the non-convex regularization methods
above, a non-convex penalty called £,_, which is the
difference between the ¢, and ¢, norms, has emerged [29]
and has been successfully applied in compressive sensing
to achieve the high-precision recovery of sparse signals
[30]. As mentioned in Ref. [30], £,_, is better than ¢, in
promoting sparsity due to its non-convexity. Therefore, in
this contribution, the non-convex ¢,_, penalty is extended
to the impact force identification field. To the best of the
authors’ knowledge, the ¢,_, minimization method has
never been used to solve the impact force identification
problem. Different from compressive sensing, the transfer
matrix that needs to be dealt with in the impact force
identification problem is a large-scale, non-orthogonal,
and ill-conditioned Toeplitz-like matrix [31,32], which
directly makes the impact force identification model built
with the ¢,_, penalty more difficult to cope with. This
paper mainly focuses on monitoring more impact
locations from fewer sensors, which means a large-scale,
under-determined inverse problem needs to be solved. To
this end, a novel ¢,_, minimization method for impact
force identification is proposed to reconstruct and localize
impact forces at unknown impact locations simulta-
neously in the under-determined case with high accuracy.
This method uses the non-convex ¢,_, penalty to construct
the impact force identification model. The alternating
direction method of multipliers (ADMM) principle that
has advantages in addressing large-scale optimization
problems [33] is introduced to solve this large-scale
under-determined non-convex model to realize the
simultaneous localization and reconstruction of impact
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force. Moreover, unified algorithms for regularized least
square problems are derived under the ADMM frame-
work.

The rest of this paper is organized as follows. Section 2
briefly deduces the modeling problem for impact force
identification. Section 3 introduces the framework of
ADMM. Section 4 introduces the ADMM algorithms
with regularization involving ¢, and ¢, norms and derives
the non-convex ¢, , sparse regularization method via
ADMM. Section 5 carries out numerical verification on a
composite plate. Section 6 verifies the ¢, sparse
regularization method by means of laboratory experi-
ments on a composite plate. Section 7 concludes this

paper.

2 Problem statement

For a linear time-invariant single-input single-output
(SISO) dynamic system, the convolution relationship

between the response and the excitation can be defined as
[34]

s =aef0 = [ at-Df@dr, (1)

where s(¢) is the system response, a(f) is the impulse
response function (IRF), f(r) is the impact force
excitation, ¢ is the time, 7 is the time delayed operator
satisfying ¢t>7, and the symbol ® represents the
convolution operation. This paper assumes s(¢) = a(t) =
f(®) =0 when ¢ <0.

The continuous convolution model Eq. (1) can be
discretized as

SINAT) = At )" a((N - DA f(iA),

i=1

2

where At is the sampling interval, i is the looping variable
within the summation operation satisfying 1 <i < N, and
N is the data length of the discretized IRF. Equation (2)
can be further written as

s(AD) a(Ar) 0 0 0 f(Ar)
sQ2Ar) a(2Ar) a(Ar) 0 0 fQAr
: = At : : : : : : 3)
s((N=1)Ap) a((N-1AD a((N-2)Ar) a(Ar) 0 FUN=1Ar)
s(NAr) a(NAr) a((N-1)Ar) a2Ar)  a(Ar) S(NAD)
For convenience, Eq. (3) can be expressed concisely as Equation (6) can also be expressed compactly as
ss = Af, “4 s=Af+e, (7

where the response vector for the SISO system s, € RY,
the excitation force vector for the SISO system f, € R",
and A, € RV" refers to the transfer matrix between a
single-point excitation force and a single-point response.

The response of a certain measurement position is the
linear superposition of the impact force applied at each
location, which is described as

fi
[
§; = [Ail An Ain] - (%)
S
where s; refers to the response at a certain position i.
When impact forces are imposed on several unknown
locations over a structure, the responses from several

different positions are synchronously recorded as

S Ay Ap Ay, f]
) Ay Ay Ay || fo
. = . . . P (6)
sm Aml AmZ Amn fn

where m and n are the number of measurement responses
and impact force excitations, respectively.

where the response vector s €R”, the force vector
f €R™, the block Topelitz-like matrix A e R™, and
the vector e € R™" represents random noise and accounts
for measurement errors inevitable during the actual
measurement. According to the relationship between the
amount of measurements m and excitations 7, the inverse
problem of impact force identification is classified into
three categories:

(D) If m>n, the inverse problem is under an over-
determined condition.

(II) If m =n, the inverse problem is under an even-
determined condition.

(IIT) If m < n, the inverse problem is under an under-
determined condition.

Considering that to be greater than or equal to the
number of potential impact locations n in practical
applications is sometimes unrealistic for the number of
sensors m [35], this paper mainly studies the inverse
problem under the under-determined condition. Once the
solution f is obtained, the time history reconstruction and
localization of the impact force can be achieved
simultaneously. If the challenging problem of impact
force identification in the under-determined case is
solved, then solving the two other cases becomes
straightforward.



4 Front. Mech. Eng. 2023, 18(3): 46

Under the under-determined condition, the impact force
identification problem in Eq. (7) is a typical ill-condi-
tioned problem. Transfer matrix 4 has a remarkably high
condition number, so the inevitable noise in the response
causes a large error in the solution result. Therefore,
regularization techniques are often resorted to for the
stability of solutions. Then, solving f is transformed into
solving the general minimization problem,

®)

where ||Af—s| is the data fidelity item, g(f) is the
penalty term which incorporates prior knowledge, and A
is the regularization parameter. The regularized least
square problem is intractable, especially for the non-
convex regularized problem. The impact force identifi-
cation problem poses a challenge to the solution
efficiency and accuracy due to the high dimensionality of
the transfer matrix involved. Because ADMM has
advantages in solving high-dimensional and non-convex
optimization problems [33], this type of least square
problem with regularizers is solved under the framework
of ADMM in the following section.

1
argmin = |Af =slf; + A5 ().
f

3 ADMM principle

ADMM is an effective optimization algorithm for solving
convex and non-convex optimization problems [36,37].
To solve the complex optimization problem in Eq. (8),
ADMM enables decoupling the regularized term from the
smooth data fidelity term, providing computational
benefits.

According to ADMM, Eq. (8) can be reformulated as

N

A 1
(£.h) = argmin | A f = sl;; + Ag (k).
f
st. f-h=0, Q)
where the additional vector k is introduced for variable
splitting, and the vectors f and h are the estimated f and

h, respectively. Subsequently, the augmented Lagrangian
function can be obtained from Eq. (9) as

1
argmin L (f, h,z) = argmin ~ ||Af—s||§ +Ag(h)
f.h f.h 2

+§||f—h||§+pzT<f—h>, (10)

where z is a Lagrange multiplier vector and p is a positive
penalty parameter able to control the convergence rate.
Equation (10) can be solved by updating f, h, and z
separately, resulting in the following three sub problems:

| :
e = arg;nin(z ||Af—s||§+P(z(k))Tf+§”f_h“)Hi)’
an

h'**" = argmin (/lg(h) - g £ =+ z<k>||j), (12)
h

z(k+]) — z(k)+f(k+l) _h(k+1)’ (13)

where the f-update step in Eq. (11) and h-update step in
Eq. (12) can be completed by calculating their proximal
operators, and k is the number of iterations. Equation (11)
can be solved by considering the proximal operator of

1
y(f) whichis y(f) = 7 lAS s +(z®)" f. Then Eq. (11)
can be rewritten as

prox,, (h") = arg;nin {y f)+ % |If - h<’°||j} . (14

A closed-form solution of proximal operator in Eq. (14)
can be calculated as

FO = (ATA +p1)71 (ATs+p(h(k)—z(k)))’ (15)

where 1 is the identify matrix with the same dimensions
as the matrix ATA4. The specific solutions of sub problem
Eq. (12) are determined by the choice of the penalty g (h),
and the derivation is given in the next section.

4 Regularization methods of impact force
identification based on ADMM

By choosing different penalties in Eq. (8), different
regularization methods can be formulated. In this section,
the classic ¢, regularization method and ¢, sparse
regularization method are introduced. Furthermore, a
novel sparse regularization method based on ¢,
minimization is proposed for impact force identification.
4.1 ¢, regularization via ADMM

Substituting the ¢, norm into Eq. (8), the corresponding
minimization problem is

1
argmin - |4 = sIE + AILfIE. (16)
f

where ||f||§ = zllf,-l2 denotes the ¢, norm. Thus, Eq. (12)
i=1

can be updated accordingly as
H*Y = argmin ARG+ 2 |40 - ha 20 A
h

Because Eq. (17) is a differentiable function, taking its
partial derivative with respect to & and making it equal to
0 can obtain the h-update step as

ol 20)
_— 18
24+p (18)

Algorithm 1 shows the ¢, regularization via ADMM.
Many studies have applied ¢, regularization to the

h(k+1) _
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dynamic force identification and achieved good results
when selecting appropriate A parameters [38,39].
However, ¢, regularization is ineffective at solving under-
determined cases [11], and when performing impact force
identification, spurious forces appear in non-impact
regions [40].

Algorithm 1. ¢, regularization via ADMM ( ¢ -ADMM)

Input: A, s, 4, p, iteration termination threshold &, maximum iteration N__ .
OQutput: £

Initialization: £ =0, /""" =0, " =0, k=0.

I.for k=0,1,2,..,N,_, do

2 fU = (ATA+ pI) '(A".Hp(h"' —;'“‘}] .

3 g0 2 p("-ll-ln_{‘_ :“I)/{E)-‘*'P) .

4 L5 _ ) +f“'“—h“'“

s f "f;.-.;; _j...-." <e "f.;.:. _.‘.l|.',-|\|| <& and ‘:;.-\ V0| < g
6. break for

7. end

B ok=k+l1,

9. end

4.2 ¢, sparse regularization via ADMM

Considering most entries in f are either equal or close to
zero, minimizing the regularized linear least square cost
function with £, norm is a reasonable compromise to
induce sparse solutions of Eq. (7), mathematically
expressed by introducing the £,-norm penalty into Eq. (8)
as

1
argmmi||S—Af||§+/l||f||1s (19)
s

where ||fl|, = Zlﬁl denotes the ¢, norm. Then, Eq. (12)
i=1

can be modified as
""" = argmin (/l||h||l + g | fe0 —n+ z““i). (20)
h

By specifying w = f*"” +z% and g(h) = |||, Eq. (20)
can be further written as

A 1
B :argmin{—g(h)+§||w—h||§}. (21)
z Y
Thus, Eq. (21) can be solved by Ref. [16],
A
h*D = max(O, |f(k”) + z<k)| _x ), (22)
yel

where the operator |-| refers to the absolute value of each
element in the vector, and the vectorc =[1 1 1T
has the same dimension as the vector A. To sum up,
Algorithm 2 shows the ¢, regularization via ADMM.
Many researchers have applied ¢, regularization
methods to reconstruct and localize impact forces

Algorithm 2. ¢ sparse regularization via ADMM (  ~ADMM)
Input: A, s, 4, p, iteration termination threshold £ maximum iteration N
Output: f .
Initialization: "' =0, 4" =0, 2" =0, k =0.
l.for k=0,12,...N_, do
2. U =(Arapl) (A's+ (B -20)),
3. 4 = max| 0, |_|r""“ Pl et
\ P
4, g8 =gty B _ )
5. ir !j L i | =g, "_f Ll PR A " = & and ||:“'.I z =¢
6. break for .
7. end
8. k=k+1,
9. end

simultaneously [12,18]. Although ¢, regularization is
feasible and widely used for inducing sparse solutions,
theory and practice have proven this convex
regularization underestimates the amplitude of impact
force [21].

4.3 {,_, sparse regularization via ADMM

To enhance the accuracy and sparsity of the solution, a
novel non-convex regularizer is introduced as an
alternative to the ¢, norm. The cost function with the non-
convex regularizer is generally expressed as

1
mf1n§||Af—S||§+/l||f||1-zs (23)

n n
where ||f]l,_, = Z il = 4 /Z |f* is a mixed non-convex
i=1 i=1

penalty combining the ¢, and ¢, norms, f; is the ith
element in the vector f. For intuition, the 3D schematic
comparison diagrams of ¢, norm, ¢, norm, and ¢, , norm
and their corresponding contour maps are depicted in
Fig. 1. Figures 1(a) and 1(b) show that as the values of x,
and x, decrease, the contour of the £,_, norm approaches
the x, and x, axes, thereby promoting sparsity. Compared
with the ¢, norm, the £,_, norm is closer to the axes as ¢,
norm, implying the ¢,, norm can be a more proper
relaxation of ¢, than ¢,.
Then Eq. (12) can be derived as

R = argmin(/l(llhlh IRl + g IlF0 = h+ z(k)“i).
h
(24)
By defining w = f**" + z® and ' = /p, Eq. (24) can be
solved by the following shrinkage operation [41]:
u (|lull, +T)

shrink, ,(w,1)={ ~ Jll,
Wl - Sign (W)

>
C Wl o

Iwll, <T,
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Fig. 1 3D plots of different penalties and their corresponding contour maps: (a) 3D plots of ¢, norm, £; norm, ¢;_, norm, and £y norm

and (b) corresponding contour maps.

where the vector u is defined as u = max (0, |w|—1Ic), and
Wnax denotes the element with the largest absolute value
in vector w. Therefore, Algorithm 3 shows the ¢,
regularization via ADMM.

Algorithm 3. ¢, , sparse regularization via ADMM (¢, ,-ADMM)

Input: A, s, 4, p, iteration termination threshold £, maximum iteration N .

Output: £
Initialization: £ =0, ¥'” =0, 2" =0, k=0.
I.for k=012, ., N_ do

=¥ pax
-

LS (ATA ) I[A's—p(f:""—z'“}),

30" =shrink, (424 p),
4, =9 +_,f'”'." A

sif £ - sY] < & |4 a0
6. break for

7. end

(ks &
| < g and " -2 '" =g

8. k=k+1,
9. end

4.4 Computational complexity

According to Ref. [33], a naive method for calculating the
f-update from Eq. (15) costs O(n’N*+nN) flops, in
which O(-) is a symbol used to represent computational
complexity, nN is the product of the number of impact
excitations and the data length of the discretized IRF. The
computational complexity of the h-update step and the
z-update step is O(nN). Therefore, the computational
complexity of the three methods based on the ADMM
framework is O (n*N* + nN) + O (nN) + O (nN) ~ O (n*N?).

5 Numerical validation

In this section, a series of simulations are conducted to
evaluate the effectiveness of the proposed ¢,_,~ADMM
method for impact force identification. First, the impact
force identification results of ¢,_,-ADMM, {,-ADMM,
and £,-ADMM are systematically compared, considering
single- and continuous multi-impact cases. Moreover, the
effect of noise on the accuracy of the three methods in
reconstructing and localizing 1impact forces is
comparatively investigated.

5.1 Problem description

A composite plate with two opposite edges clamped is
considered for this numerical validation. The dimensions
of this plate are 400 mmXx300 mmXx6 mm, and its
material properties are listed in Table 1. The structural
dynamics of the plate caused by external impact forces is
described by the finite element model in ANSYS. The
plate is divided into 16 X 12 quadratic shell elements, and
its first three natural frequencies are 395.88, 441.90, and
621.25 Hz. The Rayleigh damping C=aM +8K is
considered with a = 2.6240 and 8 =3.7994 x 10~7, where
C is the damping matrix, M is the mass matrix, and K is
the stiffness matrix.

The employed structural responses used in this
numerical validation are strains. The arrangement of
strain sensors and potential impact locations for all
subsequent simulation studies are shown in Fig. 2, where
the optional measurement positions are numbered as
S, —S,, and the potential impact locations are sorted as
P, —P;s. To simulate the under-determined cases, merely
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Table 1 Material properties of the composite plate

Elastic modulus Shear modulus Poisson’s ratio Density Layer-ups
E1=135.0 GPa, G2 =4.47 GPa, vi2=0.3,
E>=28.8 GPa, Gp3=3.00 GPa, va3=0.4, p =1560 kg/m3 [45°/0°/-45°/90°]
E3 = 8.8 GPa G13 =447 GPa Vi3 = 0.3

A Al

(a)

0~
0y
g

Sie (PlIPL IR Py P Sio
- L ] L [ 2 -
gI'J }i"--I}; Ph I 11 P:I -“S.:!-"
= [ ] [ ] ® i}
Sk (P, P, P, Py Py | S
..... [ o [ S e Tl T
SIS TS TS TS TS NS
= = = = = = =

B B’
3 Optional measurement positions W Sirain sensor positions
e Potential impact locations

Fig. 2 Composite plate with two opposite edges clamped: (a) schematic diagram of an applied impact force on the plate and
(b) distribution of strain sensors and potential impact locations. Fifteen potential impact locations are considered, and the selected

measurement positions are Sg, Sio, Si4, and Sis.

four sensors are employed to acquire the responses, as
shown in Fig. 2(b). Through the Monte Carlo method,
four sensors at Sg, S,0, S14, and S, are selected.

In the single-impact case, an impulsive force in the
form of Gaussian function is applied perpendicularly to
the plate for a very short duration, defined as

=)’

fi=Be | (26)
where B is the amplitude of the impact force, e is the
mathematical constant Euler’s number, #, denotes the
occurrence time instant of the impact, and T regulates the
impact duration. In the continuous multi-impact case, a
composite force combining sine, triangle, and Gaussian
impacts is applied vertically to the composite plate.

To simulate actual measured signals, the simulated
dynamic responses are corrupted by Gaussian white
noise,

S=s+or, 27
where § is the noisy response vector, o denotes the
standard deviation of the vector s, and the vector r
consists of random values independently drawn from a
normal distribution with zero mean and unit standard
deviation.

The Green function method with the strain mode shapes
of the plate is used to obtain IRF a(?) in advance [42]. The
value of the optimal regularization parameter A is chosen
according to the principle of global relative error (GRE)
minimization, where GRE is defined as

_lir= AL,

GRE = x 100%, 28
7L ’ (28)

where f is a column vector composed of actual force
vectors at all locations and f is composed of estimated
ones at all locations. The GRE indicator reflects the
global reconstruction accuracy of the method.

To evaluate the reconstruction accuracy at the impact
location, the local relative error (LRE) between the actual
force vector f, and the estimated one f , at the impact
location can be defined as

_ ”fp _fp”z % 100%,

(T N
where subscript p represents the serial number of the
location subjected to impact force.

Moreover, as a local quality indicator for impact force
identification, peak relative error (PRE) is defined as

”max(fp) B max(«fp)l’z
Imax(f,)

In addition, for the under-determined case, localization
error (LE) is required to evaluate the localization
accuracy of impact force identification, which is defined
as

LRE (29)

PRE = x100%.

(30

£l

ng

YWl

where n; is the total number of potential impact force
locations.

LE=|1- x 100%, 31)
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For ease of comparison, the iteration termination
criteria of the three algorithms need to be consistent,
which is described as

Il
AK)
f

where the value of ¢ is set to 1074,

Ak+1)

Sf

Alk)

-f

(32)

X GOy

1

5.2 Impact force identification using ¢,_,-ADMM

To assess the performance of the proposed method in
identifying single-impact and continuous multi-impact
forces, the force reconstruction and localization accuracy
of the proposed ¢,_,~ADMM method are compared with
{,-ADMM and {,-ADMM methods under the same
simulation conditions. The impact force is stochastically
applied to a certain location, and the noise level of
measurement signals is set to 20 dB. Likewise, to remove
randomness, 100 runs are performed independently at
each impact location.

For the first case, a single Gaussian impact force is
exerted at a random potential impact location on the
composite plate. As examples, the identification results of
impacts on P; and Py, are shown in Fig. 3. For the two
examples, the computing times for ¢,_-ADMM, ¢-

ADMM, and £,-ADMM methods are 243.32, 254.04, and
73.36 s in the P; example, respectively, and 265.21,
293.69, and 73.07 s in the P,, example, respectively. The
amplitude and topography of £, ,~-ADMM identification
results are closest to the exact forces, whereas £,-ADMM
fails to identify the impact force in the under-determined
case despite having the shortest computing time. Figure 4
depicts the comparison of GREs, LREs, PREs, and LEs in
the identification results of the three methods at the eight
stochastically selected locations. ¢,_,~ADMM achieves
impact force identification with highest accuracy among
the three methods, keeping its GREs, LREs, and LEs
under 10% and PREs below 5%.

For the second case, a multimorphology continuous-
impact force is applied to the plate to verify the
performance of ¢, ,~ADMM further in identifying impacts
of different shapes and continuous impacts. Two
identification results are given in Figs.5 and 6 as
examples, that is, the multimorphology continuous-
impact force is randomly applied to P, and Py
respectively. €,_,-ADMM can more accurately identify
sine, triangle, and Gaussian impacts, and the shapes and
peak values of its identification results are most
consistent with the exact force, whereas £,-ADMM still
fails to complete the identification task. To provide a
more intuitive representation of the identification quality
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Fig. 3 Reconstructed impact time histories at all monitored locations at 20 dB noise level when (a) real impact acts on P3 and (b) real
impact acts on Pjo. ADMM: alternating direction method of multipliers.

and computational efficiency of the three methods, the
values of the corresponding four accuracy indicators and
computing time are listed in Table 2. ¢,_,-ADMM still
maintains the highest identification accuracy and
especially improves the identified accuracy of impact
amplitudes over £,~ADMM with similar computing time.
Overall, the non-convex ¢,_,-ADMM method performs
the best of the three methods in identifying single-impact
forces and multimorphology continuous-impact forces.
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5.3 Effect of noise level

To evaluate the robustness of the ¢, ,~ADMM method
under varying noise levels, the performance of the three
methods, ¢,_,-ADMM, ¢-ADMM, and ¢,-ADMM, in
constructing and localizing the single-impact force
randomly imposed at P, and Py are compared. In this
subsection, six different noise levels, namely, 35, 30, 25,
20, 15, and 10 dB, are considered. Similarly, 100 separate
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Fig. 4 Impact force identification results denoted by accuracy indicators at eight randomly chosen locations at 20 dB noise level by £;_»-
alternating direction method of multipliers (ADMM), ¢;-ADMM, and ¢,-ADMM: (a) global relative error, (b) local relative error,
(c) peak relative error, and (d) localization error.

I I |
I | I |
[ | | |
[ | | |
| | ¥ l
| | | l
I I | |
| ' | / \ |
I 4:0 45 5.0 55 I I 0.0385 0.0390 0.0395 I
RS P (RN TR |
~ [ T ™ T 1 — T
N 160+ | ——(-ADMM ---(-ADMM —s—(, -ADMM —Exact _ __ ——
-~ I I
i \-r 1
120F ¥ LT E o i 1
o | I 1 &
100F | | I | I
z I |
3 g0 | | I |
kS [ l I T L
60 | | IR L 1
| l il L] |
40/ | 2
I JJ“ I H I I | I
o LY RN i
13 fel B LI ,
0 LT ¥ —LF — ey Ty e
0 0.005 0010 0015 0020 0025 0030 0035 0040 0045  0.050
Time/s
(a)
(,-ADMM {,-ADMM {, -ADMM
150 150 150
z 100
g
£ 50

04 |
15 — —
P = J-B'M 0.05
Log,. 6 T f=— 003
iy 3 0.01 0.02 s
ks 00 : T
(b)

Fig. 5 Identification results of the multimorphology continuous impact force at Py under 20 dB noise level by £;_,-alternating direction
method of multipliers (ADMM), £;-ADMM, and £,-ADMM: (a) time history reconstruction and (b) localization results.
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Fig. 6 Identification results of the multimorphology continuous impact force at P;; under 20 dB noise level by ¢;_,-alternating direction
method of multipliers (ADMM), £;-ADMM, and £,-ADMM: (a) time-history reconstruction and (b) localization results.

Table 2 Identification accuracy indicators and computing time of £;_,-ADMM, ¢;-ADMM, and ¢,-ADMM for the multimorphology continuous
impact force at different locations at 20 dB noise level

Position Method GRE/% LRE/% - ?RE/% - LE/% Computing time/s
Sine Triangle Gaussian

Py {1->-ADMM 10.53 8.64 3.89 4.58 3.85 1545 280.07
{1-ADMM 15.03 11.94 9.33 7.37 6.69 21.92 292.65
£-ADMM 85.90 71.88 70.29 73.42 72.85 84.48 96.88

Py {1-ADMM 11.03 9.59 5.35 2.80 1.49 16.11 272.45
{-ADMM 15.14 13.21 10.30 5.98 421 20.78 273.10
£,-ADMM 94.21 88.95 89.29 86.83 87.50 90.85 40.14

runs are conducted at each noise level to avoid ADMM holds the highest reconstruction and localization
randomness. accuracy at various noise levels. Additionally, Fig. 7

Figure 7 demonstrates the relationships between the indicates the identification accuracy of ¢, ,~-ADMM
accuracy indicators (GREs, LREs, PREs, and LEs) and decreases with the noise increasing, whereas GREs and
noise levels when impacting the two locations. ¢, ,- LREs remain below 10%, and PREs generally keep
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Fig. 7 Four accuracy indicators of identification results for the same single impact force via ¢_p-alternating direction method of
multipliers (ADMM), £,-ADMM, and ¢,-ADMM at different noise levels: (a) impact at P; and (b) impact at Pg. SNR: signal-noise ratio.
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below 5% over a range of noise levels from 35 to 10 dB.
The LEs of the ¢, ,-ADMM identification results are kept
less than 10% overall during the process of increasing
noise and only slightly increase when signal-noise ratio is
lower than 15 dB. Generally, £,_,-ADMM performs better
than £,-ADMM and ¢{,-ADMM at various noise levels,
showing the proposed method is quite robust to noise.

6 Experimental verification

In this section, an experimental verification is performed
on a composite plate to verify the performance of ¢,_,-
ADMM further in terms of improving accuracy for
impact force reconstruction and localization in single- and
continuous-impact cases. In addition, compared with the
£,-ADMM and ¢,-ADMM methods, the performance of
€,,-ADMM is compared with that of the classic non-
convex ¢, regularization and {,,; regularization methods
in terms of impact force identification under the ADMM
framework. The ¢,,, regularization and ¢,,; regularization
algorithms are detailed in Refs. [43,44]. An under-
determined case with limited strain gages same as
simulations is considered here, that is, four strain gages
are used to monitor 15 potential impact locations, so that
the dimension of the transfer matrix A4 in the experiment
is consistent with the simulation.

LMS SCADASII
data acquisition system

Strain
sensor

6.1 Experimental set-up

The configuration of an opposite-side-clamped composite
plate with the same parameters and properties as the
simulation model is shown in Fig. 8. Impact forces are
imposed by an impact hammer (PCB 086C03), and the
force sensor embedded in the hammer head measures the
impulsive signals. Strain responses are acquired from
strain sensors (PCB 740B02). LMS SCADASIII data
acquisition system simultaneously records force and
strain signals with a sampling frequency of 10240 Hz.
Potential impact positions are sorted as P;—P;s, and strain
sensor locations are labelled as S1—S1o.

Referring to the simulation study, the strain responses
at S, S,, S;, and S, are selected to monitor all 15 potential
impact positions. Frequency response function a;(w)
between the output position i and the input location j is
obtained by performing impact testing via the Lifecycle
Management Software modal testing module, and IRF
a;;(t) calculated by inverse fast fourier transform of a;,(w)
is discretized to form the Toeplitz matrix. Same as the
simulation, the data analysis length N is 512, resulting in
an under-determined system with a dimension of
2048 x 7680.

6.2 Results and discussion

In the experimental validation, instead of minimizing the

——
Impact I Composite . 1-&?.-*
hammer plate ;
N7 7 7 7 ]
N T T\
B S
Psi Pl Pysi |
- e B =

Fig. 8 Experimental setup of the composite plate with two opposite edges clamped. Four sensors (S, Sz, S7, and Sg) are selected to

monitor the 15 potential impact locations
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GRE value that is infeasible in practice, the A values of
the three methods are chosen by the Monte Carlo
generalized stein unbiased risk estimate (MC-GSURE)
technique, which is defined as [45]

E(I1Q (x, ) = HIF) = IQSI + 1Qx, @)IF
+2div, (Qx, (@) = 2x; @) fyy.
(33

where Q := AT(AAT)_IA is a projection matrix, x,(u)
returns the solution result of Eq. (8), u=(1/02)A's
represents the sufficient statistic of the model Eq. (8), o,
is the standard deviation of noise that can be obtained via
the mean absolute derivative method [46], fML =
AT(AAT)_]S denotes the maximum likelihood estimation
of the vector f, and the divergence div, (Qx,)) is
approximated by the Monte Carlo method, which is
derived as

x,(u+or)—x,(u)

div, (Qx, (W) ~r'Q (34)

5 )
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where ¢ is a small positive parameter set to 106 [47].

For the single-impact case, impact forces randomly
imposed at P, and P;s are taken as examples. Figure 9
shows the optimal A values of £, ,~ADMM are selected
according to the MC-GSURE criterion, as are other
methods and other cases. Figures 10 and 11 depict the
time history reconstruction and localization results of the
impact forces and iterative convergence curves of the five
considered methods. Table 3 lists the GREs, LREs, PREs,
and LEs of the identification results and the computing
time of these methods. The reconstruction results of £,_,-
ADMM best match the shapes of real forces with the least
GREs, LREs, PREs, and LEs, and £,-ADMM is unable to
reconstruct and localize the forces. The PREs of ¢,_,-
ADMM are reduced by 76.82% at P, and 73.65% at Pys
compared with £,-ADMM. The improvement in accuracy
of the ¢, ,-ADMM method for single-impact force
identification is relatively slighter compared with that of
the ¢, and {,; regularization methods. However, the
iterations of £,_,-~ADMM are much smaller than that of
the two other methods, which makes its computing time

P
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Fig. 9 Monte Carlo generalized stein unbiased risk estimate (MC-GSURE) curves of ¢;_,-alternating direction method of multipliers in

single-impact cases when exerted at: (a) P; and (b) Pys.
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Fig. 10 Identification results of the impact force applied to Py by £,_,-alternating direction method of multipliers (ADMM), ¢;-ADMM,
,-ADMM, ¢ /,-ADMM, and ¢,/3-ADMM.: (a) time history reconstruction results, (b) localization results of £;_,-ADMM, ¢;-ADMM, and
£,-ADMM, (c) localization results of £;,-ADMM and ¢,,3-ADMM, and (d) convergence curves.
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Fig. 11 Identification results of the impact force applied to P;5 by £;_p-alternating direction method of multipliers (ADMM), £,~-ADMM,
6,-ADMM, ¢ ,-ADMM, and ¢,/3-ADMM.: (a) time history reconstruction results, (b) localization results of £;_,-ADMM, ¢;-ADMM, and
£,-ADMM, (c) localization results of £ /,-ADMM and ¢,,3-ADMM, and (d) convergence curves.
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Table 3 Identification accuracy indicators and computing times of £_,-ADMM, ¢ ,-ADMM, ¢,,3-ADMM, ¢;-ADMM, and ¢,-ADMM for the
single-impact forces applied to Pj and Ps

Accuracy indicators and computing time

Method Impact at P, Impact at Ps

GRE/% LRE/% PRE/% LE/% Computing time/s GRE/% LRE/% PRE/% LE/% Computing time/s
£1_>-ADMM 5.99 5.90 0.86 2.26 93.83 5.28 4.63 0.83 6.16 267.35
{1/,-ADMM 6.44 5.44 115 7.22 253.91 6.15 4.96 1.32 4.56 376.05
£,/3-ADMM 8.10 5.89 2.23 12.70 261.04 5.92 4.98 1.21 4.04 298.46
£,-ADMM 7.96 7.27 3.71 8.86 101.11 7.59 6.06 3.15 11.37 217.71
£>,-ADMM 75.89 61.63 66.46 77.97 46.24 86.91 77.31 75.77 83.09 71.51
shorter and its computational efficiency higher. The impact time history reconstruction, localization

In the continuous-impact case, impact forces results, and iterative convergence curves of the five
stochastically imposed at Ps and P4 are taken as examples. methods are depicted in Figs. 12 and 13. The values of

IUO T T 1 I I I I 1 T
—o—(-ADMM - --{,-ADMM ——{, ~-ADMM {,,~ADMM (,~ADMM — Real
80 80+ 4
60 - E
60 % _
=
S 40 201 17
20 0 S S5 e s ey = _|
6.0 6.5 7.0 7.5 8.0
Time/(107 s)
0 — —=
1 1 1 | | | 1 L
0.010 0.015 0.020 0.025 0.030 0.035 0.040 0.045 0.050
Time/s
(a)
(, .~ADMM (,-ADMM (,-ADMM
100 100 100
80 80 | 0

Force/N

Force/N

{,-ADMM
£ — (,-ADMM
[ -~ {-ADMM
100 100 | —— £ ~ADMM
) -ADMM
80 80 £, -ADMM

Force™
Force/™N

Cost value

0 200 400 600 800 1000
Tteration number

(c) (d)

Fig. 12 Identification results of the impact force applied to Ps by ¢;_,-alternating direction method of multipliers (ADMM), ¢;-ADMM,
t,-ADMM, ¢;/,-ADMM, and ¢,/3-ADMM: (a) time history reconstruction results, (b) localization results of ¢;_,~ADMM, ¢;-ADMM, and
t,-ADMM, (c) localization results of ¢;,,-ADMM and ¢,/3-ADMM, and (d) convergence curves.
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and 13 show the time history reconstruction results of

and computing time are presented in Table 4. Figures 12 £, ,~ADMM are still the closest to the amplitudes and
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Fig. 13 Identification results of the impact force applied to Pg by ¢|_p-alternating direction method of multipliers (ADMM), £,-ADMM,
6,-ADMM, ¢ ,-ADMM, and ¢,/3-ADMM.: (a) time history reconstruction results, (b) localization results of £;,_,-ADMM, ¢;-ADMM, and
t,-ADMM, (c) localization results of ¢;,,-ADMM and ¢,/3-ADMM, and (d) convergence curves.

Table 4

continuous-impact forces applied to Ps and Pg

Identification accuracy indicators and computing times of ¢;_,-ADMM, ¢;/,-ADMM, ¢,,3-ADMM, ¢;-ADMM, and ¢,-ADMM for the

Accuracy indicators and computing time

Method Impact at Ps Impact at Pg
GRE/% LRE/% PRE% LE/% Computing time/s GRE/% LRE/% PRE LE/% Computing time/s
Peakl Peak2 Peakl Peak2

£1-»-ADMM 11.76 9.88 0.48 093 18.17 219.71 5.94 4.95 0.40 429  7.76 229.85
£1>-ADMM 19.80 17.74 6.84 1535 15.60 287.43 11.49 8.94 4.88 526 1144 282.67
£2/3-ADMM 16.46 14.35 7.89 11.67 21.25 188.96 10.17 8.12 2.81 5.17 1043 193.90
£,-ADMM 13.57 11.29 4.56 471  21.25 189.58 8.53 7.22 4.62 8.83 8.56 213.31
£,-ADMM 85.39 7496 7790 77.02 82.19 45.69 82.20 68.81 6550 69.85 81.10 101.03
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shapes of the exact forces, and its force localization
results are most accurate among the three methods.
Table 4 presents that £,_,~ADMM holds the lowest GREs,
LREs, and PREs. Compared with £,-ADMM, the PREs of
{,_,~ADMM decline by 89.47% and 80.25% at Ps, and
decrease by 91.34% and 51.42% at Ps. Moreover, the
performance of ¢,, and ¢, regularization methods in
identifying continuous impact forces is poor in the two
cases.

All the above results show the ¢,_,-ADMM method
performs best in reconstructing and localizing impact
forces under the under-determined condition among the
five methods, effectively improving the amplitude
accuracy and reducing the reconstruction error compared
with £,-ADMM and £,-ADMM. Moreover, the advantage
of £{,_,-ADMM over ¢,,, and {,,; regularization methods is
that it avoids the discussion of the value of g in £,
regularization, and it converges faster during iteration,
which improves computational efficiency.

7 Conclusions

In this paper, a novel non-convex sparse regularization
method with ¢,_,-norm is proposed for reconstructing and
localizing impact forces from limited structure responses.
From an economic feasibility and viability perspective,
this work focuses on the case where the monitored
structure has a sparse, under-determined sensor
arrangement. Instead of convex regularization, a novel
non-convex regularization method is considered using the
¢, norm minus the ¢, norm. The ADMM principle is
introduced to solve this large-scale, non-convex, and
under-determined problem of impact force identification
efficiently by decomposing the intractable original
problem into easy-to-solve subproblems. Unified
algorithms via ADMM for such regularized least square
problems are provided.

Simulations and experiments are carried out on a
composite plate with two opposite edges clamped, both
monitoring 15 potential impact locations with four strain
sensors, and the MC-GSURE technique is used in
experiments to select appropriate regularization
parameters. Based on the simulation and experimental
results, the £,_,~ADMM method has higher reconstruction
and localization accuracy than ¢,-ADMM and ¢,-ADMM
in single- and continuous-impact cases. Particularly, £,_,-
ADMM works very well for improving amplitude
accuracy in contrast with £,-ADMM. ¢,-ADMM fails to
reconstruct and localize impact forces under the under-
determined condition. Additionally, ¢,_,-ADMM can
identify impact forces with different shapes (i.e., sine,
triangular, and Gaussian) in simulation, especially its
reconstructed triangular and Gaussian impact forces best
match the shapes of the exact ones. In this aspect, £,_,-
ADMM also performs better than the £,-ADMM and ¢,-

ADMM methods. Moreover, the ¢,_,-ADMM method
outperforms ¢-ADMM and ¢,-ADMM methods at
different impact locations under different noise levels,
and its identification results hold the satisfactory GREs,
LREs, PREs, and LEs even at 10 dB noise level, which
proves {,_»-ADMM is quiet robust to noise. In the
experimental verification, the reconstruction accuracy of
¢,_-ADMM is slightly higher than that of ¢, and ¢,
regularization. Compared with ¢, regularization methods,
{,_,~ADMM avoids the need for p-value discussions and
reduces the number of iterations, thus improving
computational efficiency. All these satisfactory perfor-
mances of the ¢,_»-ADMM method demonstrate its
potential to solve the impact force identification problem
with a sparse sensor configuration in practical
engineering applications.

Nomenclature

Abbreviations

ADMM Alternating direction method of multipliers

BVID Barely visible impact damage

GRE Global relative error

IRF Impulse response function

LE Localization error

LRE Local relative error

MC-GSURE Monte Carlo generalized stein unbiased risk
estimate

PRE Peak relative error

SISO Single-input single-output

SNR Signal-noise ratio

Variables

a(t) Impulse response function

ai(t) Impulse response function between the output
position i and the input location j

a; () Frequency response function between the output
position i and the input location j

A Transfer matrix of the multiple-input multiple-
output dynamic system

A Transfer matrix of the single-input single-output
dynamic system

B Amplitude of the Gaussian-shaped impact force

c All-ones vector

C Damping matrix

e Random noise in measurements

E Elastic modulus

fi Elements in the vector f



S

A
fML

E 3 O ~ =0

N

Nmax
O(nN)

R()

s(?)

w

i

Ss

Wmax

Impact force excitation function

Force vector of the multiple-input multiple-output
dynamic system

Estimated vector of f

Actual force vector at the impact position p

Estimated force vector at the impact position p
Maximum likelihood estimation of the vector f

Force vector of the single-input single-output
dynamic system

General representation function of penalty terms
Shear modulus

An additional vector for variable splitting

Estimated vector of A

Looping variable within the summation operation
Identity matrix

Number of iterations

Stiffness matrix

Number of measurement responses

Mass matrix

Number of impact force excitations

Total number of potential impact force locations
Data length of the discretized impulse response
function

Maximum number of iterations

Computational complexity of n x N

Serial number of the location subjected to impact
force

Norm parameter defined in R**

Projection matrix

Gaussian white noise vector

General expression for calculating the norm of
vector f

System response

Response vector of the multiple-input multiple-
output dynamic system

Noisy response vector

Response vector at a certain position i

Response vector of the single-input single-output
dynamic system

Time

Occurrence time instant of the impact

Sampling interval

Impact duration

Sufficient statistic of the model Eq. (8)

Element with the largest absolute value in the
vector'w

Intermediate vector defined as w = f**1) + z(0)
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xq(u) Solution result of Eq. (8) when f=u
§%0)) Proximal operator

6 Small positive parameter

6 Lagrange multiplier vector

& Iteration termination threshold

A Regularization parameter

o A positive penalty parameter

o Standard deviation of the vector §
O Standard deviation of noise in the measurements
T Time delayed operator

y Possion’s ratio

r Threshold value defined as I' = A/p
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