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ABSTRACT One of the core challenges of intelligent fault diagnosis is that the diagnosis model requires numerous
labeled training datasets to achieve satisfactory performance. Generating training data using a virtual model is a potential
solution for addressing such a problem, and the construction of a high-fidelity virtual model is fundamental and critical
for data generation. In this study, a digital twin-assisted dynamic model updating method for fault diagnosis is thus
proposed to improve the fidelity and reliability of a virtual model, which can enhance the generated data quality. First, a
virtual model is established to mirror the vibration response of a physical entity using a dynamic modeling method.
Second, the modeling method is validated through a frequency analysis of the generated signal. Then, based on the signal
similarity indicator, a physical—virtual signal interaction method is proposed to dynamically update the virtual model in
which parameter sensitivity analysis, surrogate technique, and optimization algorithm are applied to increase the
efficiency during the model updating. Finally, the proposed method is successfully applied to the dynamic model

updating of a single-stage helical gearbox; the virtual data generated by this model can be used for gear fault diagnosis.

KEYWORDS digital twin, gearbox, model construction, model updating, physical—virtual interaction

1 Introduction

Gearboxes are widely used in industrial power-
transmission applications. Different faults may naturally
occur when this industrial equipment operates in harsh
environments or under varying working conditions [1,2].
To guarantee operational stability and reduce mainte-
nance costs, many fault diagnosis and condition
monitoring approaches have been proposed, such as
signal processing-based [3,4] and data-driven methods
[5,6], which have recently attracted increased attention in
academia and the industry [7,8]. Deep learning-based
methods, a popular data-driven approach, have been
successfully employed in different fault diagnosis tasks
owing to their powerful performance in feature extraction
[9,10]. However, the capability of these methods is
restricted by training data quality [11-13], which may
lead to poor performance in real-life engineering
applications.

Benefiting from advances in simulations and computa-
tions, a promising solution can be adopted to obtain
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training data from virtual space. Specifically, simulation
data generated by virtual models operated at any speed
and load can be used to supplement the training data
during the construction of a fault diagnosis model. In
recent years, the dynamic modeling of machine
degradation has been extensively studied. Sawalhi and
Randall [14,15] constructed a 34 degrees of freedom
lumped parameter dynamic model for a gear-bearing
system and analyzed the frequency components for
different fault types of bearings and gears. Bachar et al.
[16] established a realistic nonlinear dynamic model for a
spur gear transmission based on the lumped parameter
method (LPM) to analyze its vibration response under
local tooth face fault. Liu et al. [17] constructed a finite
element method (FEM)-based dynamic model for a
gearbox and evaluated its confidence by comparing the
physical data in the time domain. He et al. [18]
established a dynamic model for a planetary gear set
based on the rigid—flexible coupling method (RFCM) to
investigate its vibration characteristics under normal and
fault conditions. Mishra et al. [19] built a rigid—flexible
coupling dynamic (RFCD) model for a rolling bearing to
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generate its vibration characteristics under different fault
conditions and analyzed them wusing fast Fourier
transform (FFT) and envelope spectra analysis. Liu et al.
[20] combined the bearing fault mechanism and a
dynamic model of planetary gears to generate the
corresponding vibration response. They also validated the
virtual data based on its frequency features. Song et al.
[21] proposed a dynamic model for a marine gearbox
based on LPM and FEM and evaluated the generated
signal in the frequency domain. El Yousfi et al. [22]
constructed an integrated model of a motor-gearbox
system that consists of a mathematical model for an
induction motor and an LPM-based dynamic model for
the gearbox. They evaluated the effectiveness of the
simulation signal for the local gear tooth in the frequency
domain. Many methods, such as LPM, FEM, and RFCM,
have been successfully applied in dynamic modeling to
reflect the vibration characteristics of physical parts.

The above studies mainly focus on the vibration
mechanism of a gearbox to aid its understanding and
provide guidance for fault diagnosis. However, analyses
of generated signals are mainly performed in the
frequency domain. A small number of studies have
focused on updating and optimizing the dynamic model
on the basis of the data interaction between virtual and
physical entities. Without information about physical—
virtual interactions, virtual data reliability cannot be fully
validated, which may weaken the effectiveness of the
fault diagnosis model when using virtual data to train the
model.

Fortunately, as a potential and promising methodology,
the digital twin can enhance the data interaction between
virtual space and physical entity [23]. The concept of the
digital twin was first proposed by Grieves [24] in which a
three-dimensional conceptual model, including the
physical space, virtual space, and information connection,
was presented. Compared with traditional simulation
techniques, the digital twin emphasizes the information
interaction between physical and virtual spaces. For
example, information in the physical space (measured
data) can be used to update the virtual model, whereas
that in the virtual space (virtual response) can be analyzed
to reflect the status of the physical entity, thus guiding the
improvement of the operational reliability for the physical
entity. With the recent rapid development of emerging
technologies, such as sensing, the Internet of Things, and
artificial intelligence, the digital twin has attracted
increased research attention and has been extensively
employed in different fields [25,26]. The digital twin can
improve equipment reliability and reduce maintenance
cost in the prognostics and health management (PHM)
field. The general procedure of the digital twin-driven
methodology can be briefly summarized as follows: 1)
Establish a high-fidelity virtual model and update it with
physical data; 2) utilize the information from the virtual
model via signal processing, machine learning, or other

techniques to assess the health state of physical assets; 3)
provide the maintenance or optimizing operation
guidance to the physical entity. The fault diagnoses of
machining tools [27], rotor-ball bearing systems [28], air
handling units [29], and autoclave equipment [30] have
recently been studied, achieving satisfactory perfor-
mances. For gearboxes, several attempts have been made
to monitor gear surface degradation [31], diagnose
different fault types [32], and estimate fatigue damage in
various components [33]. Using the digital twin, these
studies aim to mine valuable knowledge from a virtual
model to meet existing challenges in the fault diagnosis
field. However, constructing and updating the virtual
model are ignored during the process, which may affect
the effectiveness and accuracy of these methods. Thus,
the construction and updating of a virtual model for fault
diagnosis require further investigation.

On the basis of the vibration response analysis, a digital
twin-assisted dynamic model updating scheme is
proposed to improve the fidelity and reliability of the
virtual model. The primary process of the proposed
method can be outlined in three steps. First, an initial
virtual model is constructed using a dynamic modeling
method to mirror the vibration characteristics of the
corresponding physical entity, where the operation
condition is matched with that of the physical space.
Second, the generated data are analyzed via the frequency
spectrum to evaluate the feasibility of constructing the
model. Finally, a physical-virtual signal interaction
method based on a similarity indicator is proposed to
dynamically update the virtual model in which parameter
sensitivity analysis, surrogate technique, and optimization
algorithm are applied to increase efficiency during model
updating.

The main contributions of our study can be summarized
as follows:

1) A digital twin-assisted dynamic model updating
approach toward fault diagnosis is proposed to improve
the fidelity of virtual models, where the generated data
reliability can be comprehensively evaluated and updated
in frequency and time domains.

2) A physical-virtual signal interaction method is
proposed to iteratively update a virtual model and
minimize the difference between physical and virtual
data, which can enhance the generated data quality.

3) The fidelity of the constructed dynamic model is
maintained under varying working conditions, which can
ensure the performance of the machine fault diagnosis.

The remainder of this paper is organized in the
following manner. Preliminary theories regarding the
vibration mechanism, polynomial response surface model
(PRSM), and optimization algorithm are introduced in
Section 2. Details of the proposed model updating are
presented in Section 3. An experimental study of a
gearbox is presented in Section 4. This paper ends with
our conclusions in Section 5.
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2 Preliminary
2.1 Gearbox vibration mechanism

In general, the vibration response of a gearbox can be
used to assess its health state. Therefore, the vibration
response of the generated data can be used to evaluate a
virtual model for the machine fault diagnosis.

As described in Ref. [34], the exciting force of a
healthy single-stage gearbox contains linear and nonlinear
components. Without considering the high-frequency
components caused by nonlinear excitation, the frequency
components of a healthy gearbox primarily contain the
mesh frequency and its harmonics. Thus, excitation force
f(t) and vibration response y(f) can be expressed by
Egs. (1) and (2), respectively:

M

f(0) = Z a;cos2mif.t +6,), (1)

i=1

¥(?) = h(t) * lz a;cos(2mif.t + ei)] = Z acos(2mi it +8,),
i=1 i=1 (2)

where * represents convolution, @, and a; are the
amplitudes of the exciting force and vibration response,
respectively, 6§, and 6; are the phases of the exciting force
and vibration response, respectively, ¢ means time, h(f)
represents the transfer function of the gearbox, M is the
number of mode order, and f. is the mesh frequency
whose value can be calculated by the following:

fe=20fn = 2200 3)
where z, and z, are the tooth numbers of driving and
driven gears, respectively, and f,; and f,, are the rotation
frequencies of the input and output gears, respectively.

The amplitude of the corresponding frequency is
primarily influenced by the location of the response point,
which determines the transfer function.

2.2 Polynomial response surface model

The response surface methodology (RSM) explores the
relationship between variables and their corresponding
responses [35,36]. PRSM, one of the most popular RSM
models, is an explicit, effective, and time-saving model
for the surrogating complex dynamic model. PRSM has
been widely used in design optimization and structural
reliability analyses [37,38]. Its application for model
updating can reduce the computational cost of dynamic
model optimization. Its fitting accuracy is also highly
determined by the setup of sampling points. The Latin
hypercube sampling (LHS) method [39] is one of the
most popular sampling methods and can generate near-
random sample points evenly across all possible values. It
is usually adopted to obtain the sampling points during

PRSM construction. PRSM can be expressed as follows:

Y=XB+s, )
where Y is the response vector of sampling points, X is
the variable matrix of sampling points, 8 is an unknown
coefficient vector, and & is the error vector. The least
squares method (LSM) is adopted to estimate unknown
coefficients by minimizing the error between PRSM and
sampling results. Unknown coefficients S can be
calculated by the following:

B=(X"X) X'Y. 5)
The coefficient of determination R? is utilized to

quantify the fitting accuracy of PRSM, which is
calculated as follows:

L
D=5
1 i=1

e
D=3
i=1

where y; is the result of sample point i based on the

complex simulation model, j; is the result of sample point

i based on the constructed surrogate model, L is the

number of sample points, and y is the mean value of the

simulation response. An R? value closing to 1 indicates
that the surrogate model has high fitting precision.

R = (6)

3 Digital twin-assisted virtual model
updating method

This section introduces the proposed digital twin-assisted
virtual model updating method in detail. Figure 1 shows a
flowchart of the proposed method, which is presented in
three parts: virtual model construction (Part I), modeling
method validation (Part IT), and model updating based on
the physical—virtual interaction (Part III).

3.1 Part I: virtual model construction

In the first stage, a virtual model is established using a
dynamic modeling method (e.g., FEM, LPM, and RFCM)
that can mirror the geometric and vibration characteristics
(e.g., gear shape, assembly information, and gear
dynamics) of the physical entity. To balance computation
efficiency and simulation accuracy, RFCM is adopted to
construct the dynamic model in this study, which can
obtain the virtual response from a particular position
(e.g., accelerometer location). In addition, the operating
conditions (e.g., the rotary speed of the input shaft and
working loading) of the established model should
coincide with the settings in the physical entity.

With these steps, an initial virtual model can be built,
and the vibration response of the virtual twin can be
generated for further analysis.
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Fig. 1 Flowchart of the digital twin-assisted model updating method.

3.2 Part II: modeling method validation

After the virtual model is constructed, the feasibility of
the modeling method should be evaluated, which is
fundamental to the efficiency and effectiveness of model
updating. According to the operating mechanism of the
gearbox, vibration characteristics reflect its healthy state,
which can be presented in the frequency domain.
Compared with theoretical frequency components, the
effectiveness of the modeling method can be evaluated.

In general, the relative error among the main frequency
components of the generated and theoretical signals can
be selected as the judgment index, which is specified as
5%. If this index meets the requirements, then the
modeling method is acceptable for the subsequent stage.
Else, the modeling method, such as the gear pair contact
and bearing model, should be adjusted. Subsequently, a
difference analysis between the generated and experimen-
tal signal frequency features should be conducted to
determine whether the operating conditions in the
dynamic model match those in the physical entity. If this

difference cannot satisfy the requirements, then the
settings of the working operations in the established
model should be updated according to the experimental
frequency spectrum.

3.3 Part III: model updating based on the physical—virtual
interaction method

To improve the fidelity of the virtual model, a model
updating method is proposed based on the physical-
virtual interaction, which can be regarded as an
optimization process. To minimize the difference between
the generated and physical signals, the objective function
is defined as follows:

min||[R(p)I, R(p) = X. - X,, )
S.t. pp SP<py
where X, and X, represent the physical and generated
signals in the time domain, respectively, p = [pi, P2, --.» Pul
are the model parameters in the dynamic model, # is the
number of these parameters, and p, and p,, are the lower
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and upper bounds of the model parameters, respectively.

To effectively bridge the interaction between physical
and virtual spaces, a signal similarity indicator that can be
used to evaluate the difference between the generated and
physical signals is constructed. In general, the more
similar the generated signal is to the physical one, the
higher the fidelity of the dynamic model, making the
constructed fault diagnosis model based on these data
further effective [40,41]. Thus, selecting a suitable signal
similarity indicator is significant for monitoring the
dynamic model performance during model updating.
Cosine similarity, one of the most popular data similarity
indicators, has been widely employed in the similarity
evaluation of vibration signals for fault diagnosis [17,32];
it can be defined as follows:

X. X,
Xl < || X ]|

To increase efficiency in practical applications, a
sensitivity analysis of the signal similarity indicator is
conducted as follows:

R(p) = (®)

OR
s =BP ez i<i<n ©)
opi
Sensitive model parameters can be obtained as follows:

P, =[pa:pos-.pul, k€Z, 1<k<n, (10)
where £ is the number of sensitive model parameters.
Then, the surrogate technique (PRSM) is adopted to
reduce the computation time of model updating.
Correspondingly, the signal similarity indicator can be

expressed by a classical third-order PRSM as follows:

k k k
R(p,) = a,+ Z a;ps; + Z anpf,- + Z Q;jPsiPsj
i=1 i=1

i>j

k k
3
+ Z Q;; Pyt Z Q;ijPsi Psi Psjs
i=1

i>j

(11)

where a, represents the unknown coefficients that are
determined by the sampling points and obtained through
LSM.

Thus, the objective function can be simplified as
follows:

max R, (p,), (12)
S.t. Py S P S P
where p, and p,, are the lower and upper bounds of the
sensitive model parameters, respectively.

The firefly algorithm (FA) [42,43] is selected as the
optimization algorithm for updating the model. Compared
with other algorithms [44,45], FA has the benefits of high
optimizing efficiency, reliable accuracy, and easy
implementation. The main idea of FA is to simulate the
flying and flashing behaviors of fireflies in nature. The
movement characteristics of one firefly are related to its
brightness. A less bright firefly moves toward a brighter

one, and the brightest firefly moves randomly. Every
firefly is a potential solution to an optimization problem,
and its brightness can be determined by the optimization
objective.

Suppose that FA has an initial population of N fireflies
in the k-dimensional sensitive model parameter space.
The location of the ith firefly is described as p, = (p.,
Pizs-- Pu) (i = 1,2,...,N). If the brightness of firefly j is
greater than that of firefly i, then firefly i moves toward
firefly j. This movement is expressed as follows:

P = P+ Boe (Bl - ph) +@(3-0.5), (13)

=\ D, Pu—pi)’ (14)

where g indicates the gth iteration, 3, is the attractiveness
factor, with a value between 0 and 1, y is the brightness
absorption coefficient, with a common value of 1, r;
represents the distance between fireflies i and j, a is a
random parameter that controls movement randomization,
with a value between 0 and 1, and J is a random vector
(k-dimensional) whose values can be selected from a
standard Gaussian distribution N(0,1).

=]

psi_psj

3.4 Proposed method procedure

Figure 1 outlines the main procedure of the proposed
method, which can be briefly summarized as follows:

Step 1: Build a virtual model (including geometric and
dynamic models) and generate virtual signals.

Step 2: Analyze the generated signal using frequency
analysis and evaluate the modeling method using the
relative error; if the relative error is larger than 5%, then
adjust the modeling method.

Step 3: Preprocess the physical and generated signals in
the time domain using a filtering algorithm and normaliza-
tion.

Step 4: Bridge the interaction between physical and
generated signals.

Step 5: Determine the optimization model parameters
using sensitivity analysis.

Step 6: Establish PRSM to substitute the virtual model
and analyze its fitting accuracy.

Step 7: Build the optimization model to update model
parameters using FA, and then update the dynamic
model.

4 Case study

To validate the proposed model updating method, a case
study on a gearbox was carried out.

The structure of a single-stage gearbox is displayed in
Fig. 2; it comprises a driving gear, driven gear, input
shaft, output shaft, rolling bearings, and gearbox housing.
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The geometric parameters and material properties of the
gear pair are presented in Table 1. The experiments were
performed on a transmission test bench, shown in Fig. 3.
Two electric motors were used for driving and loading.
Vibration signals were measured using three triaxial
accelerometers, which were fixed on the input shaft
bearing seat, output shaft bearing seat, and mounting base
of the gearbox housing. The sampling frequency was set
to 25.6 kHz.

4.1 Model construction

The virtual model should have vibration characteristics

iﬂg o

5
a

I R, &

Fig. 2 Structure of a single-stage gearbox.

Table 1 Geometric and material gear parameters

Parameter Value
Tooth number of driving/driven gears 32/44
Helix angle of driving/driven gears 13°/-13°
Tooth width 35 mm
Normal module 3.5 mm
Normal pressure angle 20°
Density 7800 kg/m?
Elastic modulus 210 GPa
Poisson’s ratio 0.29

a8 ‘\! -
Driven end

- Gearbox
Driving end

Fig. 3 Experimental test rig for the gearbox.

similar to those of the physical gearbox. Therefore, a
dynamic gearbox model was constructed in virtual space
to depict physical properties.

First, the geometric gearbox model, which is
fundamental for dynamic modeling, was built using the
commercial software CATIA. Specifically, the geometric
models of the gear pair and shafts were established
according to their specific parameters, and the gearbox
housing was simplified by ignoring a few detailed

structures (e.g., stiffeners) to improve modeling
efficiency.
Second, an RFCD model for the gearbox was

constructed using the commercial software MSC
ADAMS. Components such as gear pairs and shafts were
assumed to be the Rigid Body whose characteristics were
determined by their geometric structures and materials.
Instead, the gearbox housing was considered to be the
Flexible Body, which was processed with finite elements
using the HyperMesh—OpiStruct software. Moreover,
fixed joints were wused to fasten gears to their
corresponding shafts and fix the gearbox housing to the
ground. The rotational joint motion of the input shaft was
set to simulate the driving motor, whereas the torque
applied force of the output shaft was set to add the
working load. To reduce analysis costs, rolling bearings
were simplified as the bushing force to build a vibration
transfer bridge between the shafts and gearbox housing.

Finally, the contact pair between the gear pair, which is
the most critical factor in the vibration characteristics of
the RFCD model, was simulated by the contact force
[19,46]. This model was constructed using tangential and
normal contact forces. Specifically, the Coulomb friction
model, which is mainly determined by friction
coefficients (static Cgr and dynamic Cyr) and transonic
speeds (static Vi and dynamic Vy), was selected to
simulate tangential contact force. Normal contact force
was modeled using the impact function, which was
formulated with contact stiffness K, damping coefficient
Cp, force exponent e, and penetration depth Dp. K was
calculated according to Hertzian contact theory as
follows:

4 1
K:—]"EZEE’ (15)
3
1 1 1
—=—+—, (16)
re. 1 n
I 1-vi 1-»
— = R 17
E, E, E,

where r, and r, represent the equivalent radii, v, and v,
are Poisson’s ratios of the gears, and E, and E, represent
the elastic moduli of the gears. The values of the
equivalent radius are approximately equal to the pitch
radius of the gears.

The initial values of K, Cp, er, and Dp are listed in
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Table 2. The constructed RFCD gearbox model is shown
in Fig. 4.

An experiment of the gearbox under one operating
condition was conducted, which was called the base
operation condition. Specifically, the operating speed of
the driving motor was 1000 r/min, and the load torque
was 150 N-m. Accordingly, the operation conditions of
the RFCD model were identical to those in this
experiment in which revolute joints and the torque
applied force were set at 6000°/s and 150 N-m,
respectively. The analysis step size was set to 1/10000 s.

The experimental signal was measured using an
accelerometer attached to the bearing seat of the input
shaft. The generated signal was collected using a virtual
sensor, as illustrated in Fig. 4. This signal, with a duration
of 0.2 s, is shown in Fig. 5; this signal is relatively clean
without any noise interference.

4.2 Modeling method analysis

To validate the effectiveness of RFCM, an analysis of the
generated response in the frequency domain was
conducted. The frequency spectrum of the generated
signal was obtained using FFT analysis, as shown in

frequency spectrum appearing at 533.9, 1067.0, and
1601.0 Hz. According to Egs. (2) and (3), the main
frequency components of the gearbox, in theory, are
533.3, 1066.7, and 1600.0 Hz, with a speed of
1000 r/min. The frequency spectrum of the experimental
signal was calculated and is presented in Fig. 6(b); the
main frequency components were 533.8, 1068.0, and
1602.0 Hz. From these results, the difference between the
main frequency components of the generated response
and the theoretical values was below 1%, and the gap
between these frequency features between virtual and
experimental signals was limited. Owing to the
manufacturing and assembly errors of the gearbox, which
are difficult to simulate quantitatively, modulation
sidebands in the experimental frequency spectrum can be
found. In addition, noise from sensors, data acquisition
equipment, and other devices was always present in the
experiment. Unfortunately, these factors cannot be
reliably considered in the RFCD model, which leads to
differences in the frequency components of virtual and
experimental signals.

In summary, the above results demonstrate that the
generated response achieves good effectiveness in the

Fig. 6(a). This figure shows three apparent peaks in the ; 5
S
Table 2 Contact force model details h 0
(5]
Parameter Value E vy
Static friction coefficient Cgp 0.1 g‘ 10
Static transonic speed Vy 1 mm/s < 080 0.85 0.90 0.95 1.00
Dynamic friction coefficient Cye 0.08 Time/s
Dynamic transonic speed Vy 10 mm/s
. Fig. 5 Generated vibration response.
Contact stiffness K 8.6 x 105 N-s/m3/2
Force exponent er 2.0 & :
Damping coefficient Cp 86 N-s/mm g 6y 1601.0
¥ 1067.0
Penetration depth Dp 0.1 mm % 4t 533.9
2 16.7
£ 27 /
Gearbox housin; e
Output shaft —7 g g L " MNP | | L
i 0
Y (flexible body ) < %o 500 1000 1500 2000
l Frequency/Hz
A
: 0.8 -
D —~
rven gear # Driving gear L, 1068.0
g 06 533.8
< 04
Virtual sensor 5 16.7
location g02 1602.0 1
N " < 0 1.0 )
‘(‘b‘ﬁl‘h“i b;gigg‘)% 0 500 1000 1500 2000
g Frequency/Hz
Input shaft (b)

Fig. 4 Rigid—flexible coupling dynamic model of the gearbox
analyzed in this study.

Fig. 6 Frequency spectra of virtual and experimental signals:
(a) virtual and (b) experimental frequency spectra.
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frequency domain, which implies that the modeling
method of the constructed RFCD model is feasible.

4.3 Signal similarity construction

The signal similarity indicator was constructed to
establish a bridge for the information interaction between
virtual and experimental entities, which can also be used
to improve the fidelity of the RFCD model.

Virtual and experimental signals were resampled at
10 kHz to make their time intervals consistent and then
normalized to minimize the effect of the vibration transfer
path caused by the simplification of the bearing and
gearbox housing. Signals were then preprocessed using a
digital band-pass filter ([300, 1200] Hz) to reduce noise
interference. Subsequently, these signals, with a duration
of 0.5 s, were selected, and their cosine similarity was
calculated. Using Eq. (8), the cosine similarity value was
0.689, which is greater than 0.6 and indicates a
satisfactory consistency [17,32].

Virtual and experimental signals are shown in Fig. 7,
demonstrating that the cosine similarity of the signals can
be used to evaluate the generated data quality and model
fidelity.

"I — Virtual signal

1.0 2 :
— Experimental signal

0.5

Amplitude/(m-s™)
[=}

-0.5
~1.0 L
0.25 0.30 0.35
Time/s

Fig. 7 Comparison between virtual and experimental signals.

4.4 RFCD model updating

Based on the constructed cosine similarity, the informa-
tion interaction between virtual and experimental
gearboxes was established to update the RFCD model. In
this model, the material properties of components and
contact model between gear pairs may affect vibration
characteristics. With this interaction, the fidelity of the
RFCD model was improved by optimizing model
parameters. To increase optimization efficiency,
parameter sensitivity analysis and PRSM were adopted.

4.4.1 Parameter sensitivity analysis
The parameter sensitivity analysis, which is a crucial
process to decrease the calculation time of the RFCD
model updating, is outlined in this section; it is used to
screen crucial factors affecting the cosine similarity
between virtual and experimental signals.

In general, many parameters in the RFCD model

influence cosine similarity, such as contact stiffness,
contact damping coefficient, force exponent, penetration
depth, elastic modulus, and density whose analysis scopes
are given in Table 3. Figure 8 shows the sensitivity
analysis of these parameters concerning cosine similarity.
Changes in the elastic modulus, density, and penetration
depth of gears have a negligible effect on cosine
similarity, whereas the K, Cp, and er significantly affect
the cosine similarity value. Therefore, these three
parameters were selected as optimization parameters to
update the RFCD model.

Table 3 Model parameter changes

Parameter Range
[4.3 x 105, 12.9 x 10°] N/mm?3/2
[86, 860] N-s/mm
[1.5,2.5]
[0.05, 0.15] mm
[179,242] GPa

[6600, 9000] kg/m?

Contact stiffness K
Damping coefficient Cp
Force exponent ep
Penetration depth Dp
Elastic modulus of gears £

Gear density p

4.4.2 PRSM construction

To improve the model updating efficiency and its
applicability, a reliable surrogate model must be
constructed to replace the RFCD model. Generating 1-s
data for the gearbox RFCD model takes approximately
five minutes running on a PC with a Core 19-9900 CPU,
32G RAM, and GeForce GTX 1050Ti GPU, which do
not meet the requirements of real applications. In recent
years, PRSM has been successfully applied to the
analysis and optimization of complex systems. The
computation time of RFCD model updating can be
dramatically reduced wusing PRSM; the implicit
relationship between cosine similarity and model
updating parameters can be approximated with few
simulation experiments based on the RFCD model.

To obtain a suitable PRSM, the performances of
second- and third-order PRSMs were analyzed here. To
reduce the impacts of different variable scales, parameters
were normalized from 0 to 1 through min—-max
normalization. During the PRSM construction process,
each simulation experiment was expressed as a sampling
point, constituted by the updating parameters. Six groups
of the training sample set for constructing PRSM,
namely, 25, 30, 35, 40, 45, and 50 sample points, were
achieved using the LHS method. Meanwhile, one group
of the testing set, consisting of 20 sample points for
evaluating the performance of the constructed PRSM,
was also obtained using the LHS method.

Based on the RFCD model of the gearbox, virtual
signals were generated, and cosine similarity was
calculated. Thus, six PRSMs were established using the
LSM method with corresponding sample sets and cosine
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Fig. 8 Sensitivity analysis of parameters on cosine similarity.

similarities. R? was utilized to quantify the goodness of fit
of each PRSM, and these results are shown in Fig. 9. The
R? of the third-order PRSM reached 0.97 and remained
steady with an increase in sample points, whereas that of
the second-order PRSM stabilized at approximately 0.94;
thus, the goodness of fit was lower for the second-order
PRSM than that for the third-order PRSM. Furthermore,
the cosine similarity relative error between these PRSMs
and the RFCD model using the testing set was analyzed,
and the results are shown in Fig. 10. The performance of
the third-order PRSM was slightly better than that of the
second-order PRSM when the number of simulation
experiments was greater than 40. For example, when the
number of simulation experiments was 45, the maximum
and mean relative errors were 0.067 and 0.027,
respectively. For the third-order PRSM, when the number
of simulation experiments was 25, R? reached 0.991, and
the maximum relative error was 0.45, indicating the
overfitting phenomenon. These results illustrate that the
fitting precision of the third-order PRSM with 45 sample
points can achieve satisfactory results and that this model
can be used as a surrogate for the RFCD model. Given
the normalized values of contact stiffness (#1), contact
damping coefficient (¢;), and force exponent (#3), PRSM
was established as follows:

8.04 8.52 9.00
p/107¢
1.00 } 0.991 B S aer
0971° 063 297 097875975 0972
& .95 0 947 0 945 0.946 0043
0.90
25 45 50

Number of 51mu1at10n experiments

Fig. 9 R? for different sample points.
f(t,t,1;) = 0.6349 — 0.83741, — 0.0945¢, + 0.5874t;
+0.1797£ +0.73831 — 0.71541 + 1.80131,1,
+0.27171,t; — 0.67154,15 + 0.3009¢; —0.61051;
+ 0.0692t§’ -0.65 17tft2 - 0.46331‘?2‘3 - 0.8417t§t1

+0.2818261; +0.0397631, +0.2283621,,
(18)
where f(t,,1,,t;) is the cosine similarity between virtual
and experimental signals.

4.43 Model updating based on FA

The higher the fidelity of the RFCD model, the greater
the similarity between the experimental and generated
signals. Thus, cosine similarity was selected as the
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Fig. 10 Relative errors of the (a) second-order and (b) third-
order polynomial response surface models using the testing set.

optimization objective. The search space of the optimiza-
tion parameters can be expressed as follows:

43x10° < K< 12.9%10°,
86 < Cp < 860,

1.5<e: <2.5. (19)

Furthermore, the optimization model with the
normalized variable can be expressed as follows:

max f(t,,t,1;) (20)

stt. t,€[0, 1],i=1,2,3,

where #; represents normalized updating parameters.

FA was applied for model optimization. The population
of fireflies and iteration number were set to 30 and 100,
respectively. Through FA optimization, cosine similarity
increased from 0.689 to 0.752, indicating the effective-
ness of this model updating. The model parameters and
their corresponding cosine similarities are listed in
Table 4. After parameter updating via the proposed
physical—virtual interaction method, the RFCD model can
further effectively mirror the vibration characteristics of
the experimental gearbox, that is, it can provide a more
reliable essential virtual model for generating data.

Table 4 Updated model parameters and similarity results

Contact Damping Force

Yalue stiffness coefficient exponent .Co.fini
ype K/(N'mm™>?2)  Cp/(N-s'mm1) er simtiarity
Initial value 8.60 x 105 86 2.00 0.689
Updated value 6.44 x 10° 303 227 0.752

4.5 RFCD model analysis under different operating
conditions

The running condition of the gearbox was varied during
actual operation. A good RFCD model should be robust

and achieve good performance under varying conditions,
meaning that the RFCD model can match the
experimental gearbox for different conditions. Therefore,
the performance of the RFCD model under different
conditions was analyzed in detail.

Three experiments were conducted on a transmission
test bench under different operating conditions. The
loading and operation speeds of these experiments are
listed in Table 5, with their corresponding settings in the
updated RFCD model. The generated signals were
obtained using an updated model under these operating
conditions.

Table S Gearbox operating conditions

Experiment RFCD model
Condition Speed/  Load/  Revolute joint/ Torque applied
(rmin!)  (N'm) ((°)s™h force/(N-m)
Condition 1 1006 50 6035 50
Condition 2 1005 75 6027 75
Condition 3 1003 100 6021 100
Base condition 1000 150 6000 150

The frequency spectrum of these generated signals was
obtained via FFT, and the results are shown in Fig. 11.
The main frequency components and theoretical meshing

m ' ' 1610.0
E 6 1073.0
=)
= 4t
3 5372
2 2t L ]
? 0 1 1 L L T .
< 7o 500 1000 1500 2000
Frequency/Hz
(€]
g . 1608.0
T 1072.0
S 4y 536.1
3
2 2 l 1
=
E 0 1 1 N 1 l l 1
0 500 1000 1500 2000
Frequency/Hz
(b)
® Ll 1606.0
=
s 1071.0
(=)
= 4t
5 535.6
Z 2t l :
% 0 [T Al | T il
< 0 500 1000 1500 2000
Frequency/Hz
(c)

Fig. 11 Frequency spectrum of generated signals under
different conditions: (a) Condition 1, (b) Condition 2, and
(c) Condition 3.
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frequencies for different conditions are listed in Table 6.
The relative errors between these main frequency
components and the theoretical meshing frequency or its
harmonics were less than 1%, suggesting that RFCD
model updating is adequate under different operation
conditions.

Table 6 Frequency analysis under different conditions

Meshing frequency or
its harmonics/Hz

536.5/1073.0/1609.5
536.0/1072.0/1608.0
534.9/1069.9/1604.8
533.3/1066.7/1600.0

Virtual main frequency
components/Hz

537.2/1073.0/1610.0
536.1/1072.0/1608.0
535.6/1071.0/1606.0
533.9/1067.0/1601.0

Condition

Condition 1
Condition 2
Condition 3

Base condition

The cosine similarity between the experimental and
generated signals under different operating conditions
was calculated and is shown in Fig. 12. The similarity
values under Conditions 1, 2, and 3 were 0.721, 0.744,
and 0.762, respectively. Considering these values and that
for the base condition together, all values are greater than
0.7, and the fluctuation is limited, which demonstrates
that the updated RFCD model remains stable in the time
domain. To clearly illustrate the similarity between
experimental and generated signals, comparisons are
displayed in Fig. 13.

0.8
iy
= 07
E
£ 06
8
O

0.5 — " -

Condition Condition Condition  Base
1 2 3 condition
Operation condition

Fig. 12 Cosine similarity under different conditions.

These results verify the effectiveness and stability of
the construction of the RFCD model and model updating
under different operating conditions, which show strong
potential for generating data with high efficiency for fault
diagnosis in sample imbalance situations.

5 Conclusions

To obtain an accurate and reliable virtual model of a
gearbox, a digital twin-assisted dynamic model updating
method was proposed in this study. The main procedure
included virtual model construction, modeling evaluation,
and physical-virtual-based model updating. Frequency
analysis, parameter sensitivity analysis, surrogate
technique, and optimization algorithm were employed to
improve model updating efficiency. A case study of a
gearbox validated the effectiveness of the proposed

o 1.0 — Virtual signal
@ — Experimental signal
g 05
5}
g 0
205
g
< -1.0 . ]
0 0.05 0.10
Time/s
()
~ 10 —— Virtual signal
% — Experimental signal
g 05
15}
3 0
505
g
< -1.0 i
0 0.05 0.10
Time/s
(W]
~ 10 — Virtual signal
o — Experimental signal
g
3
=
=
&
g
< , i
0 0.05 0.10
Time/s
(©

Fig. 13 Comparisons between virtual and experimental signals
in the time domain under different conditions: (a) Condition 1,
(b) Condition 2, and (c) Condition 3.

method, which convincingly indicates that the proposed
method can offer an effective solution for improving the
fidelity of the virtual model and enhancing the generated
data. In addition, the constructed model with digital twin-
assisted updating can achieve good performance under
different operating conditions.

In future works, different mechanisms to generate fault
data will be investigated. The generated data for different
fault types will also be validated according to the
corresponding gear failure mechanism; in this way, the
data can be effectively supplemented into the training
during fault diagnosis model construction. Moreover,
advanced signal processing techniques and new-
generation machine learning algorithms will be
considered to further reduce the gap between physical and
virtual entities and improve data-driven fault diagnosis in
real-world applications.

Nomenclature

Abbreviations

FA Firefly algorithm
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FEM Finite element method

FFT Fast Fourier transform

LHS Latin hypercube sampling

LPM Lumped parameter method

LSM Least squares method

PHM Prognostics and health management

PRSM Polynomial response surface model

RFCD Rigid—flexible coupling dynamic

RFCM Rigid—flexible coupling method

RSM Response surface methodology

Variables

a; Amplitude of the exciting force

a; Amplitude of the vibration response

Car Dynamic friction coefficient

Cp Damping coefficient

Cyt Static friction coefficient

Dp Penetration depth

er Force exponent

E Elastic modulus of gears

A Excitation force

Ati,h,ts)  Cosine similarity between virtual and experimental signals
Tt 2 Rotation frequencies of input and output gears, respectively
f- Mesh frequency

g gth iteration

h(t) Transfer function of the gearbox

k Number of sensitive model parameters

K Contact stiffness

L Number of sample points

M Number of mode order

n Number of parameters

) Model parameters in the dynamic model

L Lower bound of the model parameters

Ds Sensitive model parameters

PsL Lower bound of the sensitive model parameters
Psu Upper bound of the sensitive model parameters
Pu Upper bound of the model parameters

1, 72 Equivalent radius

rij Distance between fireflies i and j

R2 Coefficient of determination

R(p) Difference between the generated and physical signals
t Normalized contact stiffness

t Normalized contact damping coefficient

t Normalized force exponent

Vat Dynamic transonic speed

Vst Static transonic speed

X Variable matrix of sampling points

X Physical signal in the time domain

X, Generated signal in the time domain

y Mean value of the simulation response

Vi Result of sample point i based on the complex simulation model

i Result of sample point i based on the constructed surrogate
model

() Vibration response

Y Response vector of sampling points

z] Tooth number of the driving gear

z Tooth number of the driven gear

a Random parameter that controls movement randomization

B Unknown coefficient vector

Bo Attractiveness factor

& Error vector

y Brightness absorption coefficient

Vi, V2 Poisson’s ratios of the gears

0, Phase of the exciting force

0, Phase of the vibration response

o Density of gears

g Random vector (k-dimensional)

Acknowledgements This work was supported in part by the National Key
R&D Program of China (Grant No. 2018YFB1702400), the National
Natural Science Foundation of China (Grant Nos. 52275111, 52205100, and
52205101), and the Guangdong Basic and Applied Basic Research
Foundation, China (Grant Nos. 2021A1515110708 and
2023A1515012856).

Conflict of Interest The authors declare that they have no conflict of
interest.

References

1. Chen X F, Wang S B, Qiao B J, Chen Q. Basic research on
machinery fault diagnostics: past, present, and future trends.
Frontiers of Mechanical Engineering, 2018, 13(2): 264-291

2. Singh V, Gangsar P, Porwal R, Atulkar A. Artificial intelligence
application in fault diagnostics of rotating industrial machines: a
state-of-the-art review. Journal of Intelligent Manufacturing, 2023,
34(3): 931-960

3. Rajabi S, Saman Azari M, Santini S, Flammini F. Fault diagnosis
in industrial rotating equipment based on permutation entropy,
signal processing and multi-output neuro-fuzzy classifier. Expert
Systems with Applications, 2022, 206: 117754

4. Zhang L F, Zhang F B, Qin Z Y, Han Q K, Wang T Y, Chu F L.
Piezoelectric energy harvester for rolling bearings with capability
of self-powered condition monitoring. Energy, 2022, 238: 121770

5. Maschler B, Weyrich M. Deep transfer learning for industrial
automation: a review and discussion of new techniques for data-
driven machine learning. IEEE Industrial Electronics Magazine,
2021, 15(2): 65-75


https://doi.org/10.1007/s11465-018-0472-3
https://doi.org/10.1007/s11465-018-0472-3
https://doi.org/10.1007/s11465-018-0472-3
https://doi.org/10.1007/s11465-018-0472-3
https://doi.org/10.1007/s10845-021-01861-5
https://doi.org/10.1007/s10845-021-01861-5
https://doi.org/10.1007/s10845-021-01861-5
https://doi.org/10.1007/s10845-021-01861-5
https://doi.org/10.1007/s10845-021-01861-5
https://doi.org/10.1016/j.eswa.2022.117754
https://doi.org/10.1016/j.eswa.2022.117754
https://doi.org/10.1016/j.eswa.2022.117754
https://doi.org/10.1016/j.eswa.2022.117754
https://doi.org/10.1016/j.energy.2021.121770
https://doi.org/10.1016/j.energy.2021.121770
https://doi.org/10.1016/j.energy.2021.121770
https://doi.org/10.1109/MIE.2020.3034884
https://doi.org/10.1109/MIE.2020.3034884
https://doi.org/10.1109/MIE.2020.3034884
https://doi.org/10.1109/MIE.2020.3034884
https://doi.org/10.1109/MIE.2020.3034884

10.

11.

12.

13.

15.

16.

17.

19.

Jingyan XIA et al. Digital twin-assisted dynamic model updating 13

. Li X, Shao H D, Lu S L, Xiang J W, Cai B P. Highly efficient fault

diagnosis of rotating machinery under time-varying speeds using
LSISMM and small infrared thermal images. IEEE Transactions
on Systems, Man, and Cybernetics: Systems, 2022, 52(12):
7328-7340

. Cirrincione G, Kumar R R, Mohammadi A, Kia S H, Barbiero P,

Ferretti J. Shallow versus deep neural networks in gear fault
diagnosis. IEEE Transactions on Energy Conversion, 2020, 35(3):
1338-1347

. LiWH, Huang R Y, LiJ P, Liao Y X, Chen Z Y, He G L, Yan R

Q, Gryllias K. A perspective survey on deep transfer learning for
fault diagnosis in industrial scenarios: theories, applications and
challenges. Mechanical Systems and Signal Processing, 2022, 167:
108487

. Zhang X, Huang T, Wu B, Hu Y M, Huang S, Zhou Q, Zhang X.

Multi-model ensemble deep learning method for intelligent fault
diagnosis with high-dimensional samples. Frontiers of Mechanical
Engineering, 2021, 16(2): 340-352

Li X, Shao H D, Jiang H K, Xiang J W. Modified gaussian
convolutional deep belief network and infrared thermal imaging
for intelligent fault diagnosis of rotor-bearing system under time-
varying speeds. Structural Health Monitoring, 2022, 21(2):
339-353

Schwendemann S, Amjad Z, Sikora A. Bearing fault diagnosis
with
discrepancy: a new transfer learning approach. Engineering
Applications of Artificial Intelligence, 2021, 105: 104415

Lei Y G, Yang B, Jiang X W, Jia F, Li N P, Nandi A K.
Applications of machine learning to machine fault diagnosis: a

intermediate domain based layered maximum mean

review and roadmap. Mechanical Systems and Signal Processing,
2020, 138: 106587

Liao Y X, Huang R Y, Li J P, Chen Z Y, Li W H. Deep
semisupervised domain generalization network for rotary
machinery fault diagnosis under variable speed. IEEE Transactions

on Instrumentation and Measurement, 2020, 69(10): 8064—8075

. Sawalhi N, Randall R B. Simulating gear and bearing interactions

in the presence of faults: Part 1. The combined gear bearing
dynamic model and the simulation of localised bearing faults.
Mechanical 2008, 22(8):
1924-1951

Sawalhi N, Randall R B. Simulating gear and bearing interactions

Systems and Signal Processing,

in the presence of faults: Part II: simulation of the vibrations
produced by extended bearing faults. Mechanical Systems and
Signal Processing, 2008, 22(8): 1952-1966

Bachar L, Dadon I, Klein R, Bortman J. The effects of the
operating conditions and tooth fault on gear vibration signature.
Mechanical Systems and Signal Processing, 2021, 154: 107508

Liu XY, Huang H Z, Xiang J W. A personalized diagnosis method
to detect faults in gears using numerical simulation and extreme
learning machine. Knowledge-based Systems, 2020, 195: 105653

. He G L, Ding K, Wu X M, Yang X Q. Dynamics modeling and

vibration modulation signal analysis of wind turbine planetary
gearbox with a floating sun gear. Renewable Energy, 2019, 139:
718-729

Mishra C, Samantaray A K, Chakraborty G. Ball bearing defect
models: a study of simulated and experimental fault signatures.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

3s.

36.

Journal of Sound and Vibration, 2017, 400: 86—112

Liu J, Pang R K, Ding S Z, Li X B. Vibration analysis of a
planetary gear with the flexible ring and planet bearing fault.
Measurement, 2020, 165: 108100

Song C S, Zhu C C, Liu H J, Ni G X. Dynamic analysis and
experimental study of a marine gearbox with crossed beveloid
gears. Mechanism and Machine Theory, 2015, 92: 17-28

El Yousfi B, Soualhi A, Medjaher K, Guillet F. Electromechanical
modeling of a motor—gearbox system for local gear tooth faults
detection. Mechanical Systems and Signal Processing, 2022, 166:
108435

Tao F, Qi Q L. Make more digital twins. Nature, 2019, 573(7775):
490-491

Grieves M. Digital Twin: Manufacturing Excellence Through
Virtual Factory Replication. White Paper, 2014, 1: 1-7

Semeraro C, Lezoche M, Panetto H, Dassisti M. Digital twin
paradigm: a systematic literature review. Computers in Industry,
2021, 130: 103469

Rasheed A, San O, Kvamsdal T. Digital twin: values, challenges,
and enablers from a modeling perspective. IEEE Access, 2020, 8:
21980-22012

Deebak B D, Al-Turjman F. Digital-twin assisted: fault diagnosis
using deep transfer learning for machining tool condition.
International Journal of Intelligent Systems, 2022, 37(12):
10289-10316

Farhat M H, Chiementin X, Chaari F, Bolaers F, Haddar M. Digital
fault
classification. Measurement Science & Technology, 2021, 32(4):
044006

Hosamo H H, Svennevig P R, Svidt K, Han D, Nielsen H K. A
digital twin predictive maintenance framework of air handling

twin-driven machine learning: ball bearings severity

units based on automatic fault detection and diagnostics. Energy
and Building, 2022, 261: 111988

Wang Y C, Tao F, Zhang M, Wang L H, Zuo Y. Digital twin
enhanced fault prediction for the autoclave with insufficient data.
Journal of Manufacturing Systems, 2021, 60: 350-359

Feng K, Ji J C, Zhang Y C, Ni Q, Liu Z, Beer M. Digital twin-
driven intelligent assessment of gear surface degradation.
Mechanical Systems and Signal Processing, 2023, 186: 109896
Lou Y X, Kumar A, Xiang J] W. Machinery fault diagnosis based
on domain adaptation to bridge the gap between simulation and
measured signals. IEEE Transactions on Instrumentation and
Measurement, 2022, 71: 1-9

Moghadam F K, Nejad A R. Online condition monitoring of
floating wind turbines drivetrain by means of digital twin.
Mechanical Systems and Signal Processing, 2022, 162: 108087
LiY Z, Ding K, He G L, Lin H B. Vibration mechanisms of spur
gear pair in healthy and fault states. Mechanical Systems and
Signal Processing, 2016, 81: 183201

Khuri A I, Mukhopadhyay S. Response surface methodology.
Wiley Interdisciplinary Reviews Computational Statistics, 2010,
2(2): 128-149

Ma R B, Dong L H, Wang H D, Chen S Y, Xing Z G. Response
surface regression analysis on FeCrBSi particle in-flight properties
by plasma spray. Frontiers of Mechanical Engineering, 2016,
11(3): 250257


https://doi.org/10.1109/TSMC.2022.3151185
https://doi.org/10.1109/TSMC.2022.3151185
https://doi.org/10.1109/TSMC.2022.3151185
https://doi.org/10.1109/TSMC.2022.3151185
https://doi.org/10.1109/TSMC.2022.3151185
https://doi.org/10.1109/TSMC.2022.3151185
https://doi.org/10.1109/TEC.2020.2978155
https://doi.org/10.1109/TEC.2020.2978155
https://doi.org/10.1109/TEC.2020.2978155
https://doi.org/10.1109/TEC.2020.2978155
https://doi.org/10.1109/TEC.2020.2978155
https://doi.org/10.1016/j.ymssp.2021.108487
https://doi.org/10.1016/j.ymssp.2021.108487
https://doi.org/10.1016/j.ymssp.2021.108487
https://doi.org/10.1016/j.ymssp.2021.108487
https://doi.org/10.1016/j.ymssp.2021.108487
https://doi.org/10.1007/s11465-021-0629-3
https://doi.org/10.1007/s11465-021-0629-3
https://doi.org/10.1007/s11465-021-0629-3
https://doi.org/10.1007/s11465-021-0629-3
https://doi.org/10.1007/s11465-021-0629-3
https://doi.org/10.1177/1475921721998957
https://doi.org/10.1177/1475921721998957
https://doi.org/10.1177/1475921721998957
https://doi.org/10.1177/1475921721998957
https://doi.org/10.1177/1475921721998957
https://doi.org/10.1177/1475921721998957
https://doi.org/10.1016/j.engappai.2021.104415
https://doi.org/10.1016/j.engappai.2021.104415
https://doi.org/10.1016/j.engappai.2021.104415
https://doi.org/10.1016/j.engappai.2021.104415
https://doi.org/10.1016/j.ymssp.2019.106587
https://doi.org/10.1016/j.ymssp.2019.106587
https://doi.org/10.1016/j.ymssp.2019.106587
https://doi.org/10.1016/j.ymssp.2019.106587
https://doi.org/10.1109/TIM.2020.2992829
https://doi.org/10.1109/TIM.2020.2992829
https://doi.org/10.1109/TIM.2020.2992829
https://doi.org/10.1109/TIM.2020.2992829
https://doi.org/10.1109/TIM.2020.2992829
https://doi.org/10.1016/j.ymssp.2007.12.001
https://doi.org/10.1016/j.ymssp.2007.12.001
https://doi.org/10.1016/j.ymssp.2007.12.001
https://doi.org/10.1016/j.ymssp.2007.12.001
https://doi.org/10.1016/j.ymssp.2007.12.001
https://doi.org/10.1016/j.ymssp.2007.12.001
https://doi.org/10.1016/j.ymssp.2007.12.002
https://doi.org/10.1016/j.ymssp.2007.12.002
https://doi.org/10.1016/j.ymssp.2007.12.002
https://doi.org/10.1016/j.ymssp.2007.12.002
https://doi.org/10.1016/j.ymssp.2007.12.002
https://doi.org/10.1016/j.ymssp.2020.107508
https://doi.org/10.1016/j.ymssp.2020.107508
https://doi.org/10.1016/j.ymssp.2020.107508
https://doi.org/10.1016/j.knosys.2020.105653
https://doi.org/10.1016/j.knosys.2020.105653
https://doi.org/10.1016/j.knosys.2020.105653
https://doi.org/10.1016/j.renene.2019.02.123
https://doi.org/10.1016/j.renene.2019.02.123
https://doi.org/10.1016/j.renene.2019.02.123
https://doi.org/10.1016/j.renene.2019.02.123
https://doi.org/10.1016/j.renene.2019.02.123
https://doi.org/10.1016/j.jsv.2017.04.010
https://doi.org/10.1016/j.jsv.2017.04.010
https://doi.org/10.1016/j.jsv.2017.04.010
https://doi.org/10.1016/j.jsv.2017.04.010
https://doi.org/10.1016/j.measurement.2020.108100
https://doi.org/10.1016/j.measurement.2020.108100
https://doi.org/10.1016/j.measurement.2020.108100
https://doi.org/10.1016/j.mechmachtheory.2015.05.001
https://doi.org/10.1016/j.mechmachtheory.2015.05.001
https://doi.org/10.1016/j.mechmachtheory.2015.05.001
https://doi.org/10.1016/j.mechmachtheory.2015.05.001
https://doi.org/10.1016/j.ymssp.2021.108435
https://doi.org/10.1016/j.ymssp.2021.108435
https://doi.org/10.1016/j.ymssp.2021.108435
https://doi.org/10.1016/j.ymssp.2021.108435
https://doi.org/10.1016/j.ymssp.2021.108435
https://doi.org/10.1038/d41586-019-02849-1
https://doi.org/10.1038/d41586-019-02849-1
https://doi.org/10.1038/d41586-019-02849-1
https://doi.org/10.1016/j.compind.2021.103469
https://doi.org/10.1016/j.compind.2021.103469
https://doi.org/10.1016/j.compind.2021.103469
https://doi.org/10.1109/ACCESS.2020.2970143
https://doi.org/10.1109/ACCESS.2020.2970143
https://doi.org/10.1109/ACCESS.2020.2970143
https://doi.org/10.1109/ACCESS.2020.2970143
https://doi.org/10.1002/int.22493
https://doi.org/10.1002/int.22493
https://doi.org/10.1002/int.22493
https://doi.org/10.1002/int.22493
https://doi.org/10.1002/int.22493
https://doi.org/10.1088/1361-6501/abd280
https://doi.org/10.1088/1361-6501/abd280
https://doi.org/10.1088/1361-6501/abd280
https://doi.org/10.1088/1361-6501/abd280
https://doi.org/10.1016/j.enbuild.2022.111988
https://doi.org/10.1016/j.enbuild.2022.111988
https://doi.org/10.1016/j.enbuild.2022.111988
https://doi.org/10.1016/j.enbuild.2022.111988
https://doi.org/10.1016/j.jmsy.2021.05.015
https://doi.org/10.1016/j.jmsy.2021.05.015
https://doi.org/10.1016/j.jmsy.2021.05.015
https://doi.org/10.1016/j.jmsy.2021.05.015
https://doi.org/10.1016/j.ymssp.2022.109896
https://doi.org/10.1016/j.ymssp.2022.109896
https://doi.org/10.1016/j.ymssp.2022.109896
https://doi.org/10.1109/TIM.2022.3180416
https://doi.org/10.1109/TIM.2022.3180416
https://doi.org/10.1109/TIM.2022.3180416
https://doi.org/10.1109/TIM.2022.3180416
https://doi.org/10.1109/TIM.2022.3180416
https://doi.org/10.1016/j.ymssp.2021.108087
https://doi.org/10.1016/j.ymssp.2021.108087
https://doi.org/10.1016/j.ymssp.2021.108087
https://doi.org/10.1016/j.ymssp.2016.03.014
https://doi.org/10.1016/j.ymssp.2016.03.014
https://doi.org/10.1016/j.ymssp.2016.03.014
https://doi.org/10.1016/j.ymssp.2016.03.014
https://doi.org/10.1002/wics.73
https://doi.org/10.1002/wics.73
https://doi.org/10.1002/wics.73
https://doi.org/10.1002/wics.73
https://doi.org/10.1007/s11465-016-0401-2
https://doi.org/10.1007/s11465-016-0401-2
https://doi.org/10.1007/s11465-016-0401-2
https://doi.org/10.1007/s11465-016-0401-2
https://doi.org/10.1007/s11465-016-0401-2

14

37.

38.

39.

40.

41.

Front. Mech. Eng. 2023, 18(2): 32

Bertocci F, Fort A, Vignoli V, Shahin L, Mugnaini M, Berni R.
Assessment and optimization for novel gas materials through the
evaluation of mixed response surface models. IEEE Transactions
on Instrumentation and Measurement, 2015, 64(4): 1084—-1092

Yi P X, Dong L J, Shi T L. Multi-objective genetic algorithms
based structural optimization and experimental investigation of the
planet carrier in wind turbine gearbox. Frontiers of Mechanical
Engineering, 2014, 9(4): 354-367

Sheikholeslami R, Razavi S. Progressive latin hypercube sampling:
an efficient approach for robust sampling-based analysis of
environmental models. Environmental Modelling & Software,
2017, 93: 109-126

Huang R Y, LiJ P, Liao Y X, Chen J B, Wang Z, Li W H. Deep
adversarial capsule network for compound fault diagnosis of
task. IEEE
Transactions on Instrumentation and Measurement, 2021, 70: 1-11
Cao H R, Shao H D, Zhong X, Deng Q W, Yang X K, Xuan J P.
Unsupervised domain-share CNN for machine fault transfer

machinery toward multidomain generalization

diagnosis from steady speeds to time-varying speeds. Journal of

42.

43.

44,

45.

46.

Manufacturing Systems, 2022, 62: 186—198

Yang X S. Firefly algorithms for multimodal optimization. In:
Watanabe
Foundations and Applications. Berlin: Springer, 2009, 169-178

O, Zeugmann T, eds. Stochastic Algorithms:
Kumar V, Kumar D. A systematic review on firefly algorithm:
past, present, and future. Archives of Computational Methods in
Engineering, 2021, 28(4): 3269-3291

Tian Y, Shi T L, Xia Q. A parametric level set method for the
optimization of composite structures with curvilinear fibers.
Computer Methods in Applied Mechanics and Engineering, 2022,
388: 114236

Mokarram V, Banan M R. A new PSO-based algorithm for multi-
objective optimization with continuous and discrete design
variables. Structural and Multidisciplinary Optimization, 2018,
57(2): 509-533

Wang M F, Ceccarelli M, Carbone G. A feasibility study on the
design and walking operation of a biped locomotor via dynamic
simulation. Frontiers of Mechanical Engineering, 2016, 11(2):
144-158


https://doi.org/10.1109/TIM.2014.2364106
https://doi.org/10.1109/TIM.2014.2364106
https://doi.org/10.1109/TIM.2014.2364106
https://doi.org/10.1109/TIM.2014.2364106
https://doi.org/10.1109/TIM.2014.2364106
https://doi.org/10.1007/s11465-014-0319-5
https://doi.org/10.1007/s11465-014-0319-5
https://doi.org/10.1007/s11465-014-0319-5
https://doi.org/10.1007/s11465-014-0319-5
https://doi.org/10.1007/s11465-014-0319-5
https://doi.org/10.1016/j.envsoft.2017.03.010
https://doi.org/10.1016/j.envsoft.2017.03.010
https://doi.org/10.1016/j.envsoft.2017.03.010
https://doi.org/10.1016/j.envsoft.2017.03.010
https://doi.org/10.1016/j.envsoft.2017.03.010
https://doi.org/10.1109/TIM.2020.3042300
https://doi.org/10.1109/TIM.2020.3042300
https://doi.org/10.1109/TIM.2020.3042300
https://doi.org/10.1109/TIM.2020.3042300
https://doi.org/10.1109/TIM.2020.3042300
https://doi.org/10.1016/j.jmsy.2021.11.016
https://doi.org/10.1016/j.jmsy.2021.11.016
https://doi.org/10.1016/j.jmsy.2021.11.016
https://doi.org/10.1016/j.jmsy.2021.11.016
https://doi.org/10.1016/j.jmsy.2021.11.016
https://doi.org/10.1007/978-3-642-04944-6_14
https://doi.org/10.1007/978-3-642-04944-6_14
https://doi.org/10.1007/978-3-642-04944-6_14
https://doi.org/10.1007/978-3-642-04944-6_14
https://doi.org/10.1007/s11831-020-09498-y
https://doi.org/10.1007/s11831-020-09498-y
https://doi.org/10.1007/s11831-020-09498-y
https://doi.org/10.1007/s11831-020-09498-y
https://doi.org/10.1016/j.cma.2021.114236
https://doi.org/10.1016/j.cma.2021.114236
https://doi.org/10.1016/j.cma.2021.114236
https://doi.org/10.1016/j.cma.2021.114236
https://doi.org/10.1007/s00158-017-1764-7
https://doi.org/10.1007/s00158-017-1764-7
https://doi.org/10.1007/s00158-017-1764-7
https://doi.org/10.1007/s00158-017-1764-7
https://doi.org/10.1007/s00158-017-1764-7
https://doi.org/10.1007/s11465-016-0391-0
https://doi.org/10.1007/s11465-016-0391-0
https://doi.org/10.1007/s11465-016-0391-0
https://doi.org/10.1007/s11465-016-0391-0
https://doi.org/10.1007/s11465-016-0391-0

	1 Introduction
	2 Preliminary
	2.1 Gearbox vibration mechanism
	2.2 Polynomial response surface model

	3 Digital twin-assisted virtual model updating method
	3.1 Part I: virtual model construction
	3.2 Part II: modeling method validation
	3.3 Part III: model updating based on the physical–virtual interaction method
	3.4 Proposed method procedure

	4 Case study
	4.1 Model construction
	4.2 Modeling method analysis
	4.3 Signal similarity construction
	4.4 RFCD model updating
	4.4.1 Parameter sensitivity analysis
	4.4.2 PRSM construction
	4.4.3 Model updating based on FA

	4.5 RFCD model analysis under different operating conditions

	5 Conclusions
	Nomenclature
	Acknowledgements
	Conflict of Interest
	References

