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ABSTRACT Recently, advanced sensing techniques ensure a large number of multivariate sensing data for intelligent
fault diagnosis of machines. Given the advantage of obtaining accurate diagnosis results, multi-sensor fusion has long
been studied in the fault diagnosis field. However, existing studies suffer from two weaknesses. First, the relations of
multiple sensors are either neglected or calculated only to improve the diagnostic accuracy of fault types. Second, the
localization for multi-source faults is seldom investigated, although locating the anomaly variable over multivariate
sensing data for certain types of faults is desirable. This article attempts to overcome the above weaknesses by proposing
a global method to recognize fault types and localize fault sources with the help of multi-sensor relations (MSRs). First,
an MSR model is developed to learn MSRs automatically and further obtain fault recognition results. Second, centrality
measures are employed to analyze the MSR graphs learned by the MSR model, and fault sources are therefore
determined. The proposed method is demonstrated by experiments on an induction motor and a centrifugal pump.

Results show the proposed method’s validity in diagnosing fault types and sources.
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1 Introduction

With the rapid development of Internet of Things tech-
niques, distributed monitoring sensors are increasingly
used in mechanical systems’ surveillance, resulting in a
large volume of multivariate sensing data [1,2]. These
multivariate sensing data can provide not only signals but
also the relations among sensors. Meanwhile, components
of modern industrial equipment are enabled to communi-
cate with one another since they are embedded with
various sensors [3]. The emerging interconnection of the
components brings a fresh perspective to making
decisions for machine fault diagnosis over multivariate
sensing data, namely, utilizing multi-sensor relations
(MSRs). Although previous works [4,5] have reported
that MSRs improve diagnosis accuracy, fault diagnosis
should benefit more than just accuracy-enhancing from
MSRs. Exisiting studies have exerted much effort to
enhance the diagnosis accuracy of recognizing fault types
[6-9] while localizing fault sources is seldom investiga-
ted. Such localization is crucial in conducting effective
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and efficient maintenance plans [10], especially for
machines with multiple sources [11,12]. For an induction
motor, a specific fault type may be caused by any motor
phase (i.e., a fault type corresponds to multiple sources).
Identifying the potential source of that fault type out of
multiple sources is of great importance. In these
scenarios, locating fault sources are as important as
recognizing fault types. Therefore, it is urgent to develop
a global method that can achieve fault recognition and
fault localization simultaneously. In this article, fault
recognition refers to recognizing different fault types, and
fault localization describes identifying the potential
source of certain faults.

Currently, the mainstream in multi-sensor-based fault
diagnosis is to take advantage of the complementary
information provided by different sensors while removing
their redundancy and contradiction [13]. Previous
research has shown that multi-sensor fusion can be
broken down into three levels: data-level fusion, feature-
level fusion, and decision-level fusion. The strength of
data-level fusion is to use all the sensor information
directly by concatenating the raw data [14]. Feature
fusion level fuses high-level features extracted from the
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raw data through various techniques [15]. Decision-level
fusion aims to overcome the conflict between the sensors,
like evidence reasoning [16] or voting strategy [17]. As a
result, multi-sensor fusion is preferred due to the
enrichment of different sensor information to achieve
high diagnosis accuracy for fault recognition and fault
localization [18,19]. However, previous research has
neglected utilizing MSRs. Recently, graph neural
networks (GNNs) have received increasing attention in
exploiting MSRs for fault diagnosis. Zhou et al. [4]
constructed graph data for multi-sensor vibration signals
and then fed the graph data to a graph convolutional
network (GCN) for fault recognition in a gearbox. Li
et al. [5] generated spatial-temporal graphs from the
multivariate temporal data and then used the graphs for
graph learning to improve the remaining useful life
prediction. However, they only employ MSRs for fault
recognition or fault prognostic rather than for fault
localization. To localize faults, similarity metric based
methods have been widely studied . With the Euclidean
distance, Pearson correlation coefficient, and cosine
similarity calculated from three-phase currents, Wu and
Zhao [20] localized the broken leg of the faulty transistor
to realize an open-circuit fault diagnosis. Irhoumah et al.
[21] calculated the Pearson correlation coefficient from
multivariate sensing data for short-circuit fault diagnosis
of asynchronous motors. Despite the great success in
localizing faults using similarity metrics, they generally
diagnose a single fault type (e.g., the open-circuit fault).
Meanwhile, similarity metrics are sensitive to noise when
calculating MSRs [22], whereas the collected multivariate
sensing data are usually noisy.

Considering the limitations of existing approaches, this
article proposes using GNNs to achieve fault recognition
of multiple fault types as well as fault localization with
MSRs. However, the graph learning process of existing
GNNs often assumes explicit graph structures as inputs.
In the fields with explicit graph structures, GNNs can be
directly used. Otherwise, an explicit graph structure
should be calculated in advance. For multi-sensor-based
fault diagnosis, the application of GNNs has two issues to
be addressed: 1) No explicit graph structure is available
for MSRs, and 2) the calculation for precise MSRs is not
always easy because of the harsh working environment of
machines. To address the aforementioned issues, we
propose an MSR model incorporating self-learning
graphs into the graph-learning process. The model is
expected to provide self-learned graphs for the MSRs, as
opposed to those calculated by similarity metrics. The
main contributions are highlighted as follows.

First, a two-stage global fault diagnosis (GFD) method
is proposed. The first stage is to recognize the fault types
of machines. The second stage is to localize the possible
source of certain fault types. In the second stage,
centrality measures are calculated for network analysis to
determine the critical node of MSRs.

Second, an MSR model is established. The MSR model
integrates the calculation for MSRs and learning from
MSRs in a whole graph learning process. Thus, the
situation with no explicit graph structure for MSRs can be
solved.

The rest of the article is organized as follows. Section 2
gives an overview of the proposed method as well as the
details of the MSR model. Section 3 provides two multi-
source fault cases to verify the effectiveness proposed
method. Section 4 summarizes the conclusions.

2 Proposed GFD method

Graphs are mathematical abstracts to model relations
between objects. In this article, sensors are nodes, and
their relations are edges. Modeling MSRs is equivalent to
figuring out the explicit graph structure between sensor
nodes. This work draws on ideas from graph learning to
model and learn from MSRs.

In the rest of this section, an overview of the GFD
method is given in Section 2.1, and the details of the
MSR model will be elaborated on in Section 2.2.

2.1 Overview

The GFD method aims to achieve fault recognition and
localization. The goal of fault recognition is to predict the
correct label from the online monitoring data. The goal of
fault localization is to localize the possible source of
certain fault types. The schematic diagram of the GFD
method is depicted in Fig. 1. An MSR model is
established first by offline training. As shown in Fig. 1,
the inputs to train the MSR model are multi-sensor
signals rather than pre-defined graphs. Once the model is
trained, both the fault types and their corresponding MSR
graphs can be obtained. The current state of machines is
justified in the stage of fault recognition. The trained
model can output its fault type given the online
monitoring data. After that, the source is identified in the
stage of fault localization. In this stage, a two-step
process is conducted. The first step is to get its explicit
graph structure using the trained model. The second step
is to conduct graph analytics on the self-learned graph
using tools from network analysis [23,24].

To understand the proposed method better, some basic
concepts of graphs are given below.

Definition 1 Graph. A graph is formulated as
G =(V,E,A), where V is the node (i.e., vertex) set,
E= {e,;, )(v,-,v_,-) € V} is the edge set, and A4 is the adjacency
matrix. v; and v; denote the elements in node set. e;
denote the element in edge set where the v; and v; are
adjacent. The nodes and the edges can be associated with
signals or features.

Definition II Adjacency matrix. The adjacency matrix
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Fig. 1 Schematic diagram of the global fault diagnosis method.

is often denoted as A € R™, A, =0 if (v,v,) ¢ E and
A;>0if (v,v;) € E, where N is the number of nodes, A;
denotes the entry in the ith row and jth column of the
adjacency matrix A4.

2.2 MSR model

As illustrated in Fig. 1, the MSR model is capable of
recognizing fault types and modeling the corresponding
MSRs simultaneously, which is quite different from
directly using GNNs. The existing GNNs need pre-
defined graphs as inputs, often calculated by similarities
or dissimilarities from the multi-sensor signals. The MSR
model tries to model and learn from the MSRs in a whole
process, which avoids the trouble of pre-defined graph
calculation. The MSR model contains graph structure
learning and dynamic graph learning.
2.2.1 Graph structure learning
Graph structure learning aims at learning the explicit
graph structure for MSRs. Two steps are conducted to
model the explicit graph structure. The first step is to
build a latent edge-type encoder, which can obtain the
probability distribution of the latent edge type. The
second step is to get the real edge type by sampling from
the probability distribution of the latent edge type.

(1) Building latent edge type encoder

The goal of building the latent edge type encoder is to

infer the distribution of the latent edge type. A transition
matrix that can transform the multi-sensor signals to the
edge domain must be determined to obtain the latent edge
type. The formula e; = (v;,v;) depicts the relationship
between an edge and its endpoints in a graph. Edges can
thus be represented by node combinations in sequence
from the stariting point v; to terminal point v;. As shown
in Fig. 2, the four sensors are modeled by nodes from v,
to vs. After ‘from vertex to edge’, sensor relations are
modeled by edges from e, to es;. As a result, the
transition matrix can be obtained by one-hot encoding to
the endpoints of the edges, which allows multi-sensor
signals to transform from the vertex domain to the edge
domain and vice versa.

For the unknown graph structure with four sensor
nodes in Fig. 2, the transition matrix of the two endpoints
can be written as follows:

SVI =

SVJ = ’ (1)

O~ OO0 OO O~
—_0 00O oo o~
—_— 000 OO ~O

co—o oo~
O—= OO OO —=O
—_ 000 O~ OO

where S,, is the transition matrix encoded from the
endpoints in node set VI and S,;, denotes from the
endpoints in node set VJ. VI is the node set which
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Fig. 2 Latent edge type encoder.

contains the starting points of the edges and VJ is the
node set which contains the terminal points of the edges.
The multi-layer perception is employed as the basic unit
of the latent edge type encoder for feature embedding
because of its simplicity and efficiency. Given the multi-
sensor signals X ={x, |m=1,2,...,M}, where M denotes
the number of the sensors and x,, denotes the time series
collected from one of the M sensors, the signals are first
mapped into the vertex domain to get a more compressed
node feature F;, which is formulated as follows:

F, =¢,(X), 2
where ¢,(-) denotes the basic unit for the initial feature
embedding in the vertex domain. Then the node feature is
transformed to the edge domain, and thus the correspond-
ing initial edge feature F;; can be obtained:

F;, = concat(S X Fy),
Se{Svr,Svs}

)

where § denotes the transition matrix and concat(-)
denotes a concatenation operator.

The edge feature F;; can be further embedded in the
edge domain by the following:

F? = €0|(F8), 4)

where ¢,(-) denotes the multi-layer perception for feature
embedding in the edge domain and F7 is the features after
the first time feature embedding in edge domain.

By repeating the above process, a deep feature
embedding F© (i.e., the latent edge type) can be obtained.
Finally, the probability distribution can be obtained by
performing the softmax to the latent edge type. To obtain
the updated node feature F", the inverse transformation
from the edge domain to the vertex domain can be written
as follows:

F'=S"xF°, (5)
where S € {S,,,S,,}.

(2) Sampling from latent edge type

Gumbel softmax [25] is adopted to obtain the real edge
type from the latent edge type encoder. Gumbel sampling
from the latent edge type is something like the occupancy

of the space as far as possible, which helps to get the
generalized edge type. Considering the latent edge type
obtained by the encoder, the real edge type Z can be
obtained by the following:

(6)

where Z = {z; ]k =1,2,...,K}, K is the number of the edge
type, m denotes the probability distribution of the latent
edge type, g =log(—log(u)), u ~ uniform(0,1), and 7 is a
temperature parameter. As T approaches 0, the distribu-
tion of Z converges to one-hot; otherwise, it tends to be
smooth.

Z= softmax(lOgﬂ),

T

2.2.2  Dynamic graph learning

Dynamic graph learning aims to obtain the fault types and
the MSR graphs. As illustrated in Fig. 3, the real edge
type obtained through graph structure learning allows the
sensor node signals to propagate across the self-learned
graphs. The signals are first aggregated and updated at
these sensor nodes. Then, the updated node features (i.e.,
messages) are assembled for dimension reduction to get
fault labels. An attention mechanism is introduced to
determine the best graph structure of the MSRs. A high
attention score indicates that the corresponding structure
carries the precise and necessary message for recognizing
fault types. As a result, the informative graph structure is
chosen as the MSRs to aid further fault localization. It is
reasonable to localize fault sources with the MSR graphs
because they are learned under the supervision of fault
types. Dynamic graph learning will be elaborated on in
the following steps.

(1) Node feature embedding

To obtain node feature embeddings from multiple
sensors, the convolutional operation is employed to
capture the features of temporal signals. For a one
dimensional (1D) signal x,,, the convolution is defined as
follows:

Y=Y wrxd=n), )
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Fig. 3 Dynamic graph learning with the learned edge types.

where w(r) is the rth element of a convolution kernel, R is
the kernel size, x(d — r) denotes the (d — r)th data point of
the signals and y(d) denotes the dth data point of the
signals after convolution. In Fig. 3, the multi-sensor
signals after node feature embedding are denoted as Y.

(2) Message passing

Message passing is a generalized framework of the
GNNs [26]. It is similar to a heat diffusion process in a
graph. The temporal features ¥, which are learned in the
vertex domain, are transformed to the edge domain with
the transition matrices by the following:

Y = concat (S xY), (8)

Se{Svi.Svi)
where Y*© are the transformed features in the edge domain.
After the message passes across the whole graph z;, the
aggregated message is formulated as follows:

hi = o(z, X Y°), ©
where o (-) is the non-linear activation function.
(3) Edge-type refinement
Attention score is calculated to determine the unique
graph structure which contains the most informative
message. For the message h, € RP*!, its attention score is
calculated with the following:

a,=p xXowxh,+b), (10)
where pe R are learnable weights, w € R”*? and
b € R denote the weights and bias of the non-linear
transformation. A normalized learnable attention score
can be obtained by the following:

exp(a)
— 11
2;exp(ay) ()

In summary, the MSR model for fault diagnosis of
machines can be represented as the Algorithm.

a; = softmax(a;) =

Algorithm MSR model

Input: X, K
Output: L, 4

1: The edge type encoder encodes X into the latent edge type

F® — encoder(X)

2: The real edge types are obtained through Gumbel softmax

Z «— gumbel softmax(F e)

3: The node signals are embedded into features
Y «— conv(X)

4: Message passing via the real edge types
Calculate ¥° using Eq. (8)

For 7, € Z,

calculate A, using Eq. (9)

calculate o, for Ay using Eq. (11)

update A, using the normalized attention score by Hadamard product &, « oy, O hy,

End For

Initialize =0, i=0, =0

For k=1.2,...K,

h—h+h,

If a; = a,

a<—a,

ik

End For

5: The informative edge type is z;

6: The predicted label is calculated by
L «— mlp(h)

return L, 4

and its adjacency matrix 4 can be obtained using z;, S),;, S},
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3 Experimental verifications
3.1 Case study I: experiments on an induction motor

In this case, experiments were carried out on an induction
motor. The experimental bench is shown in Fig. 4, which
is composed of the test induction motor, an external
bearing, a rotary encoder, and an eddy current brake. Four
health conditions are considered for the test induction
motor: normal condition (NC) and three typical
electromechanical fault types. The three electromechan-
ical faults include a broken rotor bar (BRB), an
unbalanced voltage supply (UVS), and an open phase
fault (OPF).

In the experimental investigations, the experiments on
fault type recognition are conducted, and the experiments
on fault source localization are designed. For the
unbalanced voltage supply fault and the open phase fault,
their fault sources can be found in Table 1. The sensor
placement is shown in Fig.4, current clamps and
accelerometer sensors are employed for monitoring the
motor condition. Two triaxle accelerometers are placed at
the driven end and fan end of the motor. As shown in
Fig. 4, the x-, y-, and z-axis of the accelerometer at the
drive end are denoted as DX, DY, and DZ, respectively.
Similarly, FX, FY, and FZ represent the three axes at the
fan end. At the same time, the three phases of the motor
are denoted as U, V, and W.

3.1.1 Results of fault recognition

The performance of the proposed method for recognizing
fault types is presented in this section. Comparisons are

V1brat10n [
FY

WZ

Current  §§
w .}? U phase
B> S Current = lf%\'
' ! V phase g
Current
W phase

conducted with the graph learning models that could learn
from MSRs, including GCN [27], graph attention
network (GAT) [28], simplifying graph convolutional
network (SGC) [29], and high-order graph neural network
(HGN) [30]. They need pre-defined graphs as inputs. The
graph construction method should be decided first to
construct pre-defined graphs with multi-sensor signals.
The full graph is the most intuitive one to construct a
graph with the multi-sensor signals, whereas the k-nearest
neighbor graph (i.e., A&-NN graph) [4] and the &-
neighbourhood graph [5] are more popular in existing
multi-senor-based methods. We denote &-NN graphs with
weighted edges as &-NN-w and A-NN graphs with binary
edges as k-NN-b. Similarly, full graphs are denoted as
Full-w and Full-b. The e-neighbourhood graphs are
denoted as e-w and &-b. However, learning from MSRs is
a graph classification problem. Given diverse graph
pooling techniques, the architectures of graph learning
models for graph classification vary differently. For a fair
comparison, the architecture adopted in the comparisons
remains the same for all the graph learning models [26].
Meanwhile, the experimental setting for training the
graph learning models is the same as the MSR model.
The precision, recall and F1-score of the MSR model
are reported in Table 2, and the average classification
accuracy of the MSR model reaches 0.9980. Tables 3—5
show the results of the graph learning models (i.e., GCN,
GAT, SGC, and HGN) with pre-defined graphs whose
similarity metrics are calculated by Pearson correlation,
Euclidean distance, and cosine similarity, respectively. As
shown in Table 3, GCN and SGC perform well when
using a full graph, but their performance varies vastly
with different graph structures. GAT shows the worst

Fig. 4 Experimental bench of an induction motor.
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Table 1 Multi-class faults and the sources

Fault source notation NC BRB UvsS OPF
DX, DY, DZ - - x x
FX,FY,FZ - - X X
U - - x x
\% - - x J
w - - v x
Notes: ‘— denotes no source for the fault type; ‘¥’ denotes the source is ‘True’
for the fault type in the experiment and ‘x” denotes ‘False’.
Table 2 Evaluation metrics of fault recognition
Evaluation metric

Fault type

Precision Recall Fl-score
NC 0.9924 1.0000 0.9962
BRB 1.0000 1.0000 1.0000
UVvsS 1.0000 1.0000 1.0000
OPF 1.0000 0.9924 0.9962
Table 3 Case I: average classification accuracy with Pearson
correlation
Graph learning Average classification accuracy
model k-NN-w  k-NN-b  &-w g-b  Full-w Full-b
GCN 0.8314 0.7955 0.9362 0.9618 0.9967 0.9720
GAT 0.8821 0.7935 0.7845 0.8030 0.6998 0.8645
SGC 0.8437  0.8219 0.9368 0.9811 0.9967 0.9908
HGN 0.9967 0.9986 0.9921 0.9967 0.9986 0.9980

Table 4 Case I: average classification accuracy with Euclidean
distance

Graph learning Average classification accuracy

model k-NN-w  k-NN-b  &-w &b Full-w Full-b
GCN 0.9015  0.9433 09962 0.9943 0.9962 0.9641
GAT 0.8910  0.8683 0.7301 0.8001 0.8390 0.8702
SGC 0.9460  0.9524 0.9839 0.9752 0.9867 0.9550
HGN 0.9829  0.9947 0.9981 0.9986 0.9986 0.9967
Table 5 Case I: average classification accuracy with Cosine
similarity

Graph learning Average classification accuracy

model FNN-w kNN &w &b Fullw  Fullb
GCN 0.8503  0.8390 0.9388 0.9713 0.9934 0.9824
GAT 0.9507 0.9427 0.7194 0.7310 0.8125 0.7821
SGC 0.8248  0.8381 0.9394 0.9824 0.9941 0.9772
HGN 0.9980  0.9980 0.9869 0.9967 0.9986 0.9980
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performance in classification accuracy, whereas HGN is
superior to other models. Furthermore, HGN shows
consistent performance across all graph construction
methods. In the comparisons, the MSR model achieves
promising results in terms of classification accuracy.
Similar results are shown in Tables4 and 5 using
Euclidean distance and Cosine similarity. From the above
analysis, most existing graph learning models are
sensitive to graph structures; therefore, the accuracies are
influenced. With the dynamic graph learning process, the
MSR model could effectively use self-learned graphs
instead of pre-defined graphs to avoid this problem.

In the case study, comparisons are also conducted with
the traditional methods for multi-sensor-based fault
diagnosis. Detailed information for the traditional
methods is provided in Table 6. The proposed method
achieves competitive accuracy with these methods.

3.1.2 Results of fault localization

The performance of the proposed method in localizing
fault sources is further analyzed in this section. As stated
earlier, fault localization aims to locate the faulty sources
for the motor under certain types of health conditions. For
the faults of UVS and OPF, as listed in Table 1, the
unbalanced phase is set as the W-phase, and the open
phase is set as the V-phase in the experiment. Graph
analytics for the learned MSRs is conducted to locate the
faulty phase of the corresponding faults. Centrality
measures are vital tools for understanding the importance
of the nodes in a graph. Since graphs are abstract models
for depicting relations in various fields, researchers have
studied different centrality measures that identify critical
nodes to meet diverse goals [24]. The degree and
eigenvector centrality are analyzed for fault localization
in the following sub-sections.

(1) Centrality measures

Degree centrality calculates the importance of a node
according to the number of its direct links. It is the most
straightforward measure because it consists only of one-
hop connections. However, it is still quite effective in
finding popular nodes, very connected nodes, and nodes
that are likely to hold the most information. For an
undirected graph, its formulation is as follows:

Co) =) Ay (12)

where Cj, (i) denotes the degree centrality of the ith node.
Eigenvector centrality is an extension of the degree

Table 6 Comparisons with traditional multi-sensor fault diagnosis methods [14,15,17]

Input Model Publication Category of the method Accuracy
FFT + 2D matrix 2D convolutional neural network Azamfar et al. [14] Data-level fusion 0.9728
Statistical features Covariance matrix fusion with multi-kernel learning Lietal. [15] Feature-level fusion 0.9540
Raw signal + stacked wavelet auto-encoder Improved auto-encoder with voting strategy Shao etal. [17] Decision-level fusion ~ 0.9968
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centrality. It considers the number of links held by both
the current node and its connected ones. This measure
shows an all-around ability to identify influential nodes,
especially for understanding how features propagate
across the whole graph. Therefore, it is also used for
analyzing MSRs. For an undirected graph, it can be
calculated by the following:

Ce) =27 ) ACe()), (13)

where Cg (i) denotes the eigenvector centrality of the ith
node and A is the largest eigenvalue of A.

(2) MSR analysis

Figure 5 exhibits the MSR graphs learned by the MSR
model. The circle is uniformly occupied by sensor nodes.
The red lines inside the circle are edges, which represent
messages passing between different node pairs. As
depicted in Fig. 1, the MSR model provides simultaneous
outputs of the fault types and the MSR graphs. Once the
fault type is recognized, its MSR graphs can be used to
understand how the model distinguishes one health
condition of the motor from others.

For the motor in NC or with the fault BRB, as shown in
Figs. 5(a) and 5(b), the dynamic graph learning prompts
message passing among the fan end vibrations and driven
end vibrations. It indicates that only vibration data are
adequate for the model to distinguish these two types. In

the case study, the simulated BRB fault is the same as the
mechanical rotor imbalance. Hence, it is not hard to find
that the fault symptom of the BRB fault can be reflected
by vibrations. For the motor with the faults UVS and
OPF, the MSR graphs in Figs. 5(c) and 5(d) are different
from those in Figs. 5(a) and 5(b). Therefore, the vibration
data are insufficient for the model to distinguish the two
types from NC and BRB. As shown in Figs. 5(c) and
5(d), additional information from current signals is
included to recognize the fault UVS or OPF, demonstrat-
ing that the fault symptoms of UVS and OPF are reflected
by the current signals against NC and BRB when using
the model for fault recognition.

The degree centrality and the eigenvector centrality are
calculated for the MSR graphs to localize the fault
sources of UVS and OPF. The results are presented in
Figs. 6 and 7. Sources are represented by the node in the
circle. The color bar shows the value range of the
centrality measures.

As shown in Fig. 6, the bigger node in the circle is
identified as the critical node since it has the maximum
degree of centrality. For the fault UVS, the critical node
is identified as node W in Fig. 6(c), consistent with the
experimental setting in Table 1. The node V identified in
Fig. 6(d) is exactly the open phase settled for the fault
OPF. For the fault BRB, it is reasonable to see the critical

o
A

Fp

vZ

Fig. 5 Case I: multi-sensor relation graph of different health conditions: (a) normal condition, (b) broken rotor bar, (c) unbalanced

voltage supply, and (d) open phase fault.
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Fig. 7 Case I: eigenvector centrality of different health conditions: (a) normal condition, (b) broken rotor bar, (c) unbalanced voltage
supply, and (d) open phase fault.
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node comes from vibration sources because it has similar
fault symptoms to the mechanical rotor imbalance.
Similar findings can be seen in Fig. 7 with eigenvector
centrality. Note that both the degree centrality and the
eigenvector centrality reveal the FX as the critical node
for the fault BRB. In the case study, when simulating the
fault BRB, the defect is introduced close to the fan end at
the rotor bar of the motor, showing the self-learned graph
sensitivity.

3.2 Case study II: experiments on a centrifugal pump

In this case, the bearing faults (i.e., outer race fault, inner
race fault, and ball fault) and a typical hydraulic fault
(i.e., cavitation fault (CF)) are simulated. In the context of
centrifugal pumps, cavitation implies a dynamic process
of formation of bubbles inside the liquid, their growth,
and subsequent collapse as the liquid flows through the
pump. Figure 8 depicts the experimental bench of a
centrifugal pump.

The centrifugal pump is installed on the fixed base of
the experimental bench. It is connected to the water tank
by a circulating pipe. The yellow arrow shows the
direction of the water flow in the circulating pipe. The
motor shaft drives the centrifugal pump. Water is pumped
from the tank to the inlet pipe, passes through the
centrifugal pump to the outlet pipe, and then goes back to
the water tank. A manual valve is positioned at the inlet
pipe to regulate the flow in the circulating pipe. Low
flow-rate working conditions are reported to start the
formation of vapor bubbles eventually, resulting in
cavitation in centrifugal pumps [31]. Consequently,
incipient cavitation is expected to appear in the
experiment by modulating the manual valve. As shown in

Water

Fig. 8, three accelerometers were used to monitor
vibration, one for the motor, one for the test bearing, and
one for the centrifugal pump. The flowmeter measures
the flow rate of water in the outlet pipe. The pressure
sensor measures the pressure in the outlet pipe.

3.2.1 Results of fault recognition

In the experiment, five types of health conditions are
included: NC, CF, inner race fault of bearing (IF), outer
race fault of bearing (OF), and ball fault of bearing (BF).
Comparisons are conducted with the same graph learning
models and pre-defined graphs as in Section 3.1.1. The
architecture of the graph learning models also remains the
same. The average classification accuracy of the MSR
model reaches 99.21%. The comparison results are listed
in Tables 7-9. In the case study, the MSR model shows
the advantages of classifying fault types against the
compared graph learning models. From Tables 7-9, the
proper similarity metric is hard to determine, while a
proper graph structure and a suitable graph learning
model are required for a multi-sensor-based fault
diagnosis with GNNS.

3.2.2 Results of fault localization

Figure 9 exhibits the MSR graphs learned of different
health conditions in the case. Figures 10 and 11 provide
the results of identifying the critical nodes using the
degree centrality and the eigenvector centrality,
respectively.

In Fig. 9, the node symbol N1 represents the sensor at
the motor, the node symbol N2 represents the sensor at

Pressure sensor
@ outlet pipe
Flowmeter
@ outlet pipe
Manual valve

(@ inlet pipe

Fig. 8 Experimental bench of a centrifugal pump.
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Table 7 Case II: average classification accuracy with Pearson
correlation

Graph learning Average classification accuracy

model

k-NN-w  k-NN-b  &-w &b Full-w Full-b
GCN 0.8015  0.7453 0.8046 0.8265 0.7859 0.7656
GAT 0.6156  0.5625 0.6218 0.5812 0.5453 0.5765
SGC 0.7937 0.7703 0.8062 0.7562 0.8359 0.7765
HGN 0.7328 0.7765 0.7171 0.7828 0.7953 0.7218

Table 8 Case II: average classification accuracy with Euclidean
distance

Average classification accuracy

Graph learning
model INN-w ANN-b &w &b Fullw Fullb
GCN 0.7546  0.8125 0.7656 0.7203 0.7984 0.7687
GAT 0.5406 0.5671 0.5719 0.5719 0.5672 0.5859
SGC 0.7906 0.8656 0.8094 0.8328 0.7968 0.8156
HGN 0.8563 0.8344 0.8734 0.7672 0.8047 0.8141
Table 9 Case II: average classification accuracy with Cosine
similarity
Graph learning Average classification accuracy
model k-NN-w  k-NN-b  &-w g-b  Full-w Full-b
GCN 0.8406 0.7828 0.7062 0.7797 0.7344 0.7797
GAT 0.5719  0.5625 0.5859 0.5813 0.5734 0.5531
SGC 0.7641 0.8391 0.7875 0.7828 0.7781 0.7922
HGN 0.7937 0.8656 0.8891 0.7578 0.7828 0.7922
2
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the test bearing, the node symbol N3 represents the sensor
at the pump, the node symbol N4 represents the
flowmeter at the outlet pipe of the pump, and the node
symbol N5 represents the pressure sensor at the outlet
pipe of the pump. As can be seen in Figs. 9(a) and
9(c)-9(e), the MSR graphs of the four health conditions
are similar, which demonstrates that these four types are
distinguished by the MSR model using the information
from the same sensors. The results for the four health
conditions in Figs. 10 and 11 show that the critical node
identified by the two centrality measures is the same.
Figure 9(b) shows the MSR graph for the CF.
Cavitation is an undesirable phenomenon occurred in the
operation of hydraulic pumps. It will damage mechanical
components and deteriorate the performance of pumps.
As pointed out in Ref. [31], a low flow rate working
condition will result in cavitation in centrifugal pumps.
As a result, CF is simulated by manipulating the valve
opening in the case. Since the flow rate is the directly
controlled variable in our experiment, this work treats the
flow rate as the source of the CF. As shown in Fig. 9(b),
the MSR model uses the flowmeter and pressure sensor
information to distinguish the CF from others. The source
of the CF needs to be identified to verify the proposed
method. The critical node is denoted by a bigger one in
the circle. As shown in Fig. 10(b), N4 is identified as the
critical node, consistent with the experimental setting for
cavitation. Similar results can be found in Fig. 11(b).

2
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Fig. 9 Case II: multi-sensor relation graph of different health conditions: (a) normal condition, (b) cavitation fault, (¢) inner race fault of

bearing, (d) outer race fault of bearing, and (e) ball fault of bearing.
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Fig. 10 Case II: degree centrality of different health conditions: (a) normal condition, (b) cavitation fault, (c) inner race fault of bearing,
(d) outer race fault of bearing, and (e) ball fault of bearing.
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Fig. 11 Case II: eigenvector centrality of different health conditions: (a) normal condition, (b) cavitation fault, (c) inner race fault of
bearing, (d) outer race fault of bearing, and (e) ball fault of bearing.
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4 Conclusions

This article proposes a GFD method using MSRs and
network analysis. The proposed method aims to recognize
multi-class faults and localize fault sources. The key to
the proposed method for fault localization is the MSR
model. In the model, the MSR graphs can be learned
through the dynamic graph learning process without
requiring extra similarity metrics and graph construction
methods. Meanwhile, the self-learned graphs help us
understand how the model distinguishes between
different fault types. Centrality measures are applied to
the MSR graphs to identify fault sources. Multi-source
faults are designed on two major machines (i.e., motor
and pump) to validate the proposed method. Results show
that the proposed method can localize the correct source.
Besides, it reaches comparable or even better results for
multi-class fault recognition.

Nomenclature

Abbreviations

1D One dimensional

BF Ball fault

BRB Broken rotor bar

CF Cavitation fault

Full-b Full graph with binary edges

Full-w Full graph with weighted edges

GAT Graph attention network

GCN Graph convolutional network

GFD Global fault diagnosis

GNN Graph neural network

HGN High-order graph network

IF Inner race fault of bearing

k-NN k-nearest neighbor

k-NN-b k-nearest neighbor graph with binary edges
k-NN-w k-nearest neighbor graph with weighted edges
MSR Multi-sensor relation

NC Normal condition

OF Outer race fault of bearing

OPF Open phase fault

SGC Simplifying graph convolutional network
UVS Unbalanced voltage supply

&-b e-neighbourhood graph with binary edges
&-w g-neighbourhood graph with weighted edges
Variables

ay Attention score of z;

A

Aj
concat(-)
Cob ()
Ce (i)

e

Fe

F;

Vi, Vj
14

VI, VJ

w(r)

we RV b e R

Xy (m=1.2,...,M)

Wd)
Y

ye
2k
z
@

$o()s 9, ()

a()

Adjacency matrix

Elements in 4

A concatenation operator

Degree centrality of the ith node

Eigenvector centrality of the ith node

Edge connects v; and v;

Edge feature

Initial edge features

Edge features after the first time feature embedding
in edge domain

Node feature

Initial node features

Gumbel distribution

Graph

Message from z;, D is the dimension of A

Number of the edge type

Predicted label

Number of the sensors

Number of nodes

Learnable weights

Kernel size

Transition matrix

Transition matrix encoded from the endpoints in
node set V7 and VJ, respectively

Uniform distribution

Endpoints of e;;

Node set

Node sets of v; and v;, respectively

rth element of a convolution kernel

Weights and bias of the non-linear transformation,
respectively

Element of x,,

Time series collected from one of the M sensors
Multi-sensor signals

dth data point of signals after convolution

Temporal features

Transformed features in the edge domain

kth real edge type

Real edge type

Normalised attention score of z;

Basic unit of the latent edge type encoder for the
initial and first feature embeddings in the vertex
domain, respectively

Non-linear activation function

A temperature parameter

Largest eigenvalue of 4

Probability distribution of the latent edge type
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