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ABSTRACT As a virtual representation of a specific physical asset, the digital twin has great potential for realizing
the life cycle maintenance management of a dynamic system. Nevertheless, the dynamic stress concentration is generated
since the state of the dynamic system changes over time. This generation of dynamic stress concentration has hindered
the exploitation of the digital twin to reflect the dynamic behaviors of systems in practical engineering applications. In
this context, this paper is interested in achieving real-time performance prediction of dynamic systems by developing a
new digital twin framework that includes simulation data, measuring data, multi-level fusion modeling (M-LFM),
visualization techniques, and fatigue analysis. To leverage its capacity, the M-LFM method combines the advantages of
different surrogate models and integrates simulation and measured data, which can improve the prediction accuracy of
dynamic stress concentration. A telescopic boom crane is used as an example to verify the proposed framework for stress
prediction and fatigue analysis of the complex dynamic system. The results show that the M-LFM method has better
performance in the computational efficiency and calculation accuracy of the stress prediction compared with the
polynomial response surface method and the kriging method. In other words, the proposed framework can leverage the
advantages of digital twins in a dynamic system: damage monitoring, safety assessment, and other aspects and then
promote the development of digital twins in industrial fields.

KEYWORDS shape—performance integrated digital twin (SPI-DT), multi-level fusion modeling (M-LFM),
surrogate model, telescopic boom crane, data fusion

as dynamic reliability analysis of tower cranes and
helicopter dynamic systems [3—5]. The research on digital
twins can be traced back to Professor Michael Grieves’s
product lifecycle management model at the University of

1 Introduction

Since Germany proposed Industry 4.0 in 2013, the Fourth
Industrial Revolution driven by technologies, such as the

Internet of Things, Big Data, robotics, and artificial
intelligence, has been sweeping the world unprecedented-
ly [1]. This revolution has given birth to emerging
industries, such as data analysis, cloud computing, and
artificial intelligence, and other industries, such as
software and robotics, and the Internet, have also entered
a stage of rapid development [2]. In such a context, the
digital twin is fast evolving for engineering systems since
it is possible to establish a real-time connection between
the physical world and the virtual world. More specifi-
cally, structural dynamic problems operating in harsh
environments have attracted more research interest, such
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Michigan in 2003 [6]. However, the birth of the concept
of digital twins did not attract enough attention until the
term “digital twins” appeared in the National Aeronautics
and Space Administration’s comprehensive technology
roadmap [7,8]. Virtual models can replace physical
components with the development of simulation technol-
ogy, which provides the possibility of constructing a
digital twin model in the life cycle of a physical system
[9].

The digital twin model can be used to simulate and
reflect the real-time behavior of the physical system
under operating conditions in the life cycle [10,11]. The
process of building a digital twin model consists of many
parts, such as geometric model construction, mechanism
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model construction, data model construction, and data
transmission. All of these parts can affect the accuracy
and efficiency of digital twins in practical engineering
applications. Data model construction is the most crucial
for the building process of digital twins; it influences the
reliability and efficiency of the outputs. The combination
of the physical model and the dynamic data model was
considered a reasonable solution to enhance the efficiency
of digital twins. Ritto and Rochinha [12] proposed a
framework that combines physics-based models and
machine learning models to implement real-time engineer-
ing decisions on damaged structures, which ensures the
interpretability and real-time behavior of digital twins.
Lai et al. [13] proposed a shape—performance integrated
digital twin (SPI-DT) framework based on multiple
models and introduced the digital twin design process for
the structure of complex heavy equipment, with a
telescopic boom crane as an example. Kapteyn et al. [14]
developed a digital twin of a fixed-wing unmanned aerial
vehicle by establishing a library of component-based
reduced-order models and using optimal trees to invoke
physics-based reduced models in the model library. Luo
et al. [15] proposed a data-based hybrid method to realize
the predictive maintenance of computerized numerical
control machine tools. The results showed that the
proposed method demonstrated better predictive perfor-
mance compared with a single method. However, in the
aforementioned studies, the digital twin model is built
using simulation data; therefore, the accuracy of the
model depends on the simulation model. From the
viewpoint of the reliability of digital twins, there is much
research focused on the combination of the simulation
and measured data to realize the application of the digital
twin for the complex heavy equipment. Wang et al. [16]
established a multi-fidelity surrogate model to realize the
fusion of measured and simulation data, which further
improved the prediction accuracy of the digital twin
model. Kontaxoglou et al. [17] proposed a multi-fidelity
framework combined with sparse telemetry data to treat
the simulation of a small satellite and proved the
feasibility of the framework. Chetan et al. [18] introduced
a multi-fidelity digital twin model to conduct perfor-
mance maintenance of wind turbine blades, which further
provided a clue to developing the multi-fidelity digital
twin in structural monitoring. They help improve the
credibility of digital twins, but this approach will
increasingly affect the computational effort.

More importantly, engineers often pay the most
attention to the vulnerable area of the structure, i.e., the
area where the structural stress is concentrated for
practical engineering problems. For example, because the
weld is more prone to stress concentration, the position of
the weld is more prone to failure than the base metal [19].
For large and complex mechanical structures, fatigue
failure can be avoided in advance by accurately
predicting the stress at the location where the structure is

prone to damage [20]. However, because of the complex
stress changes in the dynamic system, the existing
modeling methods cannot meet the prediction accuracy of
the vulnerable area of the structure. Therefore, how to
improve the stress prediction accuracy of key locations of
large and complex mechanical structures is a crucial issue
in realizing structural life monitoring. The combination of
hybrid modeling methods [21] and multi-fidelity
modeling methods [22] provides the possibility of solving
the above problems to improve the prediction accuracy of
the structural stress concentration area of the dynamic
system while balancing the requirements of digital twins
for high precision and instantaneity.

In such a context, the multi-level fusion modeling (M-
LFM) method was proposed to be integrated into the SPI-
DT framework. The M-LFM method not only considers
the influence of both simulation and measured data on the
model accuracy but also combines the polynomial
response surface (PRS) method and the kriging (KRG)
method to solve the problem of model efficiency. The
main advantage of the M-LFM method is in using both
measured and simulation data to establish a regional
compensation model for the dynamic stress concentration
area, which can more accurately describe the mechanical
behavior of complex structures. Taking the telescopic
boom crane as an example, the feasibility of the
framework is verified by establishing a digital twin of the
telescopic boom to make real-time performance
predictions. Note that the method can be seen as a general
paradigm for combining test and simulation data in a
digital twin.

The remainder of this paper is organized as follows.
Section 2 presents the introduction of the PRS and KRG
models. Section 3 gives the details of the proposed
framework and the M-LFM method. Section 4 gives the
verification of the feasibility of the proposed framework,
using a telescopic boom crane case as an example.
Section 5 gives conclusions and future work.

2 Research background

The surrogate model is used to determine the mathemat-
ical relationship between input and output using limited
sample information. This model has been widely used in
the design and optimization of structural and multidis-
ciplinary complex equipment [23]. Given that the digital
twins also need a data-driven model to realize the real-
time calculation of the physical model, there is a
compelling reason for establishing the surrogate model:
To establish an effective means to realize digital twins
[24]. Popular surrogate models applicable in the structural
optimization field include PRS, the KRG model, radial
basis function, support vector regression, and moving
least squares.
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2.1 Polynomial response surface method
The PRS method, which is also called the polynomial
regression analysis method, is an important type of
regression analysis. The PRS method is based on a set of
observation data, through research to determine the
quantitative relationship between the target output and
multiple independent variables [25]. For any observation
point, there is a corresponding linear expression:
Y=Xa+eg, (1)
where X is the input vector, Y is the output vector, @ is
the vector of unknown coefficients, & is the vector of
error function, and its expectation and variance can be
respectively expressed as zero and o,

In the field of mechanical design optimization, the first-
or second-order PRS is used to approximate the relation-
ship between the input and output of the design variables
using the training data in practical applications. The
unknown coefficients are calculated and solved based on
the least square method that is solved by minimizing the
variance of unbiased estimates of unknown coefficients
based on the Gauss—Markov theorem. Assuming the ¥ is
the predicted value of the target output, which is
calculated by the following formula:

900 =) a0, 2)
i=1

where x is the input variable, ¥,(x) is correlated with the
physical properties of problem itself, m is the number of
input variables, and «; is the unknown weight coefficient.
The PRS method can fit functions with larger curvatures
by providing an approximate relationship between the
dependent variable and the independent variables. The
prediction calculation efficiency is higher because the
model parameters are less, which makes the PRS method
widely used in the field of structural optimization.
Nevertheless, the disadvantage of using the PRS method
is that it is difficult to accurately predict the functional
relationship with a high degree of nonlinearity.

2.2 Kriging model

The KRG model was summarized by a French mathema-
tician Georges Matheron in 1962 based on the South
African geologist Danie G. Krige’s doctoral dissertation
on geostatistics on gold mining prediction [26]. The KRG
model is an optimized interpolation algorithm that simu-
lates interpolation through a Gaussian process controlled
by covariance to generate a continuous function. This
method considers not only the influence of the distance
relationship between the sampling points on the output
change but also the influence of the position relationship
and the spatial distribution between the sampling points
on the overall output. The expression consists of two
parts as follows:

Y= BAX)+z(X), 3)
i=1

where f;(X) represents an unknown approximate function,

B; represents an unknown weighted coefficient, and z(X)

represents an error function of KRG model with mean

zero and variance . The covariance matrix of z(X) is

given as follows:

cov[z(x,),z(x;)] = " R[R(x;, x;)], “4)
where R is the relationship function and generally is a
Gaussian function, and R is the relationship matrix whose
elements are the value of relationship function. Once the

relationship function is determined, the predicted value of
the target output can be expressed as follows:

$(x)=B+r" ()R (y,-BH), (%)
where H=[1 1 117 is a vector whose elements
are ones, r is a related vector between the unknown
predicted point and the trained point, and y, is the true
response value at samples. B8 is a maximum likelihood
estimation value of hyper-parameter, which can be
expressed as

B=H'R'H'H'R'y,. (6)
The advantage of the KRG method is that it generates
an interpolated spatial model and an uncertainty estimate
for each predicted point in the model. Additionally,
compared with the PRS method, the KRG method makes
observations based on a sample data point rather than on
a prehypothesized model. This means that the KRG
method may be difficult to meet real-time requirements
for the performance prediction of large and complex
structures since it has a high complexity [27].

3 SPI-DT framework based on the M-LFM
method

3.1 Proposed framework

The digital twin model was originally considered to be
divided into three parts: 1) physical entity, 2) virtual
entity, and 3) connections [28]. Based on this classifica-
tion, Tao et al. [29] proposed a digital twin five-
dimensional (5D) model (the physical entity, the virtual
entity, connections, twins data, and services) to satisfy
new demands in the application of digital twins.
Therefore, the digital twin not only should meet the real-
time connection between the physical space and the
virtual space but, more importantly, it should consider its
applications and services in the physical world. For the
SPI-DT framework, “shape” means the physical
appearance of a product in the digital twin, including the
information about dimension and geometry, such as the
size, volume, and texture. The shape of a product can be
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obtained by scanning or 3D modeling. “Performance”
means the performance of a product. The performance of
a product can be obtained via analytical method,
numerical simulation, or experimental measurements,
such as stress or strain of a structure or product, the
temperature distribution of battery packs, and the remain-
ing useful life (RUL) of a product. “Shape-performance’
means that the digital twin can display the physical
appearance and performance simultaneously. For exam-
ple, the digital twin of the telescopic boom crane can
display not only the physical appearance of the boom but
also the stress distribution of the members in real-time.

Based on the SPI-DT framework, more attention should
be given to the stress in the area where the structure is
prone to damage, which can help to avoid the loss of
economic benefits caused by structural failure. Mean-
while, the stress in other areas must also be monitored by
a cheap model for the structure in real-time. However, the
degree of nonlinearity in the prediction of each area is
different since the complicated loading conditions of
complex large-scale mechanical structures, which cause
stress prediction relying solely on the PRS method or the
KRG method, cannot meet the real-time and high-
precision requirements of the digital twin. Accordingly,
an SPI-DT framework based on the M-LFM method was
proposed for the structural fatigue area to reduce the time
complexity and improve the predicted accuracy of the
predicted model, as shown in Fig. 1.

i)

Data collection

training data

The proposed framework comprises three parts,
namely, data collection, model construction, and
visualization and interaction. The data collection part
involves the experimental test and simulation calculation
of the structure, which are used to train the predicted
model and determine the parameters of the model. The
model construction part involves the proposed M-LFM
method that is composed of the prediction model of the
entire region based on the PRS model and the stress
concentration arca based on the KRG model, which
allows the prediction model’s accuracy to be improved by
combining the spatial coordinates to dynamically adjust
the stress in the area around the stress concentration. The
last part is the visualization and interaction part, which is
composed of the physical space and virtual space, which
are used to read real-time dynamic sensors’ data and
achieve visual feedback of performance predictions. In
the proposed framework, data collection and model
construction are conducted in the offline stage to realize
the data fusion and model training, respectively, which
have been stored in the virtual space. The visualization
and interaction are performed in the online stage to read
the dynamic sensors’ data and input it into the trained
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A credible and fast digital twin framework based on the multi-level fusion modeling method.
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3.2 Multi-level fusion modeling method

For actual structural analysis problems, the structure
should be discretized to perform dynamic analysis,
simulation, and design of the structure, which can be
expressed as the following:

o = f(X), (N
where o =[0,0,...,0,]" represents the performance
vector, n is the number of performance data, and
X =[x,,x,,....x,]% , is the input vector. First, after the
discretization of the structure, the PRS model is used to
establish a low-fidelity model of stress prediction.
Second, the training point is used to discretize the
dynamic process into multiple stress values under the
static process:

Yips = Xa + &, ®)

where Ypgg = [PTR5, 955, ..., 9PRS]T are the predicted vector

of the PRS model. Because of the dynamic change in the
contact position for mechanical structures that move
between components, the stress concentration area will
also change, resulting in a higher degree of nonlinearity
in the stress concentration area. Hence, the KRG model is
used to predict the high nonlinearity stress concentration
area and improve the stress prediction accuracy of the
area around the compensation point. Assuming that there
are N compensation areas in a certain motion state, the
prediction equation considering the motion characteristics
of the structure is as follows:

Yo =B+ (X)R (y,-pH), )

where Yygg = [P¥RO, 958G, L, PRE]T are the predicted
vector of the KRG model. Although the KRG method has
higher nonlinear data processing capabilities, establishing
an effective stress compensation function at the area
surrounding the compensation point is crucial to
improving the stress prediction accuracy. First, the scale
factor between the prediction results of the KRG model
and the PRS model in the dynamic stress compensation
area is determined as follows:

SPRS _ 8KRG

_ Y — Ve

- PRS ?
Ye

SPRS

where $°° and $ERC represent the predicted value of the
PRS model and the KRG model at the compensation
point C, respectively, and b is the scale factor. Then, the
Euclidean distance p; between the compensation point
and the surrounding points is introduced to determine the
scope of influence for establishing the stress
compensation function:

b (10)

P = A=) + (= Ve + 0w =Wl i = 1,2,
(11)
where u;, v;, and w; represent the space coordinates in the
ith point, and wuc, ve, and we represent the space

coordinates in the compensation point C. The normal
Pi — Pmin
Prmax ~ Prmin
Pmin a0d Py 18 the minimum and maximum values of the
Euclidean distance set. A crucial problem is that the
position of the compensation point may be constantly
dynamic, changing with each component move. In this
scheme, the Gaussian function is introduced as the
compensation function to determine the compensation
factor of the surrounding points, which can reflect the
movement characteristics between structures based on the
change in Euclidean distance.

! -
N exp( o7 ), i=1,2,...,n, (12)
where Cf; is compensation factor of the influence domain,
o0 represents the parameter of the influence domain, and u
is the coefficient of deviation of the compensation point.
Afterward, the obtained compensation factor should be
normalized:

Euclidean distance is denoted as p! = where

i

Cfi=

cpr = CI=Chun 03
' Cﬁnax - Cf min

where Cf™" is normalized compensation factor, and Cf,,,
and Cf,,, are the minimum and maximum values of the
compensation factor set. Finally, the predicted value of
stress at any point after compensation can be obtained as
follows:

9 = I +I7abCrr = (1 + abCfr™), i = 1,2,...,n,

(14)
where (3,,9,,...,9,) € R" are predicted value at sample
points, and a is the unknown coefficient used to change
the result size of the predicted model. In the design
process of the proposed method, three unknown
parameters, the ratio a, the deviation coefficient u, and
the influence domain parameters J, should be determined.
Assuming that the simulation model is consistent with the
real-world stress distribution in the whole structure, the
training data can be used to determine the parameters u
and ¢. Since the PRS model is a polynomial fitting
method, there is a certain error at the training point. The
optimization of parameters is performed by minimizing
the error e between the training value and the predicted
value at the training point in the design space to
determine the optimal u and 4:

e = min (z": (y;”““ —)7,-)2) ,

i=1

(15)
s.t. 51 < 51’ < 5u9 <y < fy,
where y™" is response value in the ith training point, J,

and ¢, indicate the lower and upper bounds of the
parameter J, respectively, and p; and p, represent the
lower and upper bounds of the parameter u, respectively.
The optimal parameters d.y = [J;,0,,....,d,]' and

Moy = [f1, 12, ..., 11, ]" at each training point are determined
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through optimization. The value of the proportional a can
be determined by the measured data to make the predicted
result more suitable for the actual measurement result.
Assuming the measured data is 7% and predicted data of
PRS model is 5™, the error &; at the measuring point can
be expressed as the following:

&=(T"-%),i=12,..k (16)

By constructing and minimizing the cost function L to
find the parameter value @, we have

L:Zk:gl i(re“ p
i=1 i=1

k

Z Tlesl (1+abcfnor)5)PRS) (17)
where b and Cf" are constant, and k is the number of
measured data. The equation obtained by differentiating
Eq. (17) with respect to a can be expressed as the
following:

oL
=2bCf,,.- 5" - (T = (1 +abCf,,)-3™),  (18)
da
oL
where Cf,, is the compensation factor set. Make %= 0.
a
Then, a,, can be expressed as the following:
Tlesl j\}PRS
opt — W (19)
Therefore, the optimal parameters @, = [a;,a,,...,a]"

can be obtained based on the measured data and predicted
data. The optimal parameters at different compensation
points are different due to the mutual movement of the
components, and the relationship between external sensor
data and optimization parameters should also be
established. The prediction model of the parameters under
different sensors data is established based on the PRS
model:

5= i, (20)

=) i), 1)
k

a= ) (), (22)

where 9, 1, and & are the predicted values of the model
parameters under different sensor states, o, @, and @
are the unknown weight coefficients of different PRS
model, and ¢’(x), ¥*(x), and ¢“(x) are the functions
correlated with the physical properties of different PRS
model. The PRS model is selected as the parameter
training model because the model overfitting and
reducing the influence of the noise data can be prevented

by increasing the training data in the process of the
polynomial fitting curve. By contrast, the KRG model, as
an internal interpolation method, can generate a large
predicted error when there are outliers in the training data
[30]. The details of the role of these parameters in the
proposed M-LFM method using a two-dimensional
problem are taken as an example to elucidate the concept
of the compensation ratio and the size of the influence
domain.

Figure 2 shows the influence domain centered at the
compensation point. For the three model parameters
introduced, the ratio size, radius of the influence domain,
and location of the compensation point were affected by
a, 0, and u, respectively. The three parameters are
optimized based on the simulation and test data, which
can realize the application of the M-LFM method in the
SPI-DT framework. According to the parameter values
predicted by the parameter model, a mathematical model
that can accurately describe the structural performance in
the current state is determined.

4 An engineering problem: SPI-DT of the
telescopic boom crane

Here, an accurately and rapidly digital twin model of the
telescopic boom crane is implemented based on our
proposed framework. As a typical mechanical structure,
during the telescopic process, the mutual movement of
the segments of the telescopic boom crane causes the
stress concentration area to dynamically change, which
brings adversity to the model prediction. Therefore, the
digital twin of the telescopic boom crane is seen as a
research example to verify the predicted performance of
the proposed framework for complex mechanical
structures. Note that the programs were accomplished on
a desktop personal computer with an Intel Core 17-8700
K 3.70 GHz processor and 32 GB of RAM.

4.1 Numerical simulation of the telescopic boom crane
The telescopic boom crane is an important branch of all-
terrain cranes. It is composed of geometrically separated

. Ratio size
210 Influence domain
E08 affectedbys T Afectedbya
2 0.6 ' l ik Euclidean distance

Location of point C
affected by u

Fig.2 [Illustration of the effect of model parameters changes
on the results.
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telescopic boom segments to increase its working load
and expand its working range [31]. During the operation
of the telescopic boom crane, the main load-bearing
component is the boom. The materials used for the boom
have the following properties: high strength steel S690,
yield limit is 690 MPa, modulus of elasticity is 210 GPa,
and Poisson’s ratio is 0.3 [32]. Structural failure due to
fatigue damage is avoided by studying the mechanical
characteristics of the boom in the working process, which
is an essential way to improve the economic benefits of
enterprises.

The telescopic boom crane can be divided into four
segment booms: Iuffing hydraulic cylinder, telescopic
hydraulic cylinder, leveling hydraulic cylinder, and the
transmission chain between segments of the boom, as
shown in Fig. 3. The mutual movement between the
different segments is realized by the sliding friction of the
slider, which causes the load to be transmitted from the
inner segment boom to the outer segment boom. Due to
the sliders being distributed at the front of the outer
segment boom and the rear of the inner segment boom,
the slider placed on the outer segment can be regarded as
stationary, whereas the slider on the inner segment is
regarded as sliding. The performance calculation of a
telescopic boom often faces problems, such as strong
nonlinearity and large-scale calculation, in the process of
modeling and analysis due to its complex structure and
large volume, resulting in an abnormally slow calculation
efficiency. Therefore, the multistep quasi-static analysis
method for the mechanical analysis of the telescopic
boom crane solves the disadvantage of long calculation
time for the dynamic analysis. The dynamic equation can
be expressed as follows:

MQ(1)+CO(N) + KQ(r) = F(n), (23)
where ¢ is time, M, C, and K represent the mass matrix,
damping matrix, and stiffness matrix, respectively, O, Q,
and Q is respectively the acceleration vector, velocity

(a)

cylinder

©

Leveling hydraulic

vector, and displacement vector, and F is force vector.
The influence of the damping effect can be ignored in the
structural analysis because the operation of the telescopic
boom crane can be regarded as a low damping system by
the grease lubrication.

Figure 4 shows the comparison of the displacement,
velocity, and acceleration during the telescopic process.
By analyzing the operating state of the telescopic boom,
the velocity only fluctuates during the start and stop of
the operation, which means that the telescopic process
can be regarded as a uniform motion process. Therefore,
the telescopic process can be considered as the transition
from one equilibrium state to another continuously [33].
The mechanical equation can be expressed as follows:

KQ(®) = F(1). (24)

Figure 5 shows the comparison of test stress of the
telescopic boom under different operating speeds. The
stresses in the slow-motion state and the fast-motion state
are very close, whether in the extension process or the
retraction process. During the operation, there are small
fluctuations in the test data, which may be due to human
manipulation of the equipment. Therefore, it also proves
that the influence of the operating speed of the equipment
on the boom stress is very small, and the quasi-static
method is effective to realize the simulation of the
telescopic boom.

Another fundamental problem is that the driven system
must be equivalent in the process of finite element
modeling of the telescopic boom. Figure 6 shows an
equivalent diagram of the driven mechanism. The
telescopic cylinder as the power source drives segment 2
to move forward, and then, pulleys 1 and 2 drive
segments 3 and 4 outstretch in the extension process,
respectively, as shown in Fig. 6(a). Similarly, the driven
system of the retraction process is the green pulley and
chain. The equivalent analysis of the driven system is
conducted to simplify calculation complexity and
improve calculation efficiency since the driven system

Fig. 3 Schematic diagram of the telescopic boom crane: (a) front view, (b) physical structure of the telescopic boom crane, and

(c) sectional view of segment 2.
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Fig. 5 Comparison of test stress of the boom under different operating speeds: (a) position distribution of gauges, test stress of the boom
at (b) gauge 1 and (c) gauge 2.

has problems, such as high nonlinearity and load
uncertainty. The pulley and chain transmission system are
simplified as a combination of spring and rotating pair, as
shown in Fig. 6(b). Assuming that the telescopic boom is
in a horizontal static equilibrium state, then the force

(@)

Segment 1 Segment 2 Segment 3 Segment 4 (b)

Telescppic cylinder
pesy I Pulley 2

Chain

i ) Pulley

4

J o I Rotating
/ \ W Retract process

Chain Pulley 1 ™ Extend process Spring

Fig. 6 Schematic diagram of the driven system: (a) driven form and (b) equivalent form.

balance equation can be expressed as the following:

Fs =F4=Ff4,
F3—F4—F5+Ff4—Ff3=0, (25)
F,=F;,

Fl_Fz_F3+Ff3_Ff2:0,
where F; (i=1,2,...,5) respectively represents the thrust
produced by the hydraulic cylinder and the pulling force
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produced by the transmission chain, and F (i = 2,3,4)
represents the fraction between segments. The difference
in friction between the segments is ignored due to the
grease lubrication method used in the movement of the
telescopic boom. Equation (25) can be simplified as the
following:

F,=F;,
{FZ:F3:F4+F5, (26)
Fi=F,+F;+F,+Fs.

The finite element method (FEM) in the horizontal state
is solved by applying a cylinder force of F, = 120000 N,
which can be used to obtain the forces between the
springs (F,=43120N, F;=40329N, F,=19824N,
F5 =19951 N). The equivalent method can be considered
reasonable according to the result that satisfies the
reduced equilibrium condition.

4.2 Building an SPI-DT of the telescopic boom crane

The established process of the digital twin model for a
telescopic boom crane can be divided into four steps.
First, the external instantaneous parameters that affect the
structural stress should be determined and transmitted by
suitable sensors and communication methods. Second, the
stress value and optimal parameter can be obtained by
combining simulation data and measured data under
different variables, which can realize the performance
prediction in real-time. Third, the visualization and
interaction of the telescopic boom crane on the personal
computer are completed through computer graphics
technology. Finally, the RUL of the boom is calculated
by combining the rainflow counting method and the
linear cumulative damage theory.

4.2.1 Data generation and communication

Given the complexity of the telescopic boom system and
many external influencing factors, implementing all
external loads of the system into the digital twin system is
difficult. Therefore, the sensor data, including weight

=
Displacement sensor Pressure sensor

CANDTU-200UWGR

load, cylinder displacement, luffing angle, and cylinder
pressure, that can reflect the state of the system are
selected as the research parameters, considering the
different operating modes of the telescopic boom. The
sensor data are transmitted to the personal computer
through the CANDTU-200UWGR communication device
after reading the device’s information. The CANDTU-
200UWGR device can upload data on the CAN bus to the
designated server since it supports 4G communication.
Figure 7 shows the collection and transmission of sensor
data. In the sensors used in this study, the sampling
frequency of the displacement sensor, pressure sensor,
and rotary encoder were all 10 ms, i.e., 100 Hz. Based on
the CANDTU-200UWGR device, the data are sent to the
PC in real time at a 100 ms storage interval through the
4G communication.

Besides reading sensor data in real-time, training data
for the predictive model should also be generated. To
obtain the stress information according to the selected
variable and the test data, the FEM of the telescopic boom
is calculated. The prediction model is divided into two:
the extension model and the retraction model, both of
which select multiple training states to complete the
construction of the digital twin model.

4.2.2 Building the predicted model based on the M-LFM
method

The M-LFM method is proposed to realize the black-box
relationship between the stress and input variable to
satisfy the high-accuracy and real-time requirements of
the telescopic boom. The sensor data that can reflect the
state of the telescopic boom crane are selected as the
input variables, as described in Section 4.2.1. The
functional relationship between the equivalent stress and
the input variables can be expressed as the following:

o, = M-LFM(X),
{O'H = M-LFM(X),
where o, and oy are the predicted stresses in the
extension and retraction processes, respectively. The

@7

»

Fig. 7 Collection and transmission of sensors data.
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M-LFM method was exploited to predict the performance
of the telescopic boom during the extension and retraction
processes. Nevertheless, determining the values of model
parameters {d,u} is a critical issue that should be solved
using the optimization problem. The optimal parameters
of each training state are determined by establishing a
regression model and minimizing the error in the training
state. To determine the values of {J,u}, 440 training states
are selected for both the extension process and the
retraction model:

for j=1:440

N
. i _aiy2
ej - mln(z (ytrainij yj)
i=1

S.L. 6 <0; <Oy, y < ;< Hhy
end

Another crucial issue in establishing the M-LFM
method is determining the scale coefficient a. To do so,
two methods can be used: One is based on empirical
knowledge, and the other is using test data to resolve the
value of the parameter. The method based on empirical
knowledge often brings inestimable errors due to the
uncertainty of the equipment. The compensation method
based on the strain gauge is selected to determine the
parameter values. To measure the stress data, 11 strain
gauges were arranged on the top plate and the right plate
of the boom. Among them, strain gauge Nos. 1-6 can be
used to calculate the scale factor a and test the accuracy
of the M-LFM method, whereas strain gauge Nos. 7-11
can be used only to evaluate the accuracy of the M-LFM
method. Figure 8 shows the layout of the strain gauges.
The optimal value of a under the test states can be

(28)

| 3500

obtained using Eq. (24) and the obtained test data. This
optimal value of a can be used in the prediction model of
a to achieve the accuracy improvement of the M-LFM
method. To calculate the optimal value during the
operation of the telescopic boom crane, 92 test points
were selected, as shown in Eq. (29):
fori=1:92
Titest_ }A)I?Rs

= bCfnor . jl‘)l?RS (29)

a;

end

The optimal values of the parameters under each
training state are determined after optimization. The PRS
model can be used to fit the optimal values of the
parameters. Because much training data have more noise
to affect the prediction performance, the PRS model is
exploited to fit optimal parameters since it can filter
noise. However, potential problems with the order of the
PRS model will affect the predicted accuracy of the
M-LFM method. The best order of the PRS model that
affects the prediction accuracy of the parameter model is
determined by comparing the optimal parameter training
and prediction data. To complete the construction of the
M-LFM method, the third-order parameter model of {J, u}
and the first-order parameter model of a were selected for
prediction, as shown in Fig.9. As the most critical
component of the telescopic boom digital twin, the
predictive performance of the M-LFM method will have
an enormous impact on the interaction of the digital twin
in the physical space and the virtual space. The stress
prediction of the digital twin in a virtual space can be
accurately and rapidly realized by constructing a mature
M-LFM method, but structural health monitoring and

Unit: mm

|.3200

[, 2800

End of
segment

Right

Fig. 8 Location of measured gauges in segment 1.
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Fig. 9 Comparison of the accuracy of parameter fitting models at different orders: (a) third-order PRS model of d, (b) third-order PRS

model of y, and (c) first-order PRS model of a.

fatigue failure prevention will have broad application
prospects in the future.

4.2.3 Dynamic visualization and interaction

To build the dynamic visualization and interaction of
digital twins for telescopic boom, the components
involved in the SPI-DT framework are categorized as
follows:

* Sensor data: the input of the digital twin. It comprises
the weight load, cylinder displacement, Iuffing angle, and
cylinder pressure.

* Geometric model: This model can build the
relationship of the geometric component. It outputs the
information on elements and the coordinate data of the
node.

* Physical model: This model can realize the perfor-
mance analysis of the geometric model. It outputs the
information on performance (stress/strain) and the
boundary conditions.

» Data model: The prediction model is based on the
M-LFM method, which can simplify the performance
analysis process and build a connection between the
behavior and rules of the physical model and the virtual
space.

The geometric model is obtained after the 3D model is
discretized by the FEM, which can obtain the relationship
between the nodal coordinate and the information of the
element. The calculation time and accuracy of the FEM
are related to the size of the mesh. Then, the performance
results can be obtained by solving the FEM under the
different boundary conditions. Based on the performance
results and under the boundary conditions, the prediction
model can be trained using the M-LFM method, which
can build the relationship between the sensor and the
performance data. Finally, the dynamic sensor data can be
transmitted to the trained prediction model through the
CANDTU-200UWGR, which enables the connections
between the physical and digital world.

Visualization is the theory and technology of using
computer graphics and image processing technology to
convert data into graphics or images displayed on a

screen and perform interactive processing [34]. The data
visualization of predictive performance is a critical part of
the construction process of the digital twin, which has
certain guiding significance for the technicians. The
purpose of establishing a visualized 3D telescopic boom
crane model is not only to show the appearance of the
model but, more importantly, to establish an information
exchange and feedback mechanism to express the
appearance and internal information of the model as
flexibly as possible [35]. The prediction data, graphics
library, and 3D dynamic simulation were integrated with
the process of 3D model reconstruction. Simultaneously,
the telescopic boom model is locally optimized to
improve the image quality under the premise of ensuring
a real-time image acquisition, which can realize the multi-
detail stereo display to obtain a real 3D model. By
acquiring dynamic sensor data, the dynamic visualization
in the digital twin enables real-time calculation of the
M-LFM method, which can dynamically render the
mechanical properties of the structure to the personal
computer in real time, as shown in Fig. 10. A detailed
demonstration of the digital twin of the telescopic boom
can be seen in the Electronic Supplementary Materials.
During the operation of the telescopic crane, the dynamic
display of the boom stress has an important impact on the
monitoring, evaluation, and maintenance of the crane,
which can prevent structural fatigue failure and reduce
similar risk of an accident.

4.2.4 RUL prediction

Fatigue life refers to the number of cycles experienced in
the structure before failure occurs under cyclic loading. In
other words, the fatigue life refers to the duration from
the beginning of the load to the final fracture. The
structural component with a shorter fatigue life has a
higher level of stress. To ensure the safe and stable
operation of telescopic boom cranes and avoid the
occurrence of fatigue accidents during the service period,
fatigue life prediction is essential. Here the remaining
fatigue life of the boom is calculated by Miner’s linear
damage rule combined with the rainflow counting
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Fig. 10 Dynamic visualization of telescopic crane boom.

method, which is based on the equivalent stress of the
boom during operation predicted using the M-LFM
method. First, the fatigue curve of S690 steel is
determined according to Ref. [36]:
2 2
(A”‘“"“) L {[0.006723) "] + 0.00528) ™},
2 K;

(30)
where E is elastic modulus, N; is the number of cycles to
failure, Ao, 18 the nominal stress range, and K, is the
elastic stress concentration factor. In the fatigue analysis
of the telescopic boom crane, the elastic stress
concentration factor is K,=2.25 for a structural
component characterized by a given nominal stress range
[20]. Figure 11 shows a curve corresponding to the
standard curve of S690 steels.

Using the fatigue curve to estimate the fatigue life, the
actual working cyclic stress should be converted into
symmetric cyclic stress. Based on the tensile yield limit,
Soderberg’s theory is then used to correct the mean
stress:

Oa O

€2

Oeisoder)y Oy

where o, is the stress amplitude, o, is the mean stress, o
is the tensile yield stress, and oo 1S the modified mean
stress. The working load of many mechanical components
is random in engineering practice. This load is analyzed
and described using statistical analysis methods. The
rainflow counting method, referred to as the rainflow
method, is the most widely used method among many
counting methods. The 3D data of load mean value,
amplitude, and cycles can be obtained using the rainflow
method [37]. The data predicted within a period will be
turned into fully enclosed data that only needs to be
counted once to reduce the statistical time, which means
the fatigue analysis does not need to be performed in real
time. The four-peak valley rainflow counting method [38]
is used to extract the cycle and record the changing range
of structural stress. Finally, the remaining fatigue life is
calculated through Miner’s linear damage rule [39] based
on the statistics of the corresponding cycle times under
different equivalent stress.

g

Di=1-) &,

(32)
=1 8

where Dy is the RUL, M, is the total cycle number, and n,
and N, are the cycle numbers in practical and cycles to

failure under the gth cycles, respectively.
4.3 Results and discussion

4.3.1 Prediction results of the M-LFM method
According to the finite element analysis and the
knowledge of structural mechanics, the contact area of the
slider at the boom will cause the stress concentration and
the phenomenon dynamic changes with the movement
position of the slider. When the telescopic cylinder is
extended forward, the point of maximum stress will move
forward, as shown in Fig. 12. The upper plate is warped
due to the contact of the upper slider, which causes the
side plate to dent inward, thereby maximizing the stress at
the welding seam.

To verify the accuracy and applicability of the model in
the establishment of an SPI-DT, strain gauges were

900
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Fig. 11 Fatigue curve of S690 steels applied in telescopic
boom crane.

Fig. 12 Stress distribution of finite element model in segment 1.
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placed on segment 1 of the boom to test the stress and
compared with the predicted results of the model. The
measured stress, the PRS model predictive stress, the
KRG model predictive stress, and the M-LFM method
predictive stress were compared by reading the sensor
data and changing the operating conditions. Given
numerous selected measuring points, the test process is
divided into two: The measured stress at gauge Nos. 1-6
was obtained to ensure the scale factor a for the first time,
and the measured stress at gauge Nos. 7-11 was obtained
to ensure the scale factor a for the second time. Figures
13(a)-13(c) show the comparison of stress at compen-
sation gauge Nos. 1, 3, and 5. Figures 13(d)—13(f) show
the comparison of stress at test gauge Nos. 7, 9, and 11.
The prediction results of the M-LFM method are
consistent with the test results in multiple cycles.
According to the test data in Fig. 13(b), the slider has a
peak when it passes the test point, but a peak cannot
appear when it does not pass the test point. The reason for
this phenomenon is that the contact area of the slider is
the main force position of the telescopic boom, where the
warping of the top of the boom causes dynamic stress
concentration on the side and top plates. However, the
peak stress does not exist when the gauges are far away
from the contact area of the slider. Figure 13(f) compared
with the other five images is inconsistent with the stress
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trend since the strain gauge is located near the hinge hole
and is not affected by the contact area of the slider.
Although it can be seen in Fig. 11 that the predicted
stress of the M-LFM method and test stress can maintain
good consistency under multiple cycles, the comparison
of local details is unclear. To more intuitively observe the
advantages of the M-LFM method compared with other
models, the prediction results of the M-LFM method and
the equivalent stress of the measured gauge are compared
in a single period, as shown in Fig. 14. The blue, brown,
black, and purple curves represent the test result of the
strain gauge, the prediction result of the M-LFM method,
the prediction result of the PRS model, and the prediction
result of the KRG model, respectively. The results
predicted using the M-LFM method are consistent with
the test results of the strain gauges at the measuring point,
whereas the PRS model does not reflect the trend of stress
changes in the contact area of the slider, as shown in
Fig. 14. Although the KRG method can predict the
changing trend of stress, there is a large error in the
predicted value. The prediction results of the M-LFM
method agree well with the PRS method since this area is
not affected by the dynamic stress concentration in this
case, as shown in Fig. 14(f). The prediction results are
poor because the KRG model is an interpolation model
affected by the training data. In short, the M-LFM
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Fig. 13 Comparison of global equivalent stress at measured gauge: (a) gauge 1, (b) gauge 3, (c) gauge 5, (d) gauge 7, (e) gauge 9, and

(f) gauge 11.
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method compared with the PRS and KRG models can
better reflect the stress changes at the strain gauge.

To quantify the prediction performance of the M-LFM
method, the coefficient of determination R?, the normal-
ized root mean square error (NRMSE), and the
normalized maximum absolute error (NMAE) [40,41] are
selected as the evaluation criteria for the accuracy of the
model. The coefficient of determination is the most
intuitive evaluation standard reflecting the fitting
performance of the model, which can be calculated based
on the error between the predicted value of the model and
the true response at the test point. The expression is as
follows:

M
2 0i=3)°
T
D=5y
i=1

where y;, is the true output of the problems at the test point
X;, §; is the predicted response of the M-LFM method at
the test point x;, y is the mean value of the true output at
all test points, and N, is the number of test points. R?
varies from 0 to 1, so the prediction model is closer to the
real model when the value of R? is closer to 1. NRMSE is
also a method commonly used to evaluate the error
between the predicted value and the true value on the
overall design space. The expression of the NRMSE is as
follows:

R=1 (33)

1

1 < )
MZI(yi—y,>. (34)

The NRMSE should be as small as possible for a model
with high prediction accuracy. The range of the NRMSE
is greater than 0, and its amplitude is affected by the
output amplitude of the original problem. The above two
metrics, R? and NRMSE, evaluate the model prediction
accuracy from the perspective of the overall design space,
but the NMAE is an evaluation standard for the local
error of the model. The NMAE is used to calculate the
maximum error between the predicted value and the
response value at the test point. The expression of the
NMAE is as follows:

R S PR

NMAE = max|y y|/ N 2069

The smaller the NMAE value, the higher the local
prediction accuracy of the model. The accuracy of the
M-LFM method, the PRS model, and the KRG model at
each measuring point are calculated by taking the test
results as a benchmark, as shown in Tables 1 and 2. The
predicted accuracy of the M-LFM method is better than
that of the PRS model and KRG model whether it is local
or global accuracy, except for measuring point 11. For
measuring point 11, the M-LFM method performs stress
compensation based on the measured data, which shows
an obvious advantage in the dynamic stress concentration
area. The prediction accuracy of the KRG model is higher
than that of the PRS model. This phenomenon is because
the KRG model is more consistent with the measuring
results trend, as shown in Fig. 14. Moreover, the results
of the M-LFM method agree well with those of the PRS
model in gauge No. 11 since the measurement gauge is
not located in the contact area of the slider. In other

Table 1 Error evaluation of the M-LFM method and other models at the measured compensation gauge

R? NRMSE NMAE
Gauge M-LFM PRS KRG M-LFM PRS KRG M-LFM PRS KRG
Gauge 1 0.7695 0.3328 0.6565 0.0817 0.1389 0.0997 0.4004 3.8986 2.8094
Gauge 2 0.8073 0.4601 0.6619 0.0873 0.1462 0.1157 0.2318 3.4447 3.0076
Gauge 3 0.8767 0.4308 0.7216 0.0688 0.1478 0.1033 0.4635 4.1060 3.0413
Gauge 4 0.8984 0.5106 0.7285 0.0619 0.1359 0.1013 1.1971 3.0113 1.8970
Gauge 5 0.9124 0.6448 0.8039 0.0608 0.1225 0.0910 0.4667 3.5099 3.1189
Gauge 6 0.9592 0.6151 0.7771 0.0422 0.1298 0.0987 0.1153 3.1424 3.3241
Table 2  Error evaluation of the M-LFM method and other models at the measured test gauge

R? NRMSE NMAE
Gauge M-LEM PRS KRG M-LEM PRS KRG M-LFM PRS KRG
Gauge 7 0.7987 0.3875 0.6851 0.0899 0.1569 0.1125 1.0463 3.8506 2.9158
Gauge 8 0.8395 0.4634 0.7247 0.0499 0.0913 0.0654 2.7092 7.1509 6.7679
Gauge 9 0.9289 0.5081 0.7855 0.0678 0.1782 0.1177 0.3957 3.1007 2.2368
Gauge 10 0.9436 0.5746 0.7903 0.0444 0.1013 0.0855 1.9419 5.0236 3.8413
Gauge 11 0.8797 0.8797 0.8207 0.0759 0.0759 0.0927 0.329 0.3291 0.5223
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Fig. 14 Comparison of local equivalent stress of measured gauge: (a) gauge 1, (b) gauge 3, (c) gauge 5, (d) gauge 7, (e) gauge 9, and

(f) gauge 11.

words, the measurement gauge located in the stress
compensation area has undergone stress revision, which
improves the prediction accuracy. Therefore, the M-LFM
method can accurately predict the stress concentration
phenomenon caused by contact changes in the mechanical
structure of each component moving with each other,
which can significantly improve the accuracy of the
digital twin model.

Another indispensable issue to tackle for realizing the
digital twin model is to ensure the real-time performance
of model predictions. In the digital twin of the telescopic
boom, a great challenge concerning the real-time
requirements was brought forward because of the need to
perform prediction calculations of multiple outputs
simultaneously. To verify the real-time performance of
the model prediction, the delay time of the M-LFM
method, PRS model, and KRG model are compared, as
shown in Table 3. The results show that the proposed
M-LFM method can obtain the prediction results faster
than the KRG method. However, the M-LFM method has
a delay time in the prediction similar to the PRS model,
which is caused by the calculation of the stress
compensation.

4.3.2 Analysis of model parameters uncertainty

Due to the difference in the analyzed structure and

Table 3 Comparison of delay time under different models

Model Delay time of the Delay time of the

type extension model/s retraction model/s
M-LFM 0.447 0.458
KRG 2.302 2.106
PRS 0.446 0.456

training data, the prediction parameters fluctuate, which
affects the prediction results of the model. To study the
influence of the uncertainty of the model parameters on
the prediction results, the signal-to-noise ratio (SNR) of
Gaussian white noise was added to the predicted values
of the parameters [42,43]. The expression is as follows:

SNR = 101g =201g (36)

noise Anoise '
where P is the power of the signal, P, is the power of
the noise, 4 is the amplitude of the signal, and A, is the
noise corresponding value. The predicted parameters with
different SNR values are dynamically integrated,
respectively, to more realistically simulate the online
prediction of stress under real conditions. Figure 15
shows the results of these methods and analysis.

Figure 15 shows the uncertainty estimate of the M-
LFM method under parameter noise, where the red shade
represents the uncertainty boundary of the model in the
95% confidence interval. The uncertainty at the contact
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Fig. 15 Uncertainty estimate with a 95% confidence interval of the M-LFM method under parameter noise: equivalent stress of
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area of the slider is affected since the prediction results
change with the model parameters, and the uncertainty is
the largest when the state changes from the extension
process to the retraction process, which is caused by the
conversion from the extension model to the retraction
model. Meanwhile, as shown in Fig. 15, the uncertainty
can distinguish the difference in the prediction results of
the M-LFM method between different SNR values. The
global view represents the whole prediction results with
different SNR values and the test result. It can be found
that there are obvious differences between the test result
and the confidence interval when the SNR was 10.
However, the confidence interval of the M-LFM method
does not distinguish the predicted results when the SNR
is 30. Furthermore, the M-LFM method has better
robustness by comparing the prediction results under
different SNR values.

4.3.3 Prediction result of RUL

The experimental data obtained from the fatigue test of
the telescopic boom were compared with the predicted
data to verify the feasibility of the proposed digital twin
model for fatigue life prediction. The fatigue test data of

the telescopic boom were obtained through repeated tests
on the extreme working conditions of the telescopic boom
under a mass load of 26671 N (mass: ~2721.55 kg). To
illustrate the applicability of the fatigue prediction model
in practical engineering, the number and distribution of
fatigue cycles of the telescopic boom under correspond-
ing working conditions were predicted based on the
proposed digital twin fatigue model. The measured life is
35055 times and the predicted life is 53265 times under a
mass load of 26671 N. The predicted life is within two
times the measured life, which demonstrates that the
predicted effect of the fatigue model is good.

According to the fatigue test experience of the
telescopic boom crane under actual working conditions,
the fatigue failure position of the boom often occurs at the
welding seam far from the end of segment 1. Figure 16
shows the comparison of measured life and predicted life
calculated by the proposed digital twin framework.
Figure 16(a) shows the areas of fatigue failure in the test.
Figure 16(b) shows the remaining fatigue life color map
of segment 1 after multiple load cycles. The weld seam
away from the end of segment 1 is the most prone to
failure of the boom. The obtained fatigue trend is very
consistent with the actual fatigue test, which shows that
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the proposed digital twin fatigue model has a certain
guiding significance for operating the telescopic boom
crane.

To understand the change trend of the fatigue behavior
of the telescopic boom crane by the digital twin model,
the remaining fatigue life at the measuring point was
observed. Figure 17 shows the statistical histogram of the
rainflow counting method at measuring point 7. Figure
17(a) shows the load reversals at measuring point 7 under
multiple cycles. The range of the stress amplitude is
25-230 MPa at measuring point 7. Figure 17(b) shows
the statistical histogram obtained using the rainflow
counting method. A large number of statistics appear
when the stress range is 0-20 MPa. The reason for this
phenomenon is the stress fluctuation caused by the
vibration of the telescopic boom crane during operation,
which generates less fatigue damage to the structure.
Nevertheless, a stress cycle with a large variation range
will still produce large fatigue damage, even if the
number of statistics is few. Figure 17(c) shows the trend
of the remaining life at gauge Nos. 7-11. The farther
away from the end of segment 1, the lower the fatigue life

a b
Ke) Areas of fatigue failure in test ®)
s ¥

of the position, and the remaining life of the upper plate is
lower than the fatigue life of the side plate.

5 Conclusions

This paper proposed an M-LFM method to construct an
SPI-DT for operating equipment in real time. This
method is realized by combining the advantages of the
PRS and KRG models in prediction and using the
Gaussian function to compensate for the surrounding
area. In the implementation of the M-LFM method, three
crucial model parameters were determined through the
fusion of the training and test data. This significantly
improves the predicted performance of the digital twin for
complex engineering problems, making the digital twin
model more lightweight and credible. Then, to verify the
accuracy and efficiency of the M-LFM method, the
digital twin of the telescopic boom crane was realized.
The results showed that the proposed M-LFM method has
better calculation accuracy and efficiency than the PRS
and KRG models since it combines the different surrogate
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Fig. 16 Trend of remaining useful life under equivalent stress cycles: (a) trend of measured life in the fatigue test and (b) predicted life

of the digital twin after multiple stress cycles.
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models and multiple types of data. Finally, the RUL of
the telescopic boom is predicted based on the rainflow
counting method and Miner’s linear cumulative damage
theory. Noteworthy, the proposed M-LFM method, as a
feasible paradigm, not only can be extended to other
types of cranes and construction machinery but can also
be used in aerospace, fluid machinery, and other fields.

However, the M-LFM method has limitations and
inadequacies in some application scenarios. For example,
if the stress concentration area of the structure cannot be
determined or sensors cannot be arranged in this area, the
model parameters must be determined empirically.
Therefore, a direction for future research is to establish an
M-LFM method for each area by reasonably dividing the
stress area, which can make the algorithm more applica-
ble. Another direction is to obtain optimal sensor layout
by selecting crucial positions that have a significant
impact on the analysis results from most measurement
positions. As such, to efficiently maximize and improve
the reliability of the monitoring information, the density
of sensor information can be utilized.

Nomenclature

Abbreviations

3D Three-dimensional

DT Digital twin

FEM Finite element method

KRG Kriging

M-LFM Multi-level fusion modeling

NMAE Normalized maximum absolute error

NRMSE Normalized root mean square error

PRS Polynomial response surface

RUL Remaining useful life

SNR Signal-to-noise ratios

SPI-DT Shape—performance integrated digital twin

Variables

a Unknown coefficient used to change the result size of
the predicted model

A Amplitude of the signal

Anoise Amplitude of the noise

b Scale factor

D¢ Remaining useful life

e Error between the training value and the predicted
value at training point

E Elastic modulus,

fi() i=12,...,m) Unknown approximate function

Fi(i=12,...5)

Frp(i=234)
F

4

H

k

K

L
m
M,

g
M,C K

ng, Ng

N

Pnoise
Q’ Q’ Q

t

T‘CSY

Ui, Vi, Wi

uc, ve, we

xi (i=1,2,...,m)
X

y

train

Vi

~PRS

y

APRS /KRG
Ye s Ye
Ys

Y
YPRS,YKRG

()
Cfi(i=12,..n)
Ctins Clinax

Thrust produced by the hydraulic cylinder and the
pulling force produced by the transmission chain
Fraction between segments

Force vector

gth cycle

Vector whose elements are ones

Number of measured data

Elastic stress concentration factor

Cost function

Number of input variables

Total cycle number

Mass matrix, damping matrix, and stiffness matrix,
respectively

Cycle number in practical and cycles to failure,
respectively

Cycle number to failure

Test point number

Signal power
Noise power
Displacement, velocity, and acceleration vector,
respectively

Related vector between the unknown predicted point
and the trained point

Relationship function

Coefficient of determination

Relationship matrix whose elements are the value of
relationship function

Time

Measured data

Space coordinates in the ith point

Space coordinates in the compensation point

ith input variable

Input vector

Mean value of the true output at all test points
Predicted value of output variable

Response value in the ith training point

Predicted data of PRS model

Predicted values of the PRS model and KRG model at
the compensation point, respectively

True response value at samples.

Output vector

Predicted vectors of the PRS model and the KRG
model, respectively

Error function of KRG model

Compensation factor of the influence domain
Minimum and maximum values of the compensation

factor set, respectively
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cfrr Normalized compensation factor
Cf .o Compensation factor set

; (i=1,2,...,m)  Unknown weight coefficient

@, at, ot Unknown weight coefficient of different parameters
model

@ Vector of unknown coefficients

B Maximum likelihood estimation value of hyper-
parameter

Bi Unknown weighted coefticients of the KRG model

0 Parameter of the influence domain

3, o, a Predicted values of the model parameters under
different sensor states

dy, dy Upper and lower bounds of the parameter J, respectively

Sopts Hopes Aopt Optimal parameters of d, u, and a, respectively

& Vector of error function

u Deviation coefficient of the compensation point

Has M Upper and lower bounds of the parameter u, respectively

pi (i=12,....n) Euclidean distance between the compensation point
and the surrounding points

Prin> Prmax Minimum and maximum values of the Euclidean

distance set, respectively

P Normalized Euclidean distance

o2 Variance of error function

T Stress amplitude

Om Mean stress

oy Tensile yield stress

Oe(Soder) Modified mean stress

o Performance vector

o, Oh Predicted stresses in the extension and retraction

processes, respectively

AT nom Nominal stress range

Ui (x) Function correlated with the physical properties of
problem itself

Y2(x), Yi(x), Y$(x) Functions correlated with the physical properties of
different PRS model
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