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ABSTRACT Convolutional neural network (CNN) has achieved remarkable applications in fault diagnosis. However,
the tuning aiming at obtaining the well-trained CNN model is mainly manual search. Tuning requires considerable
experiences on the knowledge on CNN training and fault diagnosis, and is always time consuming and labor intensive,
making the automatic hyper parameter optimization (HPO) of CNN models essential. To solve this problem, this paper
proposes a novel automatic CNN (ACNN) for fault diagnosis, which can automatically tune its three key hyper
parameters, namely, learning rate, batch size, and L2-regulation. First, a new deep reinforcement learning (DRL) is
developed, and it constructs an agent aiming at controlling these three hyper parameters along with the training of CNN
models online. Second, a new structure of DRL is designed by combining deep deterministic policy gradient and long
short-term memory, which takes the training loss of CNN models as its input and can output the adjustment on these
three hyper parameters. Third, a new training method for ACNN is designed to enhance its stability. Two famous bearing
datasets are selected to evaluate the performance of ACNN. It is compared with four commonly used HPO methods,
namely, random search, Bayesian optimization, tree Parzen estimator, and sequential model-based algorithm
configuration. ACNN is also compared with other published machine learning (ML) and deep learning (DL) methods.
The results show that ACNN outperforms these HPO and ML/DL methods, validating its potential in fault diagnosis.

KEYWORDS deep reinforcement learning, hyper parameter optimization, convolutional neural network, fault
diagnosis

processing techniques and fault recognition implemented
by DL classification algorithms [6]. DL can automatically

1 Introduction

Fault diagnosis has attracted increasing attention in the
academia and industrial fields [1]. With the rapid
development of smart manufacturing, data-driven fault
diagnosis (also referenced as knowledge-based fault
diagnosis), which always establishes the machine
learning (ML) or deep learning (DL) model to map the
nonlinear relationship among the collected signals to the
health condition of the machine, has been widely inves-
tigated and obtained remarkable achievement results. It
has attracted more attention in the industrial and
academic fields [2,3].

DL is one of the most widely used methods in data-
driven fault diagnosis [4,5]. DL-based fault diagnosis
mainly contains feature extraction realized by signal
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handle signals after processing to predict the health
condition of machines. However, obtaining excellent
performance on all situations is impossible for every
supervised algorithm due to “no free lunch” theorems
[7,8]. Therefore, finding its optimal configurations to
ensure its performance is essential for the supervised
algorithm. DL is a kind of supervised algorithm, so it
suffers from this phenomenon as well. In various appli-
cations, the tuning to search the optimal configurations
for DL models is necessary and has been investigated
widely in the field [9].

Tuning aims to find an appropriate set of hyper
parameters (e.g., batch size, regularization coefficient,
and learning rate of neural networks) for DL models.
Although several default hyper parameters have been
recommended, researchers show that they cannot
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guarantee the performances of DL methods on real-world
applications [10]. As a result, tuning would be conducted
on every dataset, making it very time consuming and
labor intensive. Typically, the most usual tuning method
is manual search, but it often requires expert experience
to guide the search, and this is a considerable barrier for
new users, especially on the new dataset [9,10].

Hyper parameter optimization (HPO), regarding tuning
as the optimization problem, has attracted the attention of
many researchers [9]. It can automatically search the
optimal hyper parameters for DL models. The most used
HPO methods include grid search (GS), random search
(RS), Bayesian optimization (BO), sequential model-
based algorithm configuration (SMAC), and tree Parzen
estimator (TPE) [11]. GS and RS are simple HPO
methods, whereas BO, SMAC, and TPE establish a
surrogate model that maps the hyper parameter space to
the final generation error space for the DL modes and
then optimizes the hyper parameters online. As HPO can
automatically tune the DL models, it is easier to use and
obtain the state-of-the-art results in various applications
[12]. However, most DL models developed for fault
diagnosis are tuned manually, and the applications of
HPO to the DL model for fault diagnosis are few. Thus,
improving the search efficiency for the DL models for
fault diagnosis and developing a systemic search strategy
for its tuning are vital to the process.

In this paper, a new automatic convolutional neural
network (ACNN) is studied for fault diagnosis.
Convolutional neural network (CNN) is applied for fault
diagnosis. As some theoretical and empirical evidence
show that three hyper parameters, namely, batch size,
learning rate, and L2-regulation, have great effect on the
performance of CNN models [13,14], they are tuned
simultaneously online by a deep reinforcement learning
(DRL) agent. First, a new DRL paradigm is developed for
controlling the hyper parameters for the CNN model.
Second, a new DRL structure is developed, which
combines long short-term memory (LSTM) and deep
deterministic policy gradient (DDPG), named LSTM-
DDPG. LSTM-DDPG can take the historical training loss
of CNN models as input and control the batch size,
learning rate, and L2-regulation during the training of the
CNN model. DDPG is a powerful kind of DRL, and it
can release the continuous control on these three hyper
parameters. Third, a new training method for ACNN with
random walk is designed to avoid falling into the local
minimum. Finally, the proposed ACNN is conducted on
two famous bearing datasets, and the results show that it
achieves state-of-the-art performance and is easy to use.

The remainder of this paper is organized as follows.
The related work is presented in Section 2. The structure
of the proposed ACNN is shown in Section 3. The ACNN
method for fault diagnosis is illustrated in Section 4. The
experiment study is carried out to validate ACNN in
Section 5. Finally, the conclusions and future research are
introduced in Section 6.

2 Related work

2.1 CNN-based fault diagnosis

As one of the powerful kinds of DL, CNN has been
studied by many researchers in fault diagnosis [15,16].
Xu et al. [17] studied online fault diagnosis by using deep
transfer CNN, and it achieved remarkable results on the
bearing and pump dataset. Li et al. [18] proposed a
Wasserstein generative adversarial network for imbalance
fault diagnosis. It generated several high-quality samples
of the minority class, and the results showed that it has
better performance. Chen et al. [19] investigated
multiscale CNN with feature alignment for rolling
bearing fault diagnosis, which outperformed other CNN-
based methods in terms of accuracy and feature
robustness. Jiao et al. [20] provided an extensive review
of the CNN models. Yao et al. [21] studied an attention
assist representation method with multiscale CNN for
fault diagnosis of gear under non-linear and non-
stationary working conditions. Li et al. [22] investigated
an adaptive fusion CNN for multisensor fault diagnosis
with adaptive sized convolution kernels and achieved
good performance. Kolar et al. [23] developed a new
deep CNN model for fault diagnosis of rotary machinery
using the raw three axes’ accelerometer signal as input.

During the applications of CNN in fault diagnosis,
several decisions should be pre-defined, including
determining the structure of the CNN as well as the hyper
parameters for training the CNN models [9]. Searching
for the optimal structure of CNN is the field of neural
architecture search (NAS). Wang et al. [24] studied
reinforcement NAS for rolling bearing fault diagnosis,
and the results confirmed that the proposed method can
realize the automatic design of the CNN model. Zhang
et al. [25] investigated differentiable NAS for fault
diagnosis of bearing dataset and escalator dataset. The
experimental results showed the effectiveness of NAS in
achieving competitive performance.

In this research, famous CNN structures, such as
ResNet and DenseNet, are adopted for fault diagnosis,
and the hyper parameters for training the CNN models
are mainly focused on. As some theoretical and empirical
evidence show that batch size, learning rate, and L2-
regulation have great effect on the performance of the
CNN models [13,14], a new DRL-based automatic CNN
that can control the three key hyper parameters of CNN-
based fault diagnosis is developed.

2.2 Hyper parameter optimization

The typical HPO methods include GS, RS, BO, SMAC,
and TPE. Among these methods, BO, SMAC, and TPE
use surrogate models to map the hyper parameter space to
the performance space and can often find good hyper
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parameter configuration for the ML/DL models.

(1) Grid search and random search

GS is a famous hyper parameter tuning method, and it
tries every combination of the hyper parameter candidate
to find their optimal values. GS is reliable and widely
applied in low-dimensional space. It suffers from “the
curse of dimension,” so computational time would
increase heavily in high-dimensional hyper parameter
space.

The procedure of RS is similar to that of GS, except
that it randomly selects the trial hyper parameter
candidate. The efficiency of RS is better than that of GS
in high-dimensional hyper parameter space. However, RS
is prone to fall into the local minimum because it lacks
guidance for the search on hyper parameter configuration.

(2) Bayesian optimization

BO is a sequencing optimization method, which
establishes a Gaussian model as the surrogate model and
selects the next potential candidate hyper parameter to be
tested. With the certain steps, the hyper parameter can be
optimized. BO has been useful in many applications [26].

(3) Sequential model-based algorithm configuration

SMAC applies random forest as a surrogate model to
estimate the mean and variance for each hyper parameter.
It is suitable for all types of hyper parameters [12],
including continuous, discrete, categorical, and condi-
tional.

(4) Tree Parzen estimators

TPE applies a graphic structure to deal with conditional
search space for the surrogate model [27]. It creates two
density functions for each hyper parameter, good ones
and bad ones [11].

The applications of HPO methods for CNN-based fault
diagnosis are few. Li et al. [28] combined CNN with
automatic HPO for fault diagnosis of roller bearing.
Cabrera et al. [26] studied the hyper parameter search
guided by the Bayesian approach for LSTM-based fault
diagnosis. Long et al. [29] investigated a competitive
swarm optimizer combined with a local search for the
optimization of deep echo state network architecture for
intelligent fault diagnosis. Han et al. [30] proposed a
genetic algorithm method for the HPO of a simple CNN
model on the MNIST dataset and the motor fault
diagnosis dataset. Wei et al. [31] presented a new
imbalance fault diagnosis method using a cluster—
majority weighted minority oversampling technique and
support vector machine (SVM). In this method, genetic
algorithm and particle swarm optimization are applied to
optimize the hyper parameters of the SVM.

The hyper parameters in these HPO methods are
assumed constant, but several hyper parameters in DL
models, such as batch size, learning rate, and L2-
regulation, can be time varying. In this paper, the
proposed ACNN is developed to control these hyper
parameters online for CNN-based fault diagnosis.

3 Proposed ACNN using LSTM-DDPG

The proposed ACNN is defined in this section. First, the
DRL preliminaries are presented. Second, the ACNN
based on DRL is defined. Third, the LSTM-DDPG
structure for the ACNN is given.

3.1 DRL preliminaries for ACNN

Reinforcement learning (RL) has been widely used for
online control. The procedure of RL can be modelled as a
Markov decision process. It trains an RL agent to make
the continuous decisions, which decides to take action a
according to its state s while receiving reward r. Thus,
RL can be defined as the tuple (s,a, p,r,7). p denotes the
transition probability function and is p: sxa =[0, 1]. y is
discount factor. In most cases, policy Il: s — a is used
for the agent to choose the action according to its current
state. The ultimate goal of the RL agent is to find the
proper policy that can maximize the cumulative reward
via the Q-value function, as shown in Eq. (1):

QH(S’a):EH{Zykrk|ssa}’ (1)

k=t
where Ep denotes the expected value under policy I1, 7; is
the reward at the kth step, and Q"(s,a) is the O-value
function under policy IT.

Equation (1) shows that when the states and actions are
finite, the Q-value function can be viewed as a look-up QO
table; otherwise, it is modelled using a surrogate model.
When the artificial neural network (ANN) is used as the
surrogate model, this type of RL is denoted as DRL.
However, the hyper parameters of CNN are the
continuous controlling type, so the action should be
continuous. DDPG, which is an improved version of
DRL, is familiar with continuous control and is
investigated in this research.

3.2 RL definition of ACNN

The definitions of RL for the concepts of ACNN-based
fault diagnosis include state space, action space, and
reward function.

3.2.1 State definition
State definition should reflect the current state of the
ACNN training state to guide the further trend of the
training. Some previous works have been done to design
the state for ANN, but most of them are carefully hand
constructed, making them task specific, such as the state
by Hansen [32] that has been used for tuning the learning
rate only.

In this research, the state for ACNN is defined as the
sequencing training loss of ACNN on mini-batch data,
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and the number of the sequencing training loss is defined
as M. Training loss is meaningful because it can reflect
the convergence and performance of the ACNN model.
Hence, the state of ACNN is defined as Eq. (2):

s, = (loss,_y,l0SS,_p1s1s ..., 108S,_1), )

where s, is the state at time step ¢, and loss, denotes the
loss value of CNN model at time step z. The current state
is the past sequencing M loss of ACNN, and it is time
series data. Thus, LSTM is applied with DDPG to handle
it, as shown in Section 3.3.

3.2.2  Action space for controlling the hyper parameter of
ACNN

In this research, the controlled hyper parameters include
batch size, learning rate, and L2-regulation value, so the
action space is 3D. To simplify the action space, the
spaces of the three elements in action space are all pre-
defined as (0, 1), and it can be easily achieved by the
“sigmoid” activation function. Suppose that a, = (a,,,a,,,
a,3) defines the current action, then the current batch size
b,, current learning rate [r,, and current L2-regulation
value /, can be updated using Egs. (3)—(5), respectively.
The L2-regulation value is updated in the exponential
scale because this value is also commonly tuned in the
exponential term in manual search. For example, the
change from 0.001 to 0.01 is expected to have the same
effect as that from 0.01 to 0.1.

bt = lnt ((bmax - bmin) [27%) + bmin) 5 (3)
lrt = (lrmax - lrmin)at,l + lrmin? (4)
lr = pOW (107 (lg lmax - lg lmin) at,} + lg lmin) s (5)

where Ir,, and [r,, are the upper and lower boundaries
for the learning rate, respectively, b, and b, are the
upper and lower boundaries for the batch size,
respectively, and [, and [, are the upper and lower
boundaries for the regulation, respectively. To make the
controlling smooth, the final batch size, learning rate, and
L2-regulation are soft updated, as shown in Egs. (6)—(8),
respectively.

b,=int(b_, (1-a)+ba), (6)
Ir,=10lr_,(1—-a)+Ira, (7)
I, = pow(10,((1 —a)1gl_, +algl)), )

where @ is the factor to control the degree of soft
updating. Eq. (8) is smoothed in the log scale as Eq. (5).

3.2.3 Reward function

Reward function is also a vital component in the RL
paradigm for ACNN, as the RL agent tries to maximize
the cumulative reward during training. The reward

function is determined as the improvement on the training
loss between two time steps on the ACNN model. This
definition is to promote the convergence speed of the
ACNN and ensure the final training loss. The final reward
function can be expressed in Eq. (9):

r =loss,_, —loss,, 9)
where r,,, is the reward at time step #+1.

3.3 LSTM-DDPG for ACNN

DDPG is an improved version in RL paradigm, which is
familiar with the continuous state space, and it has
achieved many successful applications on the task in
Gym and Atari environment [33]. The structure of DDPG
contains two main networks, namely, actor network and
critic network. The function of the actor network is to
choose the action according to the state. Suppose ¢
denotes the actor network, and the process of actor
network can be presented as ¢ (s,) = a,. At the same time,
the critic network is used as the surrogate model for Q-
value function. w? denotes the critic network, and the
process of critic network is Q (s,, 8" (s,) |w?).

In DDPG, the actor and critic networks have two
subnets. These two subnets share the same structure,
denoted as online subnet and target subnet. The online
subnets operate the normal workflow of DDPG, whereas
the target subnets are used for the experience replay, that
is, the training of the subnet. The actor and critic target
networks are denoted as # and w9, respectively. The
LSTM network is used to handle with the sequence loss
information in DDPG because the state is the defined as
the time sequence of loss. This structure is denoted as
LSTM-DDPG, and its details are shown in Fig. 1. The
actor network applies an LSTM with two fully connected
(FC) layers. The activation function of the actor network
is “sigmoid.” The input of the actor network is the state
s,. The output is the action with the range of (0, 1), which
would be used to adjust the batch size, learning rate, and
L2-regulation using Egs. (6)—(8), respectively. The critic
network has two inputs, namely, state (Input 1) and action
(Input 2). LSTM is used to copy the state, and then the
result of the LSTM is concatenated with action a, to
estimate the O-value function. No activate function exists
in the end of the FC layers in the critic network, and it
can predict any value of Q-value function to fit the range
of reward.

The training of DDPG needs to train the actor and critic
networks. The training loss L of critic network is defined
as the squared error of the prediction on the Q-value
function Q(s,,a,/w?) and the actual Q-value y,, as shown
in Eq. (10), where n is the number of samples in the
experience storage D. The actual Q-value y, is calculated
using the reward r,,; and the prediction reward
O(Se1s it (50:1)|0%16") on the state s,,,, as shown in Eq.
(11). The training of the actor network is updated using
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Fig. 1 Detail structure of LSTM-DDPG: (a) actor network, (b) critic network.

the sample policy gradient V,.J (") shown in Eq. (12).

_1 _ 0Y)?
L= nZ(y, 0 (s.alo?))’, (10)
V1 = Tt + 70 (00,1 (500) 02167, (11)
_IN 0
Vi (0) =~ 3 V.0 (snalo®) Vep(s0).  (12)

J=1

4 Proposed ACNN-based fault diagnosis

This section presents ACNN-based fault diagnosis, which
includes data preprocessing, ACNN structure, and ACNN
training.

4.1 Data preprocessing based on S-transform

S-transform is a kind of time—frequency technique, and it
has a good ability to handle non-stationary signals. The
application of S-transform on fault diagnosis has been
studied and shown a good performance. S-transform is
based on the famous short-time Fourier transform.
Suppose that signal x(¢) is defined, its short-time Fourier
transform formulation result denoted by STFT is as Eq.

(13):
(13)

where 7 is the time of spectral localization, f is the
Fourier frequency, and w(#) is the window function.

STFT (T, f) — I+mx(t)w(t— T) e’ﬂ"ﬂdl‘,

S-Transform defines w(¢) as Gaussian function, as shown
in Eq. (14). m is the circumference ratio. Then, S-
transform can be calculated as Eq. (15):

(o) = %ﬂ exp(~/2), (14)
st =[x % exp(~(— 7 f*/2)
- T
-exp(—j2nft)dr. (15)

Equation (15) shows that the results of S-transform
contain time and frequency elements, and then these data
are fed to the ACNN-based fault diagnosis method.

4.2 ACNN structure

The structure of ACNN applies the famous off-the-shelf
CNN models as the backbones. These backbones have
been validated to be powerful. At the end of these
backbones, the new FC layer and a SoftMax classifier are
added for the fault classification. ResNet and DenseNet
are used as the backbones in this research.

1) ResNet: ResNet uses shortcut connections to
skipping blocks of convolutional layers, which can ease
the training, because deeper neural networks are more
difficult to train. With the deeper network structure,
ResNet can substantially improve the final performance.

2) DenseNet: DenseNet is an improved version of
ResNet, and it is based on the empirical finding that the
CNN network can be more efficient to train when the
shorter connections are used between the layers close to
the input and those close to the output. Thus, DenseNet
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connects each layer to every other layer, and it can
alleviate the wvanishing-gradient problem, encourage
feature reuse, and reduce the number of parameters.

In this research, three ResNet variants and three
DenseNet variants are used as the structure of ACNN for
fault diagnosis. They are ResNet-50V2, ResNet-101V2,
ResNet-152V2, DenseNet-121, DenseNet-169, and
DenseNet-201. Their well-trained models are on the
Keras application. The hidden neuron of the followed FC
layer is 512, and that in the SoftMax classifier depends on
the fault cases.

4.3 ACNN training

The training of the proposed ACNN consists of the
alternative training of CNN models and DDPG in turn.
The training of ACNN is shown in Algorithm 1. During
the training, a random walk procedure is designed to
improve the stability of ACNN, as shown in Algorithm 2.

totalstep is the total training step, and step4game is
used to control the frequency of random walks.
Algorithm 1 shows that ACNN first generates its state s,,
and the DDPG predicts the learning rate, batch size, and
regulation value of ACNN for this training step. Then,
this setting is conducted by ACNN and receives its

Algorithm 1: ACNN Training

Data preprocessing the fault samples using Eq. (15)
Initialize ACNN model and DDPG model
Initialize the samples using mini-batch method
for =1, totalstep do
if 1+1% step4game == 0
Implement the random walks as Algorithm 2
Train critic online subnets using Eq. (10) and D'
Train actor online subnets using Eq. (12) and D’
Update target actor and critic subnets
end if
Generate the CNN state as s, using Eq. (2)

Predict the action 4, = 4, (s,)

Obtain Ir, b

ty

and / using Eqgs. (6)—(8)
Obtain the mini-batch fault samples using ,
Train one step of CNN model using /I, and /

Obtain the loss, and get the reward r,,, using Eq. (9)

+1

Store (s,,a,.#.,.s,,,) in experience storage D

t+1
=t+1

end for

Algorithm 2: Random walks for ACNN
Clone the ACNN model to a temporary CNN model

Clone the mini-batch indicator
Clone the experience storage D to D'
for k=1, step4game do
randomly generate the action «,
Obtain b, , Ir, and /, using Egs. (6)—(8)
Generate the next mini-batch fault samples
Train the temporary CNN model and obtain its reward 7,
s0,) in D’

Store (s,,a,.7;,,»

end for

reward r,,;, which is used to indicate the goodness of this
setting.

The random walk procedure is almost the same with
training the CNN model, as shown in Algorithm 2.
However, it applies random action to replace the
prediction action of DDPG. This approach is helpful for
exploring the training space. The CNN model, mini-batch
indicator, and experience storage are cloned to a
temporary version and used only in the random walk
procedure. The experience storage used for training the
critic and actor networks is D' in the random walk
procedure.

Algorithms 1 and 2 present that ACNN can estimate its
batch size, learning rate, and L2-regulation online by the
LSTM-DDPG. These three factors are key hyper
parameters that should be tuned during CNN training.
Thus, the proposed ACNN can automatically self-control
these three values.

5 Case studies and results

The proposed ACNN method is released using
TensorFlow 1.15, and the DDPG part is implemented
using TRFL 1.1.0 package, which is compatible with
TensorFlow. The proposed ACNN runs on Ubuntu Linux
18.04 with RTX 2080Ti GPU.

5.1 Experiment setup

ACNN is conducted on the motor bearing dataset from
Case Western Reserve University, USA (CWRU dataset)
and KAT data center in Paderborn University, Germany
(KAT dataset). These two datasets are widely used to
verify the potential in the fault diagnosis field.

First, the proposed ACNN is compared with four HPO
methods, namely, RS, BO, TPE, and SMAC. RS and TPE
are implemented based on Hyperopt software. BO is
based on Scikit-Optimize. SMAC is implemented by
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SMAC3, which is developed by the AutoML group.
Hyperopt, Scikit-Optimize, and SMAC3 are all famous
software for HPO.

Second, the results of the proposed ACNN are
validated by comparing them with other reported ML and
DL methods in the literature to show its potential on fault
diagnosis further.

The ranges for the hyper parameters for the tuning are
set, as shown in Table 1. As the learning rate of the
ACNN is controlled by the LSTM-DDPG, the decay of
learning rate is eliminated in the ACNN. The hyper
parameter setting of ACNN, Scikit-Optimize, and
Hyperopt are the same. The training method is stochastic
gradient descent with moment. step4game is 5.

5.2 Case study 1: CWRU motor bearing dataset

The bearing dataset provided by CWRU [34] is selected
to validate the proposed ACNN. In this dataset, the
bearing type is 6205-2RSJEM SKF. The fault type
contains roller fault (RF), outer race fault (OF), inner race
fault (IF), and the normal condition. Each fault type has
three different damage sizes, namely, 0.18, 0.36, and
0.54 mm, for a total of 10 health conditions, which
include nine fault conditions and the normal condition.
During the experiments, the vibration signals are used to
analyze the fault classification. The sampling frequency is
12 kHz. The working conditions have four different
loads, namely, 0, 1, 2, and 3 hp (1 hp = 735 W).

Table 1 Hyper parameter range for ACNN

Hyper parameter Range
Learning rate (104, 1072)
Decay (0.99, 0.995)
Batch size (10, 100)
L2-regulation value (10711, 1073)

The task configuration comes from the Zhu et al. [34].
The notation of ‘1—2’ means that ACNN is trained on
load 1 and tested on load 2, and the accuracy on 1—2 is
denoted as Acc(1—2). The six configurations are 1—2,
1-3, 2—1, 2—3, 3—1, and 3—2. The learning task is
the compare the average prediction accuracy (AVG) on
the cross working load, and AVG values of these six
configurations are used for this case study.

5.2.1 Comparisons between ACNN and HPO methods

ACNN is compared with four famous HPO methods.
DenseNet-201 is used as the default backbone for the
comparison, and its results are shown in Table 2. Table 2
presents the detail comparisons of the ACNN and HPO
methods on all six configurations as well as the AVG
value. The comparison results with other backbones are
presented in Table 3, which presents the AVG results of
the ACNN and HPO methods on different backbones.

Table 2 shows that ACNN achieves four best results
out of six configurations. The final AVG of the ACNN
also outperforms that of the other HPO methods. Table 3
shows that the AVG results of ACNN outperform those
of RS, TPE, BO, and SMAC on the five other backbones.
These results can validate that ACNN is competitive than
these HPO methods in fault diagnosis.

To investigate the convergence of ACNN, the curves of
learning rate, batch size, L2-regulation values, and reward
of the ACNN are presented in Fig. 2. All the curves
initially fluctuate greatly, showing that the DRL agent
(the LSTM-DDPG described in Section 3.3) tries to find
the optimal values for these three hyper parameters for
the ACNN. Then, all the curves gradually return to a
stable state. ACNN controls the learning rate, batch size,
and L2-regulation value according to its historical
training information. Thus, these results mean that ACNN
learns a good DRL agent to control them, and all three
hyper parameters converge to stable values.

Table 2 Comparison results of ACNN with HPO methods using DenseNet-201 in Case 1

Method Acc(1—2)/% Acc(1—3)/% Acc(2—1)/% Acc(2—3)/% Acc(3—1)/% Acc(3—2)/% AVG/%
RS 97.47 95.24 96.79 98.81 92.86 98.67 96.639
TPE 97.48 95.19 96.81 98.81 92.91 98.72 96.653
BO 97.69 95.33 96.91 98.93 92.67 98.60 96.687
SMAC 97.60 95.21 96.82 98.90 92.92 98.67 96.685
ACNN 98.10 95.76 97.20 99.11 91.96 98.64 96.793
Table 3 Comparison results of ACNN with HPO methods using other backbones in Case 1

CNN backbone Acc(RS)/% Acc(TPE)/% Acc(BO)/% Acc(SMAC)/% Acc(ACNN)/%
ResNet-50V2 94.746 94.788 94.871 94.896 94.910
ResNet-101V2 95.592 95.632 95.787 95.796 96.226
ResNet-152V2 94.095 94.075 94.206 94.184 94.396
DenseNet-121 95.065 95.039 95.41 95.288 96.314
DenseNet-169 93.006 93.002 93.253 93.096 93.903
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Fig.2 Online curves of ACNN in Case 1: (a) learning rate
curve, (b) batch size curve, (c¢) L2-regularization curve,
and (d) reward curve.

In this research, reward is defined as the improvement
of training loss of the ACNN model, so reward is the
good indicator to show the convergence of the ACNN
and the DRL agent. Figure 2 shows that the reward also
converges to near 0, showing that the DRL agent and
ACNN converge well.

5.2.2 Comparison between ACNN and ML and DL

The proposed ACNN is compared with published famous
ML and DL methods in the literature. The compared

Table 4 Comparison results of ACNN with ML and DL in Case 1

methods are capsule network based on wide convolution
and multiscale  convolution (WMSCCN) [35],
hierarchical CNN (HCNN) [36], deep convolutional
neural networks with wide first-layer kernels (WDCNN)
[37], CNN based on vibration image (VI-CNN) [38],
multiscale CNN (MSCNN) [39], and adaptive weighted
multiscale CNN (AWMS-CNN) [40]. The ML methods
are also adopted as the baseline methods, including SVM
and ANN. These two ML methods using fast Fourier
transform as the data pre-processing method. The
comparison results are shown in Table 4.

The results in Table 4 show that ACNN is superior to
WMSCCN, HCNN, WDCNN, AWMS-CNN, and VI-
CNN. The AVG values of these methods show that
ACNN achieves good prediction results. ACNN is also
compared with SVM and ANN. The results show that the
great improvement is achieved by ACNN compared with
SVM and ANN. These results can validate the potential
of ACNN in this case study.

5.3 Case study 2: Paderborn University bearing dataset

ACNN is conducted on the bearing dataset from KAT
data center in Paderborn University, Germany (KAT
dataset) [34]. The KAT dataset contains three health
conditions, namely, normal condition, outer ring with
damage, and inner ring with damage. The type of bearing
is ball bearing of type 6203. The vibration signals are
used, and the sampling frequency is 64 kHz. The
operation conditions can be found in Ref. [34], and the
three conditions are denoted as 5, 6, and 7. The task in
Case 2 is from Zhu et al. [34], and the AVG of six
configurations, namely, 5—6, 5—7, 6—5, 6—7, 7—5,
and 7—6, is used to evaluate the final performance of
ACNN. The denotation of “5—6” is the same with Case 1.

5.3.1 Comparisons between ACNN and HPO methods

The ACNN and HPO methods are compared in Tables 5
and 6. In this section, DenseNet-201 is used as the default
backbone similar to Case 1. The comparison between

Method Acc(1—2)/% Acc(1—-3)/% Acc(2—1)/% Acc(2—3)/% Acc(3—1)/% Acc(3—2)/% AVG/%
ACNN 98.10 95.76 97.20 99.11 91.96 98.64 96.793
WMSCCN 95.17 97.24 98.79 96.55 93.10 97.76 96.435
HCNN 99.93 98.79 95.15 99.45 89.33 93.69 96.100
WDCNN 98.10 92.59 91.90 96.73 86.21 91.03 92.760
MSCNN 94.14 93.28 90.86 95.17 84.66 90.69 91.467
AWMS-CNN 93.82 86.73 93.10 91.03 85.52 93.62 90.637
VI-CNN 89.60 80.27 88.43 88.03 79.83 83.80 84.993
SVM 61.03 60.17 74.14 60.69 61.90 62.24 63.362
ANN 88.10 85.00 77.93 88.45 87.24 86.03 85.458
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Table 5 Comparison results of ACNN with HPO methods using DenseNet-201 in Case 2
Method Acc(5—6)/% Acc(5—-7)/% Acc(6—5)/% Acc(6—7)/% Acc(7—5)/% Acc(7—6)/% AVG/%
RS 88.36 96.75 90.42 90.23 98.23 88.54 92.090
TPE 88.51 96.78 90.39 90.20 98.22 88.72 92.135
BO 88.14 97.17 90.81 90.32 98.41 88.33 92.195
SMAC 88.49 96.76 90.77 90.30 98.37 88.84 92.253
ACNN 85.78 97.88 93.14 92.33 98.75 88.16 92.671
Table 6 Comparison results of ACNN with HPO methods using other backbones in Case 2
CNN backbone Acc(RS)/% Acc(TPE)/% Acc(BOY/% Acc(SMAC)/% Acc(ACNN)Y/%
ResNet-50V2 92.241 92.220 92.433 92.428 92.940
ResNet-101V2 93.036 92.987 93.294 93.194 94.088
ResNet-152V2 87.368 87.305 88.146 87.737 90.026
DenseNet-121 89.407 89.376 89.650 89.639 90.993
DenseNet-169 90.286 90.139 90.461 90.385 91.255
ACNN and HPO methods is presented in Table 5, ° 10
whereas the comparison on five other backbones is i 8
presented on Table 6. g 46;
Table 5 shows that ACNN obtains the best results on § 2
5—-7, 6—5, 6—7, and 7—5 configurations. Table 6 - 0 400 800 1200 1600
compares ACNN and HPO methods on other CNN Training step
models. The results show that ACNN obtains better (@)
results than RS, TPE, BO, and SMAC on all CNN 0 100 B
models, indicating that ACNN achieves good results in = 80
this case study. g 60
Figure 3 presents the curves of learning rate, batch size, R 4D T — s ‘
L2-regulation, and reward. The values of learning rate, 0 400 TSQO. ) 1200 1600
batch size, and L2-regulation constantly change in the ram;g;"] e
early stage but eventually converge to a stable state. The - e
reward curve is almost the same. It initially fluctuates but 2 10 V\’MVMWWMWVWW
finally converges near 0. These curves validate the E I
convergence of the DRL agent and the CNN models in ﬁ 1m0 | |
the proposed ACNN in this case study. = 0 a0 800 1200 1600
Training step
5.3.2  Comparison between ACNN and ML and DL ©
02 ’
In this subsection, ACNN is compared with ML and DL g
to show its effectiveness. The selected ML and DL E 0
methods are WDCNN [34], CNN based on a capsule -0.2 : b : :
0 400 800 1200 1600

network with an inception block (ICN) [34], domain
adaption network (DAN) [41], ResNet [34], AlexNet
[34], SVM [41], and extreme learning machine (ELM)
[41]. The comparison results are shown in Table 7.

The results show that ACNN achieves the best AVG
among these eight famous DL and ML methods. The
results show that the performance of ACNN improves
much, which provides solid support to validate potential
of ACNN on fault diagnosis in this case study.

5.4 Discussion

In this research, a new DRL-based ACNN for fault
diagnosis is proposed. In this method, an agent-based

Training step

(d)

Fig.3 Online curves of ACNN in Case 2: (a) learning rate
curve, (b) batch size curve, (c) L2-regularization curve,
and (d) reward curve.

DDPG is developed, and it can automatically control
three key hyper parameters during the training of CNN
models, namely, batch size, learning rate, and L2-
regulation.

First, a new structure of DRL is proposed and named
LSTM-DDPG. This structure can take the training loss of
CNN as its input to control the three hyper parameters on



10

Table 7 Comparison results of ACNN with ML and DL in Case 2

Front. Mech. Eng. 2022, 17(2): 17

Method Acc(5—6)/% Acc(5—7)/% Acc(6—5)/% Acc(6—7)/% Acc(T—5)/% Acc(7—6)/% AVG/%
ACNN 85.78 97.88 93.14 92.33 98.75 88.16 92.671
WDCNN 72.33 94.70 69.33 69.77 93.67 70.27 78.35
ICN 80.67 96.97 70.23 70.67 94.27 79.50 82.05
DAN 85.70 98.40 81.58 89.29 98.00 90.50 90.58
ResNet 71.33 96.67 64.53 67.23 92.73 72.60 77.52
AlexNet 78.87 98.47 65.93 66.20 96.03 74.07 79.92
SVM 56.25 68.63 54.45 53.32 68.65 56.10 59.56
ELM 39.28 39.07 39.18 38.92 39.00 38.43 38.98
each training step. The results show that the reward of the
proposed LSTM-DDPG can converge well, and the three Nomenclature
parameters all converge to the stable state, indicating the
proposed method is feasible and efficient. Abbreviati
Second, the proposed method is tested on two famous reviations
datasets, namely, the CWRU motor bearing dataset and . .
the Paderborn University bearing dataset. The results of AN Automatic convolutional neural network
ACNN are compared with other DL methods published in ~ ANN Artificial neural network
recent years. The comparison results show that ACNN AVG Average prediction accuracy
.t:lChleVGS a gOOd performance on fault d1agn051s, showmg AWMS-CNN Adaptive weighted multiscale convolutional neural network
1ts pOtentlal' BO Bayesian optimization
CNN Convolutional neural network
6 Conclusions DAN Domain adaption network
DDPG Deep deterministic policy gradient
Thi.s paper presents a new ACNN for fault diagnosis. The pp Deep leaming
main contributions can be summarized as follows: DRL Deen reinforcement learnin
1) A new DRL paradigm is developed to control the P _ ' &
three hyper parameters (batch size, learning rate, and L2- FM Extreme learning machine
regulation) of the ACNN model online. FC Fully connected
2) A new LSTM-DDPG structure is designed, which Gs Grid search
can take the. training loss of the ACNN models as input oy Hierarchical convolutional neural network
and automatically adjust these three hyper parameters. HPO i et onfimizati
. . €I parameter optimization
3) A new training method for ACNN with random walk yperp P
is developed to enhance the search ability of ACNN. The ICN CNN based on a capsule network with an inception block
proposed ACNN is conducted on the CWRU and KAT IF Inner race fault
datasets, and the results Va}lidate its perfognance. LSTM Long short-term memory
The proposed ACNN is compared with four famous . .
. ML Machine learning
HPO methods and the published ML and DL. The results _ '
indicate that ACNN achieves good results in the fault MSCNN Multiscale convolutional neural network
diagnosis field. NAS Neural architecture search
The limitations of the ACNN method are as follows: OF Outer race fault
1) It can only cpntrol the hyper. parameters of the CNN gp Roller fault
models, and it ignores the optimization on the CNN Reinforcement learning
structure.
2) The DRL agent is trained along with the CNN RS Random scarch
model. Thus, it should be re-trained for each run, and it SMAC Sequential model-based algorithm configuration
cannot be shared and re-used. SVM Support vector machine
Bas§ddop ﬂllle i‘irﬁitat.ions, future . research can Ee TPE Tree Parzen estimator
organized in the following ways. First, NAS can be L
. . VI-CNN CNN based on vibration image
studied to find the optimal CNN structure. Second, the ‘ # o
spirit of transfer learning can be applied in the DRL agent WDCNN Deep convolutional neural networks with wide first-layer
in ACNN to enable its reuse, which can promote the kernels
WMSCCN  Wide convolution and multiscale convolution

performance of ACNN further.
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Variables

a Action of DDPG algorithm

a; Current action

by Current batch size

bmax> Dmin The upper and lower boundaries for batch size

Eq Expected value under policy T[]

f Fourier frequency in short-time Fourier transform

I Current L2-regulation value

Imaxs> Imin The upper and lower boundaries for L2-regulation value

Irmaxs [Pmin The upper and lower boundaries for learning rate,
respectivley

Iy Current learning rate

loss, Loss value of the CNN model at time step ¢

L Training loss of critic network

M Number of the sequencing training loss

n Number of samples in the experience storage D

P Transition probability function

Q"(s, a) Q-value function under policy T

r Reward of DDPG algorithm

N State of DDPG algorithm

St State at time step ¢

STFT Short-time Fourier transform formulation

t Time step

w(f) Window function

Vi Actual Q-value

a Factor to control the degree of soft updating

y Discount factor

11 Policy of the agent to choose the action

o Online actor network

o Target actor network

w? Online critic network

o? Target critic network
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