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Abstract Existing fault diagnosis methods usually
assume that there are balanced training data for every
machine health state. However, the collection of fault
signals is very difficult and expensive, resulting in the
problem of imbalanced training dataset. It will degrade the
performance of fault diagnosis methods significantly. To
address this problem, an imbalanced fault diagnosis of
rotating machinery using autoencoder-based SuperGraph
feature learning is proposed in this paper. Unsupervised
autoencoder is firstly used to compress every monitoring
signal into a low-dimensional vector as the node attribute
in the SuperGraph. And the edge connections in the graph
depend on the relationship between signals. On the basis,
graph convolution is performed on the constructed
SuperGraph to achieve imbalanced training dataset fault
diagnosis for rotating machinery. Comprehensive experi-
ments are conducted on a benchmarking publicized dataset
and a practical experimental platform, and the results show
that the proposed method can effectively achieve rotating
machinery fault diagnosis towards imbalanced training
dataset through graph feature learning.

Keywords imbalanced fault diagnosis, graph feature
learning, rotating machinery, autoencoder

1 Introduction

In industrial system, rotating machinery has been widely
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applied to many different kinds of machines [1,2]. The
health state of rotating machinery affects the productivity
of industrial production. However, the rotating machinery
always works in extreme and complex environments. It
would suffer from variable failures or damage, which
may lead to machine breakdown and even cause
casualties [3—5]. Therefore, it is necessary to monitor the
health state of rotating machinery.

Recently, since the rapid development of data mining
technique, the data-driven fault diagnosis methods have
been widely applied. Data-driven fault diagnosis methods
can effectively identify fault without too much prior
knowledge using the deep learning or machine learning
[6-8]. For example, Chen et al. [9] developed a diagnosis
method using wavelet support vector machine. Chen et al.
[10] proposed a convolutional neural network and cyclic
spectral coherence-based diagnosis method. However,
these data-driven methods rely on analysing monitoring
signal to reveal internal failures, assuming that the sample
size is approximately consistent for each health state [11].
Despite they can achieve good diagnostic performance on
balanced dataset, the acquirement of balanced dataset in
real industrial production is difficult [12]. In most cases,
the imbalanced training datasets are always available.
Performance of existing data-driven fault diagnosis
methods would degrade when processing the imbalanced
training datasets. Therefore, it is necessary to develop
imbalanced fault diagnosis methods.

To overcome this limitation, various imbalanced fault
diagnosis methods have been developed [13]. The
strategy of making dataset balance is commonly used to
process the imbalanced dataset. There are two main
techniques to balance data, i.e., sampling method and data
augmentation. The sampling methods basically can be
divided into two categories, i.e., under-sampling and
over-sampling. However, the under-sampling methods
may lead to lose information of the majority classes, and
the over-sampling methods tend to overlap samples and
generate samples that do not provide useful information
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[14]. In addition, the effect of the sampling methods
depends on artificial settings. Differently, data augmenta-
tion-based methods can automatically select the optimal
data enhancement scheme to generate data which can be
judged as original data by means of deep learning. Deep
learning not only can extract abstract feature from
monitoring signals, bust also has shown promising effects
in generating fake samples to balance dataset [15-17].
Among these deep-learning-based data augmentation
methods, generative adversarial networks (GANSs) can
generate fake training samples which has the same data
distribution as real training samples. Therefore, GAN-
based data augmentation method has been widely applied
to generate faker training samples. For example, Mariani
et al. [18] proposed the balancing GAN, which can
restore balance in imbalanced image datasets. Zhang et al.
[19] adopted a deep GAN to generate fake training
samples to expand dataset [19]. Gao et al. [20] proposed a
Wasserstein GAN to generate training samples, and
effectiveness of this method were verified in three
industrial benchmark datasets. Actually, deep-learning-
based data augmentation methods have showed the
powerful ability of generating fake samples, but the
generated fake training samples can never achieve the
same training effect as the real training samples. In
addition, the process of generating fake samples is
computational costly. Therefore, it is of importance to
develop a method that can overcome data imbalance
without balancing data.

Construction of complex deep learning model is the
commonly way to develop an imbalanced dataset fault
diagnosis method without adopting data balance techni-
que. For example, Zhao et al. [21] adopted Laplacian
regularization technology to improve the deep
autoencoder for imbalanced fault diagnosis of rotating
machinery. Jia et al. [22] developed a deep convolutional
neural network and improved weight normalization
strategy for imbalanced fault classification. However,
these methods ignore the relationship between samples.
Relationship would vary with the change of machine
health state, thus it would be an important indicator of
fault diagnosis. In addition, constructing the relationship
between samples could provide possibility to make full
use of the unlabeled samples. Converting samples into
graphs can help us construct the relationship between
samples and make full use of the unlabeled samples.

Graph contains not only the extracted features from
samples, but also the relationship between samples. There
are many graph models in the fault diagnosis field, such
as bond graph, periodic diagram and horizontal visibility
graph [23-25]. These graph models are constructed by
transforming raw data (RD) into graph data in a designed
method. Compared to the RD, graph data can provide
additional information, including not only the nodes
value-based information, but also the relationships
between nodes hidden in the geometry structure [26].

Front. Mech. Eng. 2021, 16(4): 829-839

However, these graph model-based fault diagnosis
methods cannot directly process the graph data to extract
the graph feature, but convert the constructed graph into
fault vectors for analysing. To some extent, it will lose
partial information of the graph. As an alternative, the
graph theory-based deep learning technique, graph
convolutional network (GCN) can address this problem.
The GCN can learn graph features from graph data to
complete the classification problem in many fields,
especially in fault field [27]. For example, Zhang et al.
[28] applied a deep GCN model to bearing fault diagnosis
firstly and demonstrated the performance of GCN. Wang
et al. [29] proposed a graph that is constructed by the
extracted vibration indicator, and the GCN was applied to
learn the graph feature. Wang et al. [30] proposed a
multiple micrograph-based GCN defect classification
method, processing large-scale image datasets. Although
these GCN-based graph feature learning methods have
been successfully applied for machine fault diagnosis
towards balanced dataset, there is a lack of research on
the performance of GCN towards imbalanced training
dataset.

Therefore, an imbalanced fault diagnosis of rotating
machinery using autoencoder-based SuperGraph feature
learning is proposed in this paper. The proposed method
can make full use of limited training samples to improve
diagnosis performance towards imbalanced training
dataset, instead of generating fake training samples to
keep dataset balance. The main contributions are
highlighted as follows:

1) The extracted abstract features from unsupervised
standard autoencoder can improve the quality of the
constructed SuperGraph.

2) Graph theory is adopted to construct the SuperGraph

using limited training samples, converting signal
classification task into classical node classification
problem.

3) GCN is utilized to achieve fault diagnosis for
imbalanced dataset without generating fake training
samples.

The rest of the paper is arranged as follows: Theoretical
background about autoencoder, graph theory and GCN
are briefly introduced in Section 2; the general procedure
of proposed imbalanced fault diagnosis method will be
described elaborately in Section 3; subsequently, the
comprehensive experiments were conducted on two
datasets, as shown in Section 4; finally, Section 5
concludes this paper.

2 Theoretical background
2.1 Autoencoder

As an unsupervised neural network, the autoencoder is
composed of three layers, including encoder network,
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hidden layer, and decoder network [31,32], as shown in
Fig. 1. The encoder network is used to transform the
high-dimensional input data into low-dimensional codes,
which also can be regarded as features. The dimensiona-
lity reduction of the data is implemented in the hidden
layer. The decoder network can reconstruct the input by
minimizing the expected error between input and the
output using the compressed codes.

The encoder network is explicitly defined as the
encoding function denoted by ey [33]. For each given
training input {x(D, x@ . x(M} x@ e R™ the encoder
network is defined as follows:

1O = ey (x), (M)

where h® € R* is the encoded vector obtained from x®,
and s <m.

The decoder network, reconstructing the input, is
defined as a decoding function by gg. It maps hA® from
low-dimensional space back into high-dimensional space,
as shown in Eq. (2):

y? =g (B?), )
where y® € R™ is the reconstructed output.

The parameter sets of encoder and decoder are obtained
while reconstructing the input by minimize the
reconstruction error L(x(®, y®), where Loss(-,-) is a loss
function that evaluates the discrepancy between input and
reconstructed input [33].

In summary, the training of autoencoder aims at finding
the parameter sets 0 and ¢’ to minimize reconstruction

error (¢ )
Pap (6, 6) = % Z Loss (x(i), y(i)). 3)
i=1

The extensively used forms for the encoder and decoder
are defined as follows [34]:

ep(x) =sp(Wx+Db), s¢(z) = , 4
o) = 5y (Wx+b). 32) = T—— O
() = s, (Wix+d), s,(z) = ——, 5
80 (0) = s ) %) = (5)
L(x(i), y(i)) - ”x(i)’ y(i)||2, (6)
X N
y b hl
X2 Y2
i { h,
25 V3
( hs
X Vm
Encoder  Hidden layer — Decoder
Fig. 1 Structure of autoencoder.
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where 57 and s, are the sigmoid function for encoder and
decoder respectively. The parameter sets of the
autoencoder are 8 = (W, b} and ¢’ = {WT, d}, where b € R®
and d € R" are the bias vector, W € RS and WT e R™™
are the weight matrixes.

2.2 Graph representation

An undirected graph is denoted as G = {V, E, A}. V =
{V;} is the node set of graph, where i = 1, 2, ..., N, and N
is the number of nodes; E represents the edge set;
A e R is the adjacency matrix describing the edge
connection, the element of 4 is 0 and 1. 4;; = O represents
there is no edge connection between nodes i and j, 4;; =1
represents there is edge between nodes i and j. An
undirected graph containing four nodes and its
corresponding adjacency matrix are shown in Fig. 2.

There are three definitions of the Laplacian matrix, i.e.,
the general, the symmetric normalized, and the random
walk normalized. Among them, the symmetric nor-
malized form is extensively used in spectral graph
analysis, and the definition is shown in Eq. (7):

L=1,-D:AD?, 7)
where I, € R™" is the identity matrix, D e R™" is the
diagonal degree matrix, and L e R™" is the Laplacian
matrix. As a real symmetric matrix, orthogonal decom-
position can be performed on Laplacian matrix L, as
shown in Eq. (9):

N

dij= Z aij, (¥
=T, i
L=UAU", ©)

where A = diag (1, A3, ..., 4,) is the eigenvalue matrix of
Laplacian matrix L, U = (u,, uy, ..., u,) is the eigenvector
matrix which is composed of eigenvectors u;.

2.3 Spectral convolution
Graph convolution includes spatial convolution and
spectral convolution, in which spectral convolution has a

clear mathematical explanation. Therefore, the spectral
convolution based on graph Laplacian matrix is selected

4
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2

Undirected graph with four nodes Adjacency matrix

Fig.2 An undirected graph containing four nodes and its
corresponding adjacency matrix.
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in this paper [35]. First, the filter operation of graph
signal is shown in Eq. (10):

Y =Up,(AU'X, (10)
where Y e R™ represents the output of filter operation,
X € R represents the graph signal, g4(-) =diag(:) is a
filter function, and ¢,(A) can be understood as a function
of eigenvalue of Laplacian matrix L.

However, it is difficult and time-consuming to calculate
ps(A) [36]. The Chebyshev polynomial expansion is
developed to overcome this limitation [37], as shown in

Eq. (11):

K-1

po(M) ~ > 6Ti(R), (11)
k=0

where 6 is the Chebyshev coefficients, T (f\) represents

a function of the diagonal element of A, and K is the

Chebyshev polynomial coefficient. To be specific, Ti(x)

is a recursive calculation as demonstrated in Eq. (12):

To(x)=1, Ti(x) =x, Ti(x) =2xT_1(x) — Tr_2(x), k > 2.

12)
A is a normalized version of A, as shown in Eq. (13):
A= 2A _ I, (13)

max
where Ayax 1S the largest element of A, and the elements
in A are in a range from —1 to 1.
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Backing to the definition of a convolution of signal X
with a filter ¢,, the output X’ € R™ of Chebyshev graph
convolution layer finally can be calculated by

K
X' =Cheb(X,W)= > 6,UT(A)U"XW',  (14)
k=0
where Cheb represents the function of Chebyshev graph
convolution, and W’ € R is a parameterized weight
matrix.

3 Proposed imbalanced fault diagnosis
method

In this paper, an imbalanced fault diagnosis of rotating
machinery using autoencoder-based SuperGraph feature
learning method is proposed. The general framework of
the proposed imbalanced fault diagnosis method is
introduced in Fig. 3. First, the traditional sensors are used
to collect signals to monitor the rotating machinery
operation state. Later, monitoring signals, acquired form
the condition monitoring platform, are directly fed into
the autoencoder without pre-processing. Meanwhile, a
standard autoencoder is used to extract features from the
input data. On the basis, the SuperGraph is constructed
using the extracted features from autoencoder. Next, a
GCN model is constructed to tackle fault classification

Node
28 Ay [Aip | e | iy \
Node 1 :
Accelerometer " Adj a(;:ncy
- » ay; | dyp a,, .
2o Node 2
Déa_a{équ—isition L .
system -
>@ Ay | Gk Ay /
Hidden Hidden Hidd Hadki s
T idden idden Hidden . . . _
Vibration signal Tayesl Tayer? Tayerd High-level node representation Undirected graph G = {V, E, A}
Condition Feature extraction by .
monitoring autoencoder SuperGraph construction
H features 1 features J features — Label 1

Am_—— =

(1)
[ ReLU
N—» @
v @ @ V
ChebConvl ChebConv2

ReLU

()

@ V4
| | Label N
ChebConv3 l

—p| Label2

XBINYOS

Graph convolutional network

Classifier ~ Fault diagnosis

Fig. 3 General framework of the proposed imbalanced fault diagnosis method.
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problem. Detailed description of the proposed imbalanced
fault diagnosis method is illustrated below. In addition,
the pseudo code of the algorithm is given as following:

Algorithm

Input: the monitoring signal X={X,}.

Output: the fault category Z.

1. Dividing X into Xirain and Xother;

2. Obtaining the high-level node representation: 4" = 7, (.\-‘” ):

3. Obtaining the feature vector: F « h'";

4. Constructing the SuperGraph:

5. if Xi and Xj in Xirain and have the same fault;

6.4i;=1

7. else if X; and X; in Xomer and both are collected at the same moment;
8. 4ij=1

9.¢else;

10. 4;=0

11. Model training:

12. Z « GCN(X,
13. loss;

14. updating with back propagation;

wain) 5

15. Output the fault category Z « GCN(X):

3.1 Feature extraction

A given signal is denoted as X = {x1, x2, ..., xar} with a
number of M observation values. The constructed
autoencoder which is trained in limited times, performs
feature extraction on the input signal X. The output of
hidden layer h = {hy, hy, ..., hy}, where m< M, is the
low-dimensional vector as the nodes attribute in the
SuperGraph. After the training of the autoencoder, the

SuperGraph
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reconstruction error became minimized. Finally, the
optimal output of hidden layer was taken for the node
attributes of monitoring signals.

3.2 Constructing the graph

As described in Section 2.2, the SuperGraph is denoted as
G={V, E, A}. In the constructed SuperGraph, each node
represents a monitoring signal, the attribute of nodes is
their corresponding extracted feature, and the node
connections rely on correlation between two nodes. An
example of four types of signals and the corresponding
SuperGraph are shown in Fig. 4. It can be seen that the
SuperGraph is composed of four local graphs and all the
nodes represent the monitoring signal. Each type of nodes
represents each fault type of signals. For labeled nodes,
the identical fault types of signals are interconnected. For
unlabeled nodes, all samples obtained after sampling the
data points collected at a certain time are regarded as
having the same fault. On the basis, these obtained
samples are interconnected. There, there are many local
graphs in the SuperGraph, and all of the local graphs are
independent in space without any edge connections. It is
worth noting that the fault type of unlabeled nodes are
unkown but identical.

After obtaining the SuperGraph, the input matrix of
GCN model is composed of nodes attributes, and the
process of input matrix transition is shown in Fig. 5. It
can be seen that every row of the input matrix represents
the feature vector of the corresponding node.

> X

Label M and Label N and
same type nodes ~ same type nodes

Local amplify

- MK

Unlabeled but
same type nodes

Unlabeled but
same type nodes

Fully connected graph

Fig. 4 SuperGraph with four types of nodes.

Input graph

X Fl,l F1,2 o F

1Ln

Feature vector F X, | Fy, F), - I,
) 1| s s F,
X, F4‘1 F4,2 Fd.n

Input matrix

Fig. 5 Transition of input matrix.
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3.3 A GCN model construction

According to the results that three-layer GCN model can
effectively achieve diagnosis task [28], a GCN model
with three layers of Chebyshev graph convolution, two
layers of rectified linear unit (ReLU), and a softmax
layer, was constructed in this paper. It can be simply
described in Eq. (15):
Z=
softmax(Cheb (o (Cheb (o (Cheb(X, W), W?)), W),
(15)
where Z € RV*/ is the label of samples, X € RV*M is the
input matrix of graph signal, o is the activation function
of ReLU, and W) € RMxH w2 ¢ RHXF and W3 e RF*/
are the weight matrix of first, second, third Chebyshev
convolution layer, respectively. H, F, and J represent the
scales of input layer, first, second, third Chebyshev
convolution layer, respectively, as shown in Fig. 6.

4 Experimental verification

To verify performance and effectiveness of the proposed
imbalanced fault diagnosis method, comprehensive experi-
ments were conducted on two datasets, including a
bearing dataset from a Drivetrain Dynamic Simulator
provided by Southeast University, China [38], and a
practical experimental platform of gearbox [31]. All
algorithms were performed in Python 3.8, Pytorch, and
Pytorch Geometric which is a geometric deep learning
extension library. They were processed by a server with
an Intel Core 17-8700K CPU and a 32G RAM.

4.1 Experiments on a Drivetrain Dynamic Simulator

In this section, the experiments were conducted on a
bearing dataset with five health states.

4.1.1 Experimental setup

The bearing dataset is acquired from the Drivetrain

,, F
([g o]

7

X,
X,

%
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Dynamic Simulator, two working conditions that the load
of rotating system is set to 20 Hz-0 V and 30 Hz-2 V are
simulated [38]. There are five health states for the bearing
data, including healthy, inner race fault, out race fault,
ball fault, and combination fault on both inner race and
outer race. There are 100 samples for each health state,
and 50 samples for each working condition. The length of
samples is 1024. The imbalanced Dataset A is originated
from the constructed bearing dataset, the detailed setting
of the bearing dataset and Dataset A is shown in Table 1.

4.1.2 Parameter setting

According to Ref. [39], the main parameter setting of the
constructed autoencoder is shown in Table 2. In Ref. [28],
three layers of GCN model achieves the best performance
of fault diagnosis, and it also suggested that the structural
parameter and kernel lengths have an impact on the
performance of GCN model. Subsequently, identification
of the proper parameters in GCN model is investigated in
this paper. Four different experiments conducted in
bearing dataset are applied in the parameter selection
procedure to identify the structure of every convolution
layer. In these experiments, 30% of samples in the
bearing dataset are as training set, other 70% are as
testing set. To avoid the contingency of the results, the
average results of ten trials were used to analyse, and the
results have been shown in Table 3. It can be seen that
both the 25x%16 and 30%x25 can achieve the best
classification results. However, training epoch of 30x25
is the less. Therefore, the hidden layer of GCN was set to
30x25. In summary, the scale of the input of GCN is
equal to the size of feature vector, the scale of output is
equal to the number of health states, and the scale
parameter of hidden layer was set to 30%25.

As described in Section 2.3, the selection of will also
affect the performance of GCN model. The kernel length
K is the parameter in the Chebyshev graph convolution
and its value directly affects the calculation result in
feature learning phase. A comparison experiment was
conducted on the bearing dataset by varying the kernel

Fig. 6 Constructed GCN model.
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length K to select the optimal value. The structure of
GCN was set to 30x25. Results in Fig. 7 show that the
classification accuracy is the highest when the kernel

Table 1 Setting of the bearing dataset and Dataset A
Dataset A

Proportion of

Number of samples

Health state Bearing oo Proportion of

dataset training samples/% testing samples/%
Health 100 100 50 50
Ball fault 100 70 20 50
Inner fault 100 80 30 50
Outer fault 100 60 10 50
Combination 100 60 10 50

Table 2 The parameter setting of the autoencoder

Parameter Value
Learning rate 0.1
Number of hidden layers 3
Number of units in the input layer 1024
Number of units in the first hidden layer 512
Number of units in the second hidden layer 256
Number of units in the third hidden layer 50

Table 3 Performance of GCN in different scales of hidden layer on
the bearing dataset

Hidden layer depth ~ Training accuracy/% Testing accuracy/% Epoch
30x16 100 99.43 59
25x16 100 99.71 36
20%16 100 98.57 33
30x25 100 99.71 52
100 99:43 99.71 99.71 99.14 98 86
S 92.29
5
g
§ 78.57
= 75
2
=
= 63.71
172}
&
@]
50 H

Fig. 7 Experimental results for different kernel lengths.

Table 4 Parameters setting of the comparative methods

835

length K is from 4 to 5, and decreases as the kernel length
K further increases. Finally, in this paper, the scale
parameter of hidden layer was set to 30%25 and K was set
to 4.

4.1.3 Diagnosis results analysis

In order to verify effectiveness of the proposed method,
comparative experiments were conducted on Dataset A.
Methods for comparison include convolutional neural
network, vibration indicator-based GCN (VIG) [29],
affinity graph-based GCN (AG) [40], and the detailed
parameter setting of them is shown in Table 4. In the
convolutional neural network (CNN), the RD was as the
input. The statical features extracted from monitoring
signals are used to construct graphs in the VIG. And the
feature vector of AG is the half results of Fast Fourier
transform (FFT). The experimental results of ten trials are
shown in Table 5. It shows that the proposed fault
diagnosis method can achieve the highest classification
accuracy, reaching 98.27%. In addition, the cost of time
for the proposed method is the least. Therefore,
effectiveness of the proposed imbalanced fault diagnosis
method is demonstrated.

4.1.4 Impact of selected features

In this paper, autoencoder-based SuperGraph feature
learning technique is used for imbalanced data, partly
improving the diagnosis performance. Despite without
adopting a strategy to balance the data, the proposed fault
diagnosis method can achieve good results towards
imbalanced training dataset. Different from existed
methods, the RD are converted into graph data so that
more fault-related information can be obtained during
features extraction.

Since the identical fault type of nodes has connections,
the features of connected nodes are only composed of the
corresponding fault information in the feature aggre-
gation. Based on this node connection strategy, it greatly
improves the ability to learn fault information while
graph convolution is operated in the SuperGraph.
Meanwhile, raw monitoring signals are compressed into
the feature vector by the autoencoder, not only improving
the recognition of features, but also reducing the volume
of calculation for GCN feature aggregation. Therefore,
the proposed method in this paper can identify faults well
even towards imbalanced training dataset.

Method

Setting

CNN
VIG

AG
Proposed

Input size: 370x1024, four layer of convolution, output size: (64, 1, 128), fully connected layer: (8192, 1)-(256, 1)-(5, 1)
Input size: 370x14, structure of GCN: 14-25-16-4, K =4
2B8% =512, &£ = 0.8, input size: 370x512, structure of GCN: 512-200-100, fully connected layer: 300-4, K=1,2,3
Autoencoder: Table 2, structure of GCN: 50-30-25-11, K =4
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Further, to verify the impact of the selected feature to
the GCN, comparison experiments were conducted on
dataset A, where RD, half of the results of FFT, and
traditional feature-based extraction (TF) are considered,
including RD+GCN, FFT+GCN, TF+GCN, autoencoder-
based extraction (AE)+GCN. Details of parameters
setting are shown in Table 6. For all the comparison
methods, the constructed graph is SuperGraph. In the
TF+GCN method, a total of 29 time-domain and
frequency-domain indicators as signal features, such as
mean value, variance, mean frequency, variance
frequency. y(k) represents frequency spectrum of x, where
k=1,2, ..., Nk. x(n) represents data point of time-domain
signal x with n = 1, 2, ..., N. f; represents the frequency
value of kth spectral line.

Ten trials were conducted to verify these methods, and
the average results are listed in Fig. 8. It shows that
RD+GCN achieve worst classification result, but using
features extracted from signals as the feature vector could
improve the diagnosis performance. Among these
methods, the proposed method achieves the best
classification result which verifies that the selected
features will have an impact on diagnostic performance of
GCN. Therefore, it is necessary to select the optimal

Table 5 Experimental results of the Dataset A

Model Training accuracy/% Testing accuracy/% Time/s
CNN 100 88.65+0.55 62
VIG 100 35.60 = 0.64 45
AG 100 97.40 £ 0.32 53
Proposed 100 98.27 +0.32 42

Table 6 Parameters setting of comparison methods

Method Setting
RD+GCN  Feature vector: unprocessed RD, hidden layer: 30x25, K =4
FFT+GCN  Feature vector: half of results of FFT, hidden layer: 30 x 25,
K=4
TF+GCN Feature vector: 29 time-domain and frequency-domain
indicators, hidden layer: 30 x 25, K=4
1004 98.27

P-4

>

g 71.88

3 66.68 T

P 9

] 57.96 Tt

8 I

s 504

Q

b=

17}

kS

O

0

RD+GCN FFT+GCN FFT+GCN AE+GCN
Method

Fig.8 Experimental results of different features extraction
methods.
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features as the feature vector.
4.2 Experiments on a practical gearbox platform

In this section, the experiments were conducted on a
practical gearbox experimental platform containing
different crack severities.

4.2.1 Experimental setup

The practical experimental platform consists of a servo
motor, a brake controller, a one-stage reduction gearbox,
a torque sensor and a magnetic power brake [31], as
shown in Fig. 9. Three triaxial accelerometers (PCB-
356A16) were installed on different locations of the
experimental platform. Driving gearbox contains four
different radial crack lengths, i.e., 0, 5, 10, and 15 mm.
The signal sampling frequency is 5 kHz, and the number
of data points in each sample is 1024. The detailed
information of practical experimental platform is listed as
below:

Load: 0,2, 4, 6,8, and 10 N-m;

Crack length: 15, 10, 5, and 0 mm;

Input shaft speed: 1500 r/min;

Data points: 1024.

For the gearbox dataset, 20 monitoring samples under
six different loads are randomly selected for each health
state, thus a total of 480 samples are obtained for four
health states. The imbalanced Dataset B is originated
from the constructed gearbox dataset, the detailed setting
of the gearbox dataset and Dataset B is shown in Table 7.

Fig. 9 Practical experimental platform for the one-stage
gearbox.

Table 7 Information of the gearbox dataset and Dataset B

Number of samples Dataset B

Crack

ot DAsset B omples/%testing samplen/%
0 120 120 50 50

5 120 84 20 50

10 120 72 10 50

15 120 72 10 50
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Table 8 Parameters setting of comparative methods
Method Setting
CNN Input size: 348x1024, four layer of convolution, output size: (64, 1, 128), fully connected layer: (8192, 1)-(256, 1)-(4, 1)
VIG Input size: 1200x14, structure of GCN: 14-100-20, fully connected layer: 60-11, K =1, 2,3
AG 2% =210, £ = 0.89, input size: 1200210, structure of GCN: 210-100-50, fully connected layer: 150-11, K=1,2, 3
Proposed Autoencoder: Table 2, structure of GCN: 50-30-25-11, K=4

graph, many redundant edges should be cut. An

Table 9 Experimental results of the Dataset B

Model Training accuracy/% Testing accuracy/% Time/s
CNN 100 98.27 +0.27 66
VIG 100 88.63 £1.53 48
AG 100 93.38 +£0.98 53
Proposed 100 99.08 +0.19 41

4.2.2 Diagnosis results analysis

The structure of the comparative method needs to be
adjusted for Dataset B, the setting of comparison methods
is shown in Table 8. Ten trails were conducted for each
method, and the average results are used to analyse, as
shown in Table 9. As shown in Table 9, the proposed
fault diagnosis method can achieve 99.08% which is the
highest among these methods. Besides, the standard
deviation is 0.19% that shows the proposed method is
more stable. Therefore, effectiveness of the proposed
imbalanced fault diagnosis method is demonstrated.

5 Conclusions

In this paper, an imbalanced fault diagnosis of rotating
machinery using autoencoder-based SuperGraph feature
learning is proposed. The constructed SuperGraph
reflecting the relationship between monitoring signals can
help us make full use of a large number of unlabeled
samples. By merits of powerful graph feature learning
ability of GCN, the proposed method can effectively
resist data imbalance. In addition, comparison experi-
ments show that the proposed method can achieve the
best diagnosis performance. Conclusions can be summa-
rized: 1) Since the monitoring signals are converted to the
SuperGraph, the relationship between signals can be
extracted; 2) the proposed method can resist data
imbalance without generating fake training samples;
3) the extracted abstract feature from autoencoder can
improve the quality of the constructed SuperGraph.
Despite the proposed method can achieve excellent
diagnosis performance, there are still problems. The
constructed SuperGraph has redundant edges, such as all
the labeled signals with identical fault type are
interconnected, consuming excessive computation cost.
The number of such edges can be reduced appropriately.
In order to further improve the quality of constructed

improvement about few edges in SuperGraph would be
considered in the future works.

Nomenclature

Abbreviations

AE Autoencoder-based extraction

AG Affinity graph-based GCN

CNN Convolutional neural network

FFT Fast Fourier transform

GAN Generative adversarial network
GCN Graph convolutional network

RD Raw data

ReLU Rectified linear unit

TF Traditional feature-based extraction
VIG Vibration indicator-based GCN
Variables

A Adjacency matrix

b, d Bias vectors

Cheb Function of Chebyshev graph convolution
D Degree matrix

E Edge set

ey Encoding function of autoencoder
Jr Frequency value of kth spectral line
F Feature vector

8¢ Decoding function of autoencoder
G Undirected graph

H,F,J Scales of graph convolution layer
hD Output of hidden layer of autoencoder
1, Identity matrix

K Chebyshev polynomial coefficient
L Reconstruction error

L Laplacian matrix

Loss Loss function of autoencoder

m, M Number of elements in vector

N Number of nodes

Sf; Sg Sigmoid function of encoder and decoder, respectively
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Ty Chebyshev polynomial
u;(i=1,2,...,n) Eigenvector

U Eigenvector matrix

14 Node set of graph

w Weight matrix

w Parameterized weight matrix

x(n) Data point of time-domain signal x

X Input signal

X’ Output of Chebyshev graph convolution layer
x( Input of encoder

y(k) Frequency spectrum of x

y® Output of decoder

Y Output of filter operation in GCN

VA Label of samples

o Activation function of ReLU

0,60 Parameter sets of encoder

O Chebyshev coefficient

A Eigenvalue matrix of Laplacian matrix
A normalized version of A

Pl Eigenvalue

Amax Largest element of A

?g Filter function of GCN

Par Reconstruction error of autoencoder
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