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Abstract Deep learning has achieved much success in
mechanical intelligent fault diagnosis in recent years.
However, many deep learning methods cannot fully extract
fault information to recognize mechanical health states
when processing high-dimensional samples. Therefore, a
multi-model ensemble deep learning method based on
deep convolutional neural network (DCNN) is proposed in
this study to accomplish fault recognition of high-
dimensional samples. First, several 1D DCNN models
with different activation functions are trained through
dimension reduction learning to obtain different fault
features from high-dimensional samples. Second, the
obtained features are constructed into 2D images with
multiple channels through a conversion method. The
integrated 2D feature images can effectively represent the
fault characteristic contained in raw high-dimension
vibration signals. Lastly, a 2D DCNN model with multi-
layer convolution and pooling is used to automatically
learn features from the 2D images and identify the fault
mode of the mechanical equipment by adopting a softmax
classifier. The proposed method, which is validated using
the bearing public dataset of Case Western Reserve
University, USA and a one-stage reduction gearbox
dataset, has high recognition accuracy. Compared with
other classical deep learning methods, the proposed fault
diagnosis method has considerable improvements.
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1 Introduction

Intelligent fault diagnosis is a vital technology in today’s
manufacturing systems because effective detections can
considerably improve the reliability of equipment [1-7].
Traditional intelligent fault diagnosis methods, such as
support vector machine (SVM) [8], artificial neural
network [9], and the Markov model [10], mostly complete
the fitting of functions in the model structure of one or two
layers, which belong to the algorithm structure of “shallow
learning.” However, shallow learning models cannot fully
mine the fault characteristics contained in high-dimen-
sional data, resulting in unreliable diagnosis results. As an
alternative method, deep learning [11-15] is a promising
strategy for fault diagnosis and has been extensively
applied in fault diagnosis and other fields, such as image
identification and speech recognition. In fault diagnosis,
deep learning models are suitable for application to the
identification of mechanical fault types; they can auto-
matically learn abstract representation features from raw
data and avoid obtaining abstract features by handcrafted
features designed by engineers. Consequently, the limita-
tion of expert knowledge can be avoided considerably by
utilizing deep learning models to solve the problem of fault
classification [16,17].

As one of the most effective deep learning methods,
deep convolutional neural network (DCNN) can effec-
tively extract abstract fault features through multi-layer
nonlinear mapping [18-20]. The DCNN structure is
composed of several convolution and pooling layers,
which can extract key features in the process of mapping
the raw input data layer by layer. The recognition results
can be obtained by constructing and implementing a
classifier, such as a softmax or SVM classifier, at the end of
the DCNN model. Given that time-domain signals are the
most common data type, one-dimensional (1D) DCNNs
are usually applied in the real-time fault diagnosis of
rotating machinery by inputting the 1D signals [21]. In
comparison with two-dimensional (2D) DCNN, 1D
DCNN extracts less effective information because the
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original target of convolutional neural network (CNN) is
used for image recognition. Therefore, 1D raw data were
presented in a 2D image format in several studies [22,23],
and fault classification was accomplished with image
identification methods. However, 2D DCNN models need
to be supported by experts’ experience because they are
not completely data-driven. To eliminate the reliance on
experts’ experience as much as possible, Ref. [24]
introduced a data pre-processing method that can translate
1D raw signals into 2D gray images without handcrafted
parameter settings. Data-driven DCNN models can
intelligently mine the fault characteristics of high-dimen-
sional complex samples and are suitable for real-time fault
diagnosis [25]. Nevertheless, the applications of the
DCNN method in fault diagnosis generally have three
drawbacks. First, although the network structure of DCNN
models can theoretically fit various complex nonlinear
mappings, several obscure fault characteristics hidden in
high-dimensional space are still easily ignored [26].
Second, due to the single model type and invariant
network hyperparameter settings, the universalities of
DCNN models need to be improved [27]. Third, the
classification accuracies of DCNNs are usually influenced
by the unbalanced number of different fault type samples
[28].

This study focuses on solving such drawbacks, and a
multi-model ensemble deep learning (MMEDL) approach
based on DCNN is proposed to learn the hidden features
from high-dimensional samples. The main contributions of
this work are summarized as follows. First, the MMEDL
model can directly utilize high-dimensional complex raw
data as the model input without manual feature extraction.
Second, the presented approach can extract abundant
overall feature information by fusing multi-source features
from different 1D DCNN models. Third, as a result, the
presented approach can achieve excellent performance
even with unbalanced datasets.

The remainder of this paper is organized as follows.
Section 2 introduces common CNN contents and the
process of the proposed approach. Section 3 demonstrates
the effectiveness of the MMEDL model by using two
different cases. Section 4 presents the conclusions.
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2 Methodology

2.1 Convolutional neural networks

Generally, a DCNN model is constructed by a hierarchy of
convolutional and pooling layers followed by one or more
fully connected layers to extract features from input data; it
is a typical feedforward network. A typical architecture of
2D DCNN is shown in Fig. 1. In this study, 1D and 2D
DCNN models are used for feature extraction, and their
principles are similar, as shown in Fig. 1. The convolu-
tional layer employs a series of filters to extract the feature
map and transfer the information layer by layer. Every filter
is convolved with its input, and nonlinear mapping can be
implemented by calculating with an activation function. In
addition, one filter corresponds to one feature map, and
using numerous filters can generate numerous feature maps
in the next layer. In general, sufficient convolution
operations can remarkably improve the fitting precision,
but they also increase the calculation burden of the model.
The process of the convolutional layer is described as
follows:

di-1
(x % k), —a< k,-x,-f,-+b>, (1)
=0

J

where x is the input of the convolution layer, £ denotes
several trainable filters with length d, b expresses bias, and
o is a nonlinear activation function.

Nonlinear activation function ois introduced to improve
the expressive capability of the entire network with
nonlinear mappings. In this study, three different activation
functions shown in Table 1 that can express abundant
mapping relationships are applied in the 1D DCNN
models. The choice of the combination of activation
functions can influence the model’s recognition accuracy.
However, the main objective of this study is to prove that
deep neural network models integrating multi-type activa-
tion functions can better deal with high-dimensional
samples than single models. Therefore, the selection of
the best combination of activation functions needs to be
investigated further in the future.
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Fig. 1 Typical architecture of 2D deep convolutional neural network.
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Table 1 Three different types of activation functions used in this study

Function Expression
relu x, x=0
X) =
/) { 0, x<0

x, x=0
elu fla, x) =

a(e-1)x, x <0
tanh f(x) =2/(1 4+ exp(—2x))-1

A convolution layer is generally followed by a pooling
layer, which is used to decrease the size of the output
feature maps from the previous convolution layer. Max-
pooling and average pooling are typically employed to
compress the feature space, extract pooling features, and
improve the robustness of the deep neural network.

The output of the last pooling layer is flattened and
connected to the fully connected layers. The classification
module of 2D DCNN is composed of fully connected
layers and a classifier. In the fully connected layers, each
neuron is connected to every neuron in the next layer and
achieves nonlinear mapping through an activation func-
tion. The softmax regression model is often placed at the

Front. Mech. Eng. 2021, 16(2): 340-352

end of the deep neural network structure as a classifier to
classify the final output features.

In our study, a gradient descent-based backpropagation
algorithm is applied to train the above-mentioned DCNN
structure with cross-entropy as the loss function.

2.2 Flowchart of the proposed method

In this work, an MMEDL method is proposed for
mechanical intelligent health identification with high-
dimensional samples. In our method, high-dimensional
raw data are preliminarily extracted using several 1D
DCNN models with different activation functions to enrich
feature diversity and achieve dimensionality reduction.
The 1D features extracted by the 1D DCNN models are
translated to feature images. The feature images from
different sources are gathered and fused as the input of 2D
DCNN, which can construct an authentic fault feature
space to improve fault diagnosis accuracy.

The procedure of the proposed method is shown in
Fig. 2. The procedure can be summarized in four main
processes, namely, sample acquisition, feature extraction in
1D DCNNSs, feature fusion, and fault recognition in 2D

Sample acquisition

Feature extraction in 1D DCNNs

Raw data in different
working conditions

Normalization
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Fig. 2 Main procedure of the proposed multi-model ensemble deep learning method.



Xin ZHANG et al. Multi-model ensemble method for intelligent fault diagnosis 343

DCNN. First, the vibration signals in various working
conditions are collected using accelerometers. The raw
signals are sliced with interval sampling, where the labeled
samples are gathered as the training set. A raw signal of
length L can be divided into » samples according to

n=L/(N+I), (2)

where each sample has N data points and / is the interval
between two samplings.

Second, the training set is used to train several 1D
DCNN models, and each of the models is constructed by
convolution layers, pooling layers, a fully-connected layer,
and a softmax classifier. After training, the outputs from
the fully connected layers of these 1D DCNN models are
collected separately as the result of feature extraction and
dimensionality reduction. Then, the 1D features are
translated into 2D images (i.e., 1x1024 features to
3232 images in this study).

Third, the feature images are fused into multi-channel
images as the input of the following 2D DCNN models.
Then, the 2D DCNN models automatically implement
secondary feature extraction by several convolutional and
pooling layers. The obtained feature maps are transformed
into 1D features through a flattening operation, and the
fully connected layers further map the features into a lower
dimension. Lastly, fault pattern recognition is accom-
plished with the softmax classifier to acquire fault
diagnosis results.

Deep learning networks are complex nonlinear mapping
systems that rely on the activation functions of network
layers to achieve the effect of nonlinear mapping.
However, the loss of important information is inevitable
in the process of feature extraction layer by layer. For raw
high-dimensional samples with rich information in parti-
cular, a large amount of fault information is easily lost
during feature extraction, and this loss affects the results of
fault identification to a certain extent. In the proposed
method, several 1D DCNN models with different activa-
tion functions can be used to extract features from the
original high-dimensional samples by using different
nonlinear mapping approaches. These features are com-
bined to obtain redundant fusion features. Compared with
the features extracted from a single 1D DCNN model,
fusion features contain more abundant fault information.
Therefore, the proposed ensemble model can partially
reduce the loss of fault information contained in high-
dimensional samples during nonlinear dimensionality
reduction, an improved fault identification effect can be
achieved.

In addition, several visualization methods or tools can be
used to reveal the extracted feature of models and ensure
the reliability of fault diagnosis results. For instance,
t-distributed stochastic neighbor embedding (t-SNE) [29]
is applied to project learned features onto 2D space and
show the feature learning capability of models. The fault

identification effects can be completely demonstrated by
confusion matrices and related charts.

3 Validation of the proposed method

Rolling bearing and gear crack severity fault diagnosis
experiments were performed to verify the effectiveness of
the proposed method. The experiments were conducted
with MATLAB R2014a by using a computer with an Intel®
Core™ i7-8550U processor and 16 GB of RAM.

3.1 Case study 1

The public bearing dataset acquired from the Bearing Data
Center of Case Western Reserve University (CWRU),
USA was used in this experiment [30]. The rolling bearing
experiment rig was composed of a 1491.4 W three-phase
motor, a torque sensor, and a loading motor. The test
bearing (6205-2RS JEM SKF) was mounted on the driving
end, and the acceleration sensor was attached to the
housing of the driving motor.

3.1.1 Dataset description
The data adopted in this experiment were obtained in the
following working conditions: The motor loads were 0, 1,
2, and 3 HP (1 HP=735 W), and the corresponding speeds
were 1797, 1772, 1750, and 1730 r/min, respectively. The
sampling frequency was 12 kHz. The types of samples
covered normal (N), inner race (IR) fault, outer race (OR)
fault, and rolling element (RE) fault. Three defect
diameters (0.007, 0.014, and 0.021 inch (1 inch=2.54
cm)) were used for each fault type. In accordance with the
above-mentioned order, 10 health states were labeled as 0
to 9 (e.g., 0 represents the normal state and 9 represents a
rolling element fault with a fault size of 0.021 inch). In this
experiment, 10 health state samples under four working
conditions (load of 0, 1, 2, and 3 HP) were utilized.
Sequential 4096 data points were used as one sample to
construct the high-dimensional samples. Interval sampling
was applied to simulate the sample distributions in the real
scene, and the interval was set to 0 between two samples.
The dataset contained 1000 samples established to test the
MMEDL model’s performance in identifying high-dimen-
sional fault samples in different working conditions.
Furthermore, the samples were scrambled and divided
into training, validation, and test datasets at a ratio of 6:2:2.

3.1.2 Activation function selections

The high-dimensional samples contained complicated fault
information, which is difficult to mine fully. Thus, this
study selected three 1D DCNN models with different
activation functions to achieve diversified nonlinear
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mapping effects on the original high-dimensional samples
and fully mine the fault characteristics. Then, the feature
extraction results from the three models were fused as the
input of the 2D DCNN model. Activation function
selections of the 2D DCNN model can be determined
according to the recognition effect of the 1D DCNN
models. For instance, the 1D DCNN model using tanh as
the activation function has a good recognition effect, so the
convolutional layer activation functions of the 2D DCNN
model also use tanh. The activation function settings of the
three 1D DCNN models and one 2D DCNN model are
shown in Table 2.

Table 2  Activation function settings of the four models

Activation function

bayer 1st 1D DCNN 2nd 1D DCNN 3rd ID DCNN 2D DCNN
input - - - -
convl relu elu tanh tanh
pooll - - - -
conv2 relu elu tanh tanh
pool2 - - - -
conv3 relu elu tanh tanh
pool3 - - - -
FC1 - - - —
FC2 relu relu relu relu
output - - - -

Note: convl, conv2, and conv3, convolutional layers; pooll, pool2, and pooll,
max pooling layers; FC1 and FC2, fully-connected layers; output, output layer.

3.1.3 Model design of MMEDL

Two kinds of network structures (1D DCNN and 2D
DCNN) need to be designed in the proposed MMEDL

Table 3 Details of the 1D DCNN and 2D DCNN models in case study 1
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method, and the design requirements are different. The
network structure design of the 1D DCNN model is closely
related to the effectiveness of preliminary feature extrac-
tion, which requires high training speed and avoids the loss
of critical fault features. Therefore, the 1D DCNN models
can adopt few convolution kernels and large convolution
kernel size. For the 2D DCNN models in MMEDL, they
need to perform deep secondary feature mining on the
input feature images to obtain the hidden fault information.
As a result, numerous filters should be used to accomplish
feature extraction and improve identification accuracy. To
a certain extent, the deeper the structure of DCNN models
is, the stronger the expression capability is. However,
complex network structures often require sufficient train-
ing data to support model training, which is difficult to
achieve in real fault diagnosis scenarios. Sophisticated
structures require numerous hyper-parameters to be set,
which makes it difficult to determine the most appropriate
network structure. In addition, the selected hyper-para-
meters of the above-mentioned model still need to be tested
and adjusted. In this case study, the detailed parameters of
the two DCNN models are listed in Table 3. A dropout
layer [31] with a ratio of 0.25 was set behind the full
connection layer to improve the robustness of the models.

3.1.4 Results

The training process of the MMEDL model is divided into
two parts: One is to directly train the three 1D DCNN
models by using raw samples, as displayed in Figs. 3(a)—-
3(c), and the other is to train the 2D DCNN model by using
the output features of the 1D DCNN models, as displayed
in Fig. 3(d). During the two training parts, the procedure
wherein a model is trained on the entire training set is
called one “epoch.” In the training process of the three 1D
DCNN models, significant differences existed between
training and validation accuracies, which prove the

1D DCNN 2D DCNN

Layer - -

Parameter size Output size Parameter size Output size
input - 4096x1 - 32x32x3
convl 8x1x4 4096 x4 4x4x8 32x32x8
pooll 4x1 1024 x4 2x2 16x16x38
conv2 4x1x8 1024x8 4x4x16 16x16x16
pool2 4x1 256x8 2x2 8x8x16
conv3 4x1x16 256x16 2X2x32 8x8x32
pool3 4x1 64x16 2x2 4x4x32
FC1 - 1024x1 - 512x1
FC2 1024x1024 1024x1 512x256 256x1
DR - 1024x1 - 256x1
output 102410 10x1 256x10 10x1

Note: convl, conv2, and conv3, convolutional layers; pooll, pool2, and pooll, max pooling layers; FC1 and FC2, fully-connected layers; DR, dropout layer; output,

output layer.
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phenomenon of overfitting. Furthermore, the 1D DCNN
models appeared to have insufficient generalization
capability in the process of fault identification of high-
dimensional samples. By contrast, the 2D DCNN model
integrated the features extracted by the three models, and
its training and verification accuracies were nearly 100%.

Three different deep learning methods, namely, 1D
DCNN, 2D DCNN, and deep convolutional autoencoder
(DCAE), were used to compare with the MMEDL method
[32]. For the 1D DCNN comparison model, the input
dimension is 40961, and the other network hyperpara-
meter settings are similar to those in Table 3. The inputs of
2D DCNN and DCAE are images with 64x64 dimensions
and are transformed from 4096 1 raw data. Visualization
of the learned features by t-SNE was performed with the
test dataset, as shown in Fig. 4, to demonstrate the feature
extraction capability of MMEDL and the three comparison
methods. The horizontal and vertical coordinates in Fig. 4
respectively referred to the first and second principal
component features obtained after dimensionality reduc-
tion by t-SNE. And the features used for visualization were

20 2
154 N

o -7
5 10

g . -6
o

£ 5 5
S ‘ B
2 0 ¢ "
2 : - % P

= =54 ®

z s ’
A —10+ -2

—154 Il
_20 T T T T T T T O
-10.0 -7.5 =50 =25 00 25 50 75

Ist principle component

(a)

15+ 9
I
10 ‘
. L 7
2 s . »
2
£
n 5 B
o L
B Lo L4
£ 77
& ] -3
=]
2 -10- P
~154 o, Il
T T T T T T O

-10 -5 0 5 10 15
Ist principle component

(©

Fig. 4

extracted from the full connection layer of the four models.
The results showed that most of the samples in different
health conditions could not separate from each other when
1D DCNN or DCAE was used. When 2D DCNN was
adopted, three clusters were difficult to distinguish clearly.
Evidently, the three comparison methods could not extract
the most critical features to achieve the best visualization
effect. By contrast, the features of 10 different health states
were completely separated when the MMEDL method was
used. The features of the same health state were also
clustered well.

The confusion matrices in Fig. 5 further demonstrate that
the MMEDL method exhibited excellent fault identifica-
tion and generalization capability. The test accuracies of
1D DCNN, 2D DCNN, and DCAE were 95%, 95.5%, and
96%, respectively, indicating that the three models were
relatively good in processing high-dimensional samples.
By contrast, the MMEDL method ensembled four DCNN
models to mine the fault features deeply from high-
dimensional sample space, and its test accuracy could
reach 99.48%. Only one fault sample of the rolling element
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with a fault size of 0.021 inch was incorrectly identified as
0.014 inch. We conclude that the proposed MMEDL
method has remarkable superiority in processing high-
dimensional samples compared with the other three
methods.

3.2 Case study 2

A gear dataset with different crack severities was used to
further validate the effectiveness of the MMEDL method.
In this experiment, the gear dataset was obtained from a
condition monitoring platform for a one-stage reduction
gearbox, which was set up by Huazhong University of
Science and Technology, China. References [4,28] utilized
the gear dataset collected from this platform to conduct
their case studies.

Confusion matrix
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3.2.1 Experimental setup and dataset description

The experimental platform comprised a one-stage reduc-
tion gearbox, a servo motor, a magnetic power brake, a
torque sensor, and a brake controller, as shown in Fig. 6.
Three triaxial accelerometers (PCB-356A16) were
installed on the experimental platform at different
locations, as shown in Fig. 7. The key parameters of the
driven and driving gears used in the one-stage reduction
gearbox are listed in Table 4. Wire-electrode cutting
technology was used to construct four kinds of gear crack
conditions (non-crack, 1/4 crack, 1/2 crack, and 3/4 crack),
as shown at the end of the flowchart in Fig. 2. The length of
the gear crack can be calculated by L, =i x (R.—,)/4,
i=0,1, ..., 3, where R, and r,, are the radius of the root
circle of the main driving wheel (27.5 mm) and the radius
of the center hole (47.5 mm), respectively.
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Fig. 5 Confusion matrices of the fault diagnosis results under the test dataset: (a) 1D DCNN, (b) 2D DCNN, (c) DCAE, and (d) MMEDL.
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Table 4 Parameters of the experimental gears

Gear module Teeth width

Gear type Teeth number Jmm Jmm
Driving gear 50 2 20
Driven gear 80 2 20

In this experiment, the fault recognition capability for
different gear crack severities under multiple working
conditions was verified, as shown below:

Crack length: 0, 5, 10, and 15 mm;

Input shaft speed: 300, 600, 900, 1200, and 1500 r/min;

Load: 0 and 4 N-m;

Number of samples: 880;

Points of each sample: 2048.

Five input shaft speed conditions of the driving gear and
two kinds of loads were used. Thus, condition monitoring
was carried out under 10 operating working conditions for
each gear crack severity. Sampling was implemented using

. 2021, 16(2): 340-352

a data recorder unit (NI PXI-1042) with a 5000 Hz
sampling rate to acquire raw acceleration signals. Eighty-
eight samples were obtained for each working condition,
and each sample had 2048 data points. Thus, 880 samples
were collected under 10 operating working conditions, and
each kind of crack severity had 220 samples. The numbers
of training, validation, and test samples were 560, 160, and
160, respectively.

3.2.2 Details of MMEDL

In this case study, the selected activation functions for the
1D DCNNSs and 2D DCNN were similar to those in Table
2. The details of the three 1D DCNN models are shown in
Table 5. For the 2D DCNN model in this case, the details
of network structures were similar to those in Table 3,
except that the output layer’s size was set to 4x 1.

Table 5 Details of the 1D DCNN models in case study 2

Layer Parameter size Output size
input - 2048x 1
convl 8x1x4 2048 x4
pooll 4x1 512x4
conv2 4x1x8 512x8
pool2 4x1 1288
conv3 4x1x16 128x16
pool3 2x1 64x16
FC1 - 1024 %1
FC2 1024 x1024 1024x1
DR - 1024x1
output 1024 x4 4x1

Note: convl, conv2, and conv3, convolutional layers; pooll, pool2, and pooll,
max pooling layers; FC1 and FC2, fully-connected layers; DR, dropout layer;
output, output layer.

3.2.3 Results

In this case study, fast Fourier transform was employed to
transform the raw acceleration signals from the time
domain to the frequency domain. Hence, the trained
models could pay sufficient attention to the fault
characteristic frequencies and filter out the external
interference frequencies. In particularly, in order not to
change the dimensions of the samples, the original time-
domain signals were only treated with fast Fourier
transform and its true frequency and amplitude did not
need to be calculated. The fast Fourier transform results of
the time domain signals of the four kinds of gear crack
severity are shown in Fig. 8. Then, the MMEDL model
was used to implement feature extraction and fault
identification from the frequency samples. After the feature
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extraction of the three 1D DCNN models, the 2D DCNN
model was used to acquire the fault recognition results by
feature learning. The training and validation accuracies/
loss curves of the 2D DCNN model are shown in Fig. 9.
The accuracy and loss curves converged after about 20
iterations of the 2D DCNN model. Moreover, the training
and verification accuracies were relatively high (nearly
100% and 99.5%, respectively). The test accuracy could
reach 98.75%.

The acceleration signals from channel 5 were used in the
experimental process. The raw signals from the eight other
channels were also used in this experiment to further verify
the effectiveness of the MMEDL method. Meanwhile, the
deep neural network [33], deep belief network [34], and
1D DCNN were compared with the proposed method. The
signals of each channel were applied for 10 tests. The
upper limits, lower limits, and median values of the test
dataset identification accuracies are shown in Fig. 10.
Significant differences in test accuracy were observed
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between the different channels because the signal quality
of the nine channels differed. Overall, the MMEDL
method had better accuracy than the three other methods
under multi-channel signals.

4 Conclusions

Given the fact that the complicated fault features in high-
dimensional samples are difficult to extract, a single deep
learning method is generally unable to learn complete fault
information. In view of this situation, this study proposed a
novel fault identification method called MMEDL for high-
dimensional samples. The presented method is ensembled
by several DCNN models, which can enrich the feature
spaces of high-dimensional raw samples and avoid the
loss of critical information. Moreover, two experimental
studies were conducted on the bearing public dataset of
CWRU and a one-stage reduction gearbox dataset. The
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Fig. 8 Fast Fourier transform results the four gear crack severities: (a) Non-crack, (b) 1/4 crack, (c) 1/2 crack, and (d) 3/4 crack.



350 Front. Mech. Eng. 2021, 16(2): 340-352

>

Accurac

Training curve

— Validating curve

0 20 40 60 80 100
Epoch

(a)

Training curve

Validating curve

Fig. 9 (a) Training and validation accuracies and (b) loss curves of the 2D deep convolutional neural network in the proposed

multi-model ensemble deep learning.
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Fig. 10 Accuracy comparison of the different methods under the multi-channel signals. DNN: Deep neural network; DBN: Deep belief
network; DCNN: Deep convolutional neural network; MMEDL: Multi-model ensemble deep learning.

experimental results showed that MMEDL has superior
feature extraction and fault identification capability.
Compared with the other deep learning methods, the
MMEDL model can considerably improve the
accuracy of fault diagnosis.

Selecting the most appropriate activation functions can
make the MMEDL model as accurate as possible. In this
work, the activation functions of three 1D DCNN models
were selected by artificial settings. In the future, how to
choose the most suitable activation functions in an
intelligent manner should be further considered. Moreover,

compared with several deep learning methods [20,24,35]
for mechanical fault diagnosis in recent years, the
presented MMEDL model generally has higher time
consumption. Thus, another important future task is to
explore how to reduce the training time consumption while
ensuring model precision. In addition, whether the
proposed method can achieve high identification accuracy
under other fault diagnosis backgrounds remains unclear.
Thus, additional experimental studies should be performed
to further verify the robustness and generalization of the
proposed method.
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Nomenclature
1D One-dimensional
2D Two-dimensional
conv Convolutional layer
CNN Convolutional neural network
DBN Deep belief network
DCAE  Deep convolutional autoencoder
DCNN  Deep convolutional neural network
DNN Deep neural network
DR Dropout layer
FC Fully-connected layer
IR Inner race fault state of the bearing in case study 1
MMEDL Multi-model ensemble deep learning
N Normal state of the bearing in case study 1
OR Outer race fault state of the bearing in case study 1
pool Max pooling layer
RE Rolling element fault state of the bearing in case study 1
SVM Support vector machine
t-SNE  t-distributed stochastic neighbor embedding
b bias of the neurons in Eq. (1)
d; Length of the trainable filters in Eq. (1)
k Trainable filters in Eq. (1)
c Length of the gear crack in case study 2
R. Radius of the root circle of the main driving wheel in case study 2
h Radius of the center hole of the main driving wheel in case study 2
X Input of the convolution layer in Eq. (1)
s Nonlinear activation functions in Eq. (1)
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