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Abstract This study aims at investigating the nonlinear
dynamic behavior of rotating blade with transverse crack.
A novel nonlinear rotating cracked blade model (NRCBM),
which contains the spinning softening, centrifugal stiffen-
ing, Coriolis force, and crack closing effects, is developed
based on continuous beam theory and strain energy release
rate method. The rotating blade is considered as a
cantilever beam fixed on the rigid hub with high rotating
speed, and the crack is deemed to be open and close
continuously in a trigonometric function way with the
blade vibration. It is verified by the comparison with a
finite element-based contact crack model and bilinear
model that the proposed NRCBM can well capture the
dynamic characteristics of the rotating blade with breathing
crack. The dynamic behavior of rotating cracked blade is
then investigated with NRCBM, and the nonlinear damage
indicator (NDI) is introduced to characterize the non-
linearity caused by blade crack. The results show that NDI
is a distinguishable indicator for the severity level
estimation of the crack in rotating blade. It is found that
severe crack (i.e., a closer crack position to blade root as
well as larger crack depth) is expected to heavily reduce the
stiffness of rotating blade and apparently result in a lower
resonant frequency. Meanwhile, the super-harmonic reso-
nances are verified to be distinguishable indicators for
diagnosing the crack existence, and the third-order super-
harmonic resonances can serve as an indicator for the
presence of severe crack since it only distinctly appears
when the crack is severe.

Keywords rotating blade, breathing crack, nonlinear
vibration, nonlinear damage indicator

1 Introduction

Rotating blades, one of the core components of rotating
machines, are extensively applied in modern industry, such
as gas turbines, jet engines, power plants, pumps,
helicopters, and wind turbines. The blade-related failures
(up to 42% of the total failures [1]) are often classified as
the major sources of failures in many gas turbines since
rotating blades suffer extreme operating conditions, such
as high mechanical loading due to extreme changes in both
temperature and pressure, high/low-cycle fatigue (HCF/
LCF) loading, high centrifugal loading due to high
spinning speed, and foreign object damage (FOD). One
of the most common failure modes of rotating blades is
crack, which is related to a variety of factors including
FOD, HCF/LCF, manufacturing flaws, stress corrosion,
ingested debris, and resonant fatigue [2]. For example, an
F35A fighter caught fire during liftoff due to blade off of
F135 engine which is induced by fatigue crack failure and
accelerated by excessive blade-casing rubbing [3], and the
Trent 1000 engine installed on Boeing 787-9 has been
suffering from the severe blade crack problem caused by
corrosion-related fatigue since 2016 [4].
Recent years have witnessed a growing interest in blade

damage detection and an imperative need to develop an
effective and robust blade health monitoring (BHM)
technique to enhance the operational reliability and safety
of the bladed rotating machines. Amongst all the
conventional BHM techniques (such as, vibration analysis,
acoustic emission, infrared thermography, strain gage
measurements, and pressure field assessments) vibration
analysis is the most popular since it provides the longest
lead time to blades failure [5,6]. However, despite the
advances in theory and technology of blade fault diagnosis
over many years, effective and accurate measurement of
blade vibration performance still encounters with some
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significant challenges, which in turn triggers the need for
further improvements on the comprehending of blade (with
or without damage) vibration phenomenon [6].
Over the past decades, numerous interests and efforts are

dedicated to the investigation on blade vibrations [7–9].
Some general dynamic models, including lumped-mass
model [10], analytical model based on beam theory [11–
13] and plate theory [14,15], and finite element (FE) model
[16,17], have been proposed to predict the vibration
behavior of rotating blades. Through numerical simula-
tions, free vibration [14] and nonlinear behavior [11] of
rotating blades considering the Coriolis effect, spinning
softening and centrifugal stiffening effects, shaft-disc-
blade coupling vibration [10–12], impact effects of
shrouded blades [13,18], blade-casing rub-impact faults
[16,19], blade-disk systems’ mistuning [17,20], blade-off
effects on the aero-engine vibration [21] are extensively
investigated. Several vibration indicators for abnormal
vibrations especially including those due to excessive
blade-casing rubbing, vibration localization induced by
mistuning, nonlinear effects owing to blade off, and
sophisticated impact behavior caused by shrouded blades
are found based on the existing dynamic models and
numerical simulations. However, researches are seldom
focused on the nonlinear effects of blade cracks which
frequently result in gas turbine failures and further cause
huge financial losses, including safety implications.
Cracks in mechanical structures have been facing

significant difficulties in accurate modeling and effective
detection because of its complexity, such as, various crack
modes, sophisticated crack geometries, and nonlinear
crack surface contacts [22]. By adopting the assumption
of stationary blade, the linear and nonlinear dynamic
behavior of blades (stationary cantilever beams) with crack
are extensively studied. Several crack models including
local compliance model (LFM) [23], strain energy release
rate (SERR)-based model (SERRM) [24], wavelet-FE
model (WFEM) [25], two-dimensional-FE model (2D-
FEM) [26] and three-dimensional-FE model (3D-FEM)
[27] have been proposed to predict the dynamic behavior
of cracked beams.
In earlier researches, the crack was assumed as an open

one, i.e., linear model. For example, the LFM [23] and
SERRM [24] used for multiple cracks identification
assumed crack effects as a constant stiffness reduction,
and the WFEM [25] utilized for single crack localization
dealt with the crack as an additional constant stiffness
matrix to merit the continuity conditions. Amongst all the
conventional researches based on linear crack models,
most are focused on the free vibration of cracked beams
and identify the crack through natural frequency shift and
localization the intersection point of three different
frequency contour lines [23–25]. For example, Liu et al.
[28,29] investigated the effects of crack depth and location
on the natural frequencies and mode shapes of the
cantilever beam with open crack, indicating that the

phenomenon of abrupt changes of single-level stationary
wavelet transform decomposition detail coefficients of the
normalized mode shapes for the cracked beam can serve as
an indicator for crack identification and localization.
Linear models pose many advantages since an integrated
theoretical foundation makes it easy to obtain analytical
solutions and extract crack features. However, owing to the
sophisticated contact behavior between two crack surfaces
during vibration, dynamic characteristics of a cracked
beam are nonlinear rather than linear, which obstructs the
application of conventional linear vibration analysis tools,
such as modal analysis and harmonic response analysis and
further adds challenges to crack detection.
The nonlinearity of cracks is introduced on account of

the closing behavior of two crack surfaces, which assumes
that the crack opens and closes alternately during vibration
[30]. This phenomenon is also called “breathing effect” of
cracks. Generally, there are two approaches to simulate the
“breathing effect” of cracks, i.e., (i) analytical method,
which is often based on LFM or SERRM [31–33];
(ii) numerical method, which is normally based on FE
numerical simulation and contact theory [27,34,35]. The
key to nonlinear crack models is to obtain the time-varying
structural parameters (including stiffness, damping and
excitation force) induced by cracks. As for analytical
model, the most extensively adopted model is bilinear
crack model which assumes there are two crack state
configurations, i.e., fully open configuration and fully
closed configuration, and the crack alternates between the
fully closed configuration and fully open configuration
during vibration [34]. Therefore, the crack breathing
behavior is simulated by assuming that the system stiffness
alternates within two piecewise stiffness coefficients,
wherein one is corresponding to the fully open configura-
tion and the other is related to the fully closed configura-
tion. Considering the practical engineering, the crack does
not always directly switch from one configuration to the
other, and some transition states that the crack is neither
fully open nor fully closed may exist. To more accurately
simulate the crack breathing behavior, the bilinear model
(BM) is further extended from a piecewise model to a
continuous model assuming that the stiffness changes
continuously from the fully open configuration to the fully
closed configuration [32]. In view of this, some numerical
models were proposed to better solve the above issue,
among which the contact crack model are the most
extensively applied [27,35–37]. For example, by assuming
crack as a pair of two frictionless contact surfaces,
nonlinear breathing behavior of cracks is simulated by
2D-FEM [35] and a mixed beam/solid 2D-FEM is
proposed to reduce the computation time [27]. Based on
the mixed beam/solid 2D-FEM, the effects of elastic-
support on the vibration responses of cracked beam is
explored [37]. To consider the simulation accuracy and,
meanwhile, promote the computation efficiency, Liu and
Jiang [38] derived a cracked hexahedral element to
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simulate the breathing effect. By comparing the analytical
models and numerical models, it is worth noting that
analytical models may be less accurate than numerical
models, but analytical models are much more efficient and
easier to solve than numerical models. Also, most of the
basic nonlinear dynamic characteristics can be captured by
analytical models. Based on both analytical and numerical
models, several vibration indicators have been found for
the breathing cracks, where one of the most significant
indicators is the super-harmonic resonance in the sub-
critical region. However, amongst all the above-mentioned
investigations, most consider the blade to be stationary,
and few involve the effects of high-speed spinning of blade
including spin softening and centrifugal stiffening on the
cracked blade.
Some researchers explored the coupling effects of blade

crack and high-speed spinning. For example, Kuang and
Huang [39,40] proposed a cracked blade–disk model on
the basis of SERRM to predict stability and the mistuning
behavior of blade–disk systems. Later, Panigrahi and Pohit
[41] put forward a model for the rotating cracked blade
with functionally graded materials by assuming the crack
to be an additional spring at the crack location which adds
a local flexibility to the system stiffness of blade. However,
in their model [39–41], the crack is assumed to be an open
one, namely, the nonlinear effects of crack are neglected.
To further analyzing the nonlinear vibration of rotating
cracked blades, Kim et al. [42] developed a breathing
model using the bilinear assumption of cracks to
investigate the coupling effects of cracks and spinning.
Nevertheless, the conventional modal analysis method is
adopted in their research to predict the natural frequency of
cracked blade, which in turn neglects the influence of
nonlinear effects of cracks. On the basis of lumped-mass
blade model and local flexibility crack model, Xu et al.
[43,44] derived a nonlinear model of rotating blades with
breathing crack to identify weak crack using vibration
power flow analysis and predict the mistuning behavior of
blade-disc system using conventional modal analysis.
Since the lumped-mass blade model is simplified to a
single-degree-freedom system, the accuracy of their model
will be significantly reduced. In view of this, the FE
method is employed, which significantly promote the
model accuracy. For example, the FE-based contact crack
model (FECCM) is used to investigate the nonlinear
vibration and mistuning behavior of rotating blades with
breathing crack [45], and the accuracy and efficiency are
further promoted by introducing the cracked hexahedral
element to simulate the breathing crack [38]. However,
their investigations are mainly focused on the free
vibration analysis and mistuning behavior prediction rather
than the nonlinear vibration of rotating cracked blade.
Motivated by the FECCM, a general model for the
breathing crack of rotating blade is proposed on the basis
of stress state at the crack section by Xie et al. [46].
However, the effects of blade radial deformation and

Coriolis force are neglected which may leads to the
accuracy decreasing.
In this paper, a novel nonlinear rotating cracked blade

model (NRCBM) is derived on the basis of continuous
beam vibration theory and strain energy release rate
method. The FECCM and the extensively applied BM are
employed to verify the validation of the proposed
NRCBM. The nonlinear dynamic responses under differ-
ent excitation parameters and crack parameters are then
investigated using the proposed NRCBM. The remainder
of this paper is organized as follows. In Section 2, the
NRCBM is specifically formulated, where the rotating
blade is simplified as a cantilever Euler beam which is
fixed on a rigid rotating hub and the crack is considered as
a breathing crack. The coupling effects of high-speed
spinning effects including spinning softening effects,
centrifugal stiffening effects and Coriolis effects and
nonlinear breathing crack are considered in this model.
In Section 3, both the FECCM and the BM are employed to
verify the validation of the derived NRCBM. In Section 4,
three cases are illustrated to present the effects of excitation
load parameters and crack parameters (crack depths and
crack locations) on the nonlinear responses of NRCBM. In
Section 5, limitations of the proposed method are
discussed. Finally, conclusions are drawn in Section 6.

2 Nonlinear dynamic model of rotating
blade with breathing crack (NRCBM)

As shown in Fig. 1, the rotating blade that is fixed on a
rotating rigid disk is simplified as a cantilever Euler beam
with the uniform section. OXYZ denotes the inertial frame,
orxryrzr and obxbybzb represent the rotational and local
blade frames, respectively. The schematic of the blade
deformation is presented in Fig. 1(c), where odxdydzd is the
local disk frame. Ignoring the effects of rotating shaft,
odxdydzd is the same with OXYZ. In this study, u, v, and w
denote the displacements in span-wise, lateral, and
chordwise directions of the blade, respectively.
The dynamic model of the rotating blade system is

formulated based on the following assumptions:
1) The disk is assumed to be rigid and the vibrations of

the disk and shaft are neglected.
2) The material of the blade is assumed to be isotropic

and the constitutive relationship meets Hook’s law.
3) The rotating blade is simplified as a cantilever Euler

beam which rigidly fixed on the disk, thus the contact
between blade and disk and the shear effect of the blade are
neglected.

2.1 Dynamic model of rotating blade without crack

In orxryrzr, the position vector r of arbitrary blade point Q
can be expressed as
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r ¼ r0 þ δ ¼
xþ Rd þ u

yþ v

zþ w

2
64

3
75,

r0 ¼
xþ Rd

y

z

2
4

3
5,

δ ¼
u

v

w

2
64

3
75, (1)

where r0 is the initial position vector of point Q, and δ
denote the displacement vector caused by the deformation
from point Q to point Q'. In this study, the membrane
stretch in chordwise direction is ignored, i.e., w ¼ 0. The
velocity of point Q (vQ) can be calculated as

vQ ¼ _δ þ Ω � r ¼ _δ þΩr, (2)

where

Ω ¼
Ωx

Ωy

Ωz

2
64

3
75,

Ω ¼
0 –Ωz Ωy

Ωz 0 –Ωx

–Ωy Ωx 0

2
64

3
75,

_δ ¼
_u

_v

0

2
64

3
75,

where Ω is the angular speed vector, and Ω denotes the
skew-symmetric matrix of Ω.
Since the bladed-disk system rotates about z-axis, i.e.,

Ωx ¼ Ωy ¼ 0, and Ωz ¼ Ω ¼ 2πfΩ, where fΩ andΩ denote
the rotating frequency and the angular speed of the blade–
disk system, respectively. Then, vQ can be rewritten as

vQ ¼
_u

_v

0

2
64

3
75þ

–Ωv

Ωðxþ Rd þ uÞ
0

2
64

3
75

¼
_u –Ωv

_v þ Ωðxþ Rd þ uÞ
0

2
64

3
75: (3)

The kinetic energy of the blade (Ts) can be derived as

Ts ¼
1

2
!

L

0
�!!

A
ðvTQ⋅vQÞdAdx, (4)

where �, L, and A denote the density, length, and cross-
section area of the blade, respectively.
Considering the centrifugal stiffening effect, the poten-

tial energy of the blade (Vs) is derived as

Vs ¼ V e
s þ VΩ

s , (5)

with

Fig. 1 (a) Schematic of the rotating blade; (b) motion of the blade; (c) schematic diagram of the blade deformation.
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L
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>>>:

(6)

where V e
s denotes the strain energy due to the bending

moment, VΩ
s represents the strain energy due to the

centrifugal force caused by the blade rotation, and E, I, and
fc(x) denote the Young’s modulus, area moment of inertia,
and centrifugal force, respectively.
As shown in Fig. 2, the centrifugal force of a micro-unit

dx of the blade is

dfcðxÞ ¼ dðmRΩ2Þ ¼ �AΩ2ðRd þ xÞdx, (7)

where m denotes the mass of the micro-unit, and R is
the distance away from the centroid of the micro-unit to
point or.

Then, the centrifugal force of blade is derived as

fcðxÞ ¼ !
L

x
dfcðxÞ ¼ �Ω2!

L

x
AðRd þ xÞdx: (8)

Assume that the aerodynamic force feðx, tÞ is uniformly
distributed along the blade length and perpendicular to the
blade flatwise surface, and then the total virtual work done
by feðx, tÞ is obtained as

Wnon ¼ !
L

x
feðx, tÞvdx, (9)

with

feðx, tÞ ¼ F0 þ
XK
1

FEOsinðEO⋅ΩtÞ,EO 2 ℝþ, (10)

where EO denotes the engine order, FEO denotes the
amplitude of the engine order excitation, and F0 is the
constant component of the excitation force. If EO 2 ℤþ,
the synchronous vibration of the blade will be excited,
while if EO 2 ℝþ \ EO =2ℤþ, the asynchronous vibration
of the blade will be excited [47].
According to Hamilton principle, the dynamic equation

of the blade can be obtained by

δ!
t2

t1
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EAvð4Þx dx –!

L

0

�
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dx
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0
�A _Ωðxþ RdÞdxþ!
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x
feðx, tÞdx,

8>>>>>>>>>>>>>><
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(12)

with _u ¼ ∂u
∂t
, €u ¼ ∂2u

∂t2
, u$x ¼

∂2u
∂x2

, and uð4Þx ¼ ∂4u
∂x4

.

2.2 Discretization of differential equation

In this study, the blade deformations (see Eq. (12)) are
discretized by using Galerkin method as

uðx, tÞ ¼
XN
i¼1

f1iðxÞUiðtÞ,

vðx, tÞ ¼
XN
i¼1

f2iðxÞViðtÞ,

8>>>><
>>>>:

(13)

where UiðtÞ and ViðtÞ are canonical coordinates corre-
sponding to the longitudinal displacement uðx, tÞ and the
lateral displacement vðx, tÞ, respectively, f1iðxÞ and f2iðxÞ
are the modal shape functions for longitudinal vibration
and lateral vibration, respectively. According to vibration
theory of continuous Euler beam, f1iðxÞ and f2iðxÞ are
expressed as [13]

f1iðxÞ ¼ sin
ð2i – 1Þπx

2L
,

f2iðxÞ ¼ sinðβixÞ – sinhðβixÞ
– αi

�
cosðβixÞ – coshðβixÞ

�
,

8>>>><
>>>>:

(14)

with αi ¼
sinðβiLÞ þ sinhðβiLÞ
cosðβiLÞ þ coshðβiLÞ

, i ¼ 1, 2, :::, N . Wherein

N is the number of modal truncation and βi is the
eigenvalue of the equation cosðβiLÞcoshðβiLÞ ¼ – 1.
Substituting Eqs. (13) and (14) into Eq. (12), the
differential equation of the uncracked blade can be
obtained and expressed in matrix form as

Mb€q ðGb þ DbÞ _q þ Kbq ¼ F, (15)

with Kb ¼ Ke þ K st þ K so þ Kacc. Wherein q, Mb, Gb,
Db, Kb, and F are modal displacement vector, mass matrix,
gyroscopic matrix, damping coefficients matrix, stiffness
matrix, and the external force vector, respectively; Ke, K st,
K so, and Kacc are structural stiffness matrix, centrifugal
stiffening matrix, spin softening matrix, and stiffness

Fig. 2 Schematic of the centrifugal force for a micro-unit of the
blade.
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caused by acceleration, respectively. The expressions of
these matrices can be found in Appendix A.

2.3 Dynamic model of breathing crack

The schematic diagram of cracked blade is shown in Fig. 3.
According to Ref. [48], alteration of the elastic deforma-
tion energy in presence of the crack caused by bending
moment is the only significant change in the case of slender
beams. Thus, the potential energy of the cracked blade
consists of three terms:

Vs ¼ V e
s þ VΩ

s –V c
s , (16)

where V c
s is the released energy of the crack. If the crack is

initiated by the bending fatigue, the stress filed around the
crack tip will be dominated by the mode I loading [24].
Only considering mode I loading, V c

s has the following
form:

V c
s ¼ !

h=2

– h=2
!

ac

0
Jdady ¼ !

h=2

– h=2
!

ac

0

1 – ν2

E
K2
I dady, (17)

where h is the thickness of blade, ac denotes the crack

depth, ν is the Poisson’s ratio, J ¼ 1 – ν2

E
K2
I is the strain

energy density function, and KI denotes the stress intensity
factor under mode I loading. In the case of mode I loading,
KI can be approximated as [24,49]

KI ¼
1

2
Ehv$xðlcÞ

ffiffiffiffiffiffiffi
πhγ

p
FIðγÞ, (18)

with

FIðγÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

πγ
tan

πγ
2

s
0:923þ 0:199 1 – sin

πγ
2

� �4

cos
πγ
2

, (19)

where the revision term FIðγÞ denotes the geometrical
factor depending on relative crack depth γ ¼ ac=h.
Substitute Eqs. (18) and (19) into Eq. (17), and then we
have

V c
s ¼ 3ð1 – ν2ÞQðγÞh!

L

0
EIðv$xxÞ2δðx – lcÞdx, (20)

where QðγÞ ¼ !γ

0
πγF2

I ðγÞdγ, lc is the location of blade

crack, and δðx – lcÞ is the delta function.
Similarly, the equation of motion for the blade with

crack can be obtained.

!
L

0
�A€udx – 2!

L

0
�AΩ _vdx –!

L

0
�AΩ2udx –!

L

0
�A _Ωvdx

–!
L

0
EAuîx dx ¼ !

L

0
�AΩ2ðxþ RdÞdx,

!
L

0
�A€vdxþ 2!

L

0
�AΩ _udx –!

L

0
�AΩ2vdxþ!

L

0
�A _Ωudx

þ!
L

0
EIvð4Þx dx –!

L

0

�
f #cðxÞv#x þ fcðxÞv$x

�
dx,

– 6ð1 – ν2ÞQðγÞh!
L

0
EIvð4Þx δðx – lcÞdx ¼

–!
L

0
�A _Ωðxþ RdÞdxþ!

L

x
feðx, tÞdx:

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

(21)

Affected by the blade deflection, the crack will “open”
and “close” alternately, namely, it will result in “breathing
effect”. The blade with closed crack is just like the
uncracked blade, however, the open crack will reduce the
blade stiffness. Namely, the “breathing effect” will further
lead to the alternation of the blade stiffness. Herein, the

breathing function fbreathingðtÞ ¼
�
1 – cosðΩtÞ

�
=2 is uti-

lized to describe the continuous “breathing effect” of the
cracked blade. By coupling the “breathing effect”, Eq. (15)
can be rewritten as

Mb€q þ ðGb þ DbÞ _q þ
�
Kb – fbreathingðtÞKcr

�
q ¼ F,

(22)

where Kcr is the stiffness alteration caused by fully “open”
crack and given in Appendix B.

Fig. 3 Schematic diagram of the cracked blade.
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3 Model verification

The geometrical and material parameters for numerical
simulation are listed as follows:
Elasticity modulus: E = 2� 1011 Pa;
Poisson’s ratio: ν = 0.3;
Blade density: � = 7800 kg/m3;
Blade length: L = 0.15 m;
Blade width: b = 0.04 m;
Blade height: h= 0.007 m;
Disk radius: Rd = 0.15 m.
The validity of the proposed dynamic model of rotating

cracked blade is verified by comparing among the results
obtained by the proposed NRCBM, FECCM and BM.

3.1 FE-based contact crack model (FECCM)

In this section, the commercial FE software ANSYS 19.0 is
employed to establish a 2D FE blade model with 8-node
Plane 183 elements (plane stress state considering the
thickness), as shown in Fig. 4. Since the influence of the
friction between two crack interfaces is negligible, a
frictionless contact model is used here [34]. In this study,
the contact behavior of the crack interfaces is simulated by
using the augmented Lagrangian method [34,36]. The
same Rayleigh damping coefficients with that used in the
proposed analytical model are utilized in the FE simula-
tion. Newmark-b method is employed to solve the
dynamic equation containing the nonlinear contact beha-
vior.

3.2 Vibration of uncracked blade

In this subsection, the validity of the dynamic model for
the rotating uncracked blade is verified by comparing both
the natural frequencies and vibration responses which are
respectively obtained by using FECCM and NRCBM with
dimensionless relative crack depth γ ¼ 0.

3.2.1 Comparison of natural frequencies

The free vibrations of uncracked blade are first compared
by using the proposed analytical model and FE model and
the results are shown in Table 1, where fuFFMi and fui
denote the natural frequency of normal blade obtained by
FEM and NRCBM, respectively. It is worth noticing that
errors under different rotating speeds are less than 1% for
the first-order natural frequency, 2% for the second order
natural frequency, and 3% for the third order natural
frequency, which may not make a difference in engineering
application. The comparative results indicate that the
natural frequency obtained by the analytical model
matches well with the one obtained by FEM, verifying
the validity of the proposed dynamic model of uncracked
blade.
The Campbell diagram of uncracked blade is further

provided in Fig. 5 to present the natural vibration vs.
rotating speed. It shows that the natural frequency
increases with the increasing rotating speed because of
the stiffening effect due to the spin of blade, which is also
observed by Ma et al. [13] and Sinha and Turner [14]. As

Fig. 4 FE model of the cantilever blade with breathing crack.
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indicated in Fig. 5, the first-order resonant vibration will be
excited at the rotating speed of 10161 r/min when EO ¼ 2.

3.2.2 Comparison of vibration responses

The harmonic vibration responses of the normal blade
obtained by FECCM and NRCBM with γ ¼ 0 are first
compared. The vibration responses are excited by the same
harmonic force (2000sinð2πfωtÞ, fω ¼ 80 Hz) at the blade
tip are shown in Fig. 6. It can be noted from Figs. 6(a) and
6(c) that, under stationary condition, the vibration
responses obtained by NRCBM match well with those
obtained by FECCM. The good agreement can also be
observed among the results obtained by NRCBM and
FECCM under rotational condition, as shown in Figs. 6(b)
and 6(d). These observations indicate that the proposed
NRCBM poses high accuracy enough for vibration
prediction of rotating blade. By the way, because the
absence of crack, both two systems established by FEM
and analytical method, respectively, are linear rather than
nonlinear, and thus only basic harmonic component (1�)
can be observed in the response spectrums, as shown in
Figs. 6(c) and 6(d). It is worth noting that the response
amplitude under rotational condition is smaller than the

one under stationary condition due to the stiffening effect.

3.3 Natural vibration of cracked blade

In this subsection, the validity of the proposed NRCBM is
verified by comparing the natural frequencies and transient
vibrations predicted by NRCBM with those predicted by
FECCM. The natural vibration characteristics are further
analyzed by comparing the prediction results of NRCBM
and BM.

3.3.1 Comparison of vibration responses

Selecting the crack depth as 0.002 m, the impact vibration
responses and amplitude–frequency responses (AFRs)
under different rotating speeds are obtained and shown in
Fig. 7. From Fig. 7, we can note that the impact vibration
responses and AFRs obtained by NRCBM and FECCM
match well with each other, especially under stationary
condition.
For rotating blade, the crack open area cannot bear

tensile force induced by centrifugal effect, thus an
additional bending moment, attributed to the centrifugal
effect of the subsection from crack surface to blade tip

Table 1 Natural frequency of uncracked blade under different rotating speed

Modal order Rotating speed, n/(r$min–1)
Natural frequency/Hz

Error/%
fuFFMi fui

The first-order natural frequency 0 254.2 254.5 0.118

5000 277.1 277.4 0.108

10000 336.0 336.3 0.089

The second-order natural frequency 0 1577.1 1594.8 1.122

5000 1607.5 1625.2 1.101

10000 1695.1 1713.0 1.056

The third-order natural frequency 0 4347.9 4465.6 2.707

5000 4380.1 4497.9 2.689

10000 4475.2 4593.4 2.641

Fig. 5 Campbell diagram of the uncracked blade.
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Fig. 6 Comparison of the harmonic vibration responses for uncracked blade, harmonic vibration responses at (a) 0 r/min and
(b) 4800 r/min, spectrums at (c) 0 r/min and (d) 4800 r/min. FECCM: Finite element-based contact crack model; NRCBM: Nonlinear
rotating cracked blade model.

Fig. 7 The transient vibration responses and AFRs under different rotating speed: (a) 0 r/min, (b) 5000 r/min, and (c) 10000 r/min.
AFR: Amplitude–frequency responses.
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(lc£x£L) of the cracked blade, will be induced at the
crack surface. As a result, an DC-component appears in the
transient vibration responses (see Fig. 7(b)) obtained by
FECCM due to the additional bending moment caused by
rotating cracked blade, and it increases with the increasing
speed. Without considering the additional bending moment
in NRCBM, no DC-component occurs in the impact
vibration responses obtained by NRCBM. The peak
amplitudes of the AFRs under rotational conditions
obtained by FECCM are smaller than that obtained by
NRCBM due to presence of additional bending moment.
The impact vibration responses with DC removed are
further presented in Fig. 8, which indicates a good
agreement between the FECCM results and NRCBM
results. In this study, the additional bending moment is
neglected because of our focus on the nonlinear behavior
of rotating cracked blade and the difficulty in its accurate
estimation.
Further, since the open crack cannot provide centrifugal

tensile stress due to the discontinuity of the blade at crack
surface, the strain energy of cracked blade induced by the
centrifugal force differs from that of normal blade. The
stiffening effect due to high-speed spin will also be
weakened by the absence of materials at the crack section.
Namely, the stiffness (K st) induced by centrifugal stiffen-
ing effect is reduced. The weakening of K st is also
neglected in NRCBM since it is the localized effect and
hard to be accurately assessed, that’s why the natural
frequency (frequency value at the peak of AFRs) obtained
by NRCBM are little smaller than that obtained by
FECCM under rotational conditions. The natural fre-
quency errors will further be analyzed in the following
subsection 3.3.2.
As stated above, both the additional bending moment

and the weakening effect of K st are negligible, and thus
both are neglected in NRCBM. To further verify this point
of view, the harmonic vibration responses and their
spectrums of cracked blade under stationary and rotational
conditions are compared and the results are shown in

Fig. 9. The vibration responses are obtained by applying a
harmonic excitation force at the blade tip. Obviously, the
results obtained by NRCBM agree well with the results
obtained by FECCM, which verifies the validity of the
proposed NRCBM. It is worth further noticing that the
response amplitudes under rotational condition are smaller
than that under stationary condition because the system’s
stiffness is increased by the stiffening effect due to blade
spinning. By comparing the results in Fig. 6 and the ones in
Figs. 9(a) and 9(b), we find that the presence of
nonlinearity due to “breathing crack” induces super-
harmonic components (such as 2�) in the spectrums.
Although DC-components under rotational condition for
FECCM are induced by the additional bending moment
due to centrifugal effect, as shown in Fig. 9(c), which may
introduce some small but acceptable differences between
the results of FECCM and the ones of NRCBM. However,
the general vibration characteristics obtained by both
FECCM and NRCBM match well with each other.

3.3.2 Comparison of natural frequencies

In this subsection, the natural frequencies are compared
among the results obtained by FECCM, NRCBM and BM.
The “breathing effect” are involved in both FECCM and
NRCBM. Since the nonlinear effect is coupled in both
NRCBM and FECCM, traditional modal analysis method
fails to present the natural vibration behavior of the blade
with breathing crack. Thus, impact vibration responses, as
shown in Fig. 7, are employed to acquire the natural
vibration of the cracked blade through applying an impact
force at the tip of the blade.
1) Comparison with the results of FECCM
In this case, the natural frequencies of rotating cracked

blade obtained by FECCM and NRCBM are first
compared. The first-order natural frequencies of the blades
with different crack depths and rotating speeds are
presented in Table 3. The relative errors between the
results of FECCM and NRCBM are defined as

Fig. 8 The impact vibration response with mean removed under different rotating speeds: (a) 0 r/min, (b) 5000 r/min, and
(c) 10000 r/min. FECCM: Finite element-based contact crack model; NRCBM: Nonlinear rotating cracked blade model.
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Error ¼ ðfci – fcFFMiÞ
fcFFMi

� 100%, (23)

where fci and fcFFMi denote the ith order natural frequencies
obtained by NRCBM and FECCM, respectively.
The comparison of natural vibrations of cracked blade in

Table 2 and Fig. 7 demonstrate that the results obtained by
NRCBM agree well with that obtained by FECCM. It is
worth noticing that the errors of the first-order natural
frequency are less than 1% under most low-speed
conditions and the maximum error is less than 3% under
high-speed conditions, which could be accepted in
practical engineering application.
The relative errors are further analyzed in Fig. 10.

Because of the model errors, the relative errors under
stationary condition vary from 0.7143% to –1.6260% as

the crack depth changes from 0.001 to 0.003 m. It is
implicated that the results of NRCBM will get smaller and
smaller than that of FECCM with the increasing crack
depth. However, under rotational conditions, the relative
errors become larger when rotating speed increases. It is
indicated that the results obtained by NRCBM get closer to
that obtained by FECCM for a relatively deep crack (e.g.,
ac ¼ 0:003 m) with the increase of rotating speed (see
from 0 to 5000 r/min). As the rotating speed increases
continuously, the results of NRCBM will get larger than
that of FECCM (see from 10000 to 15000 r/min). This
phenomenon is attributed to that the weakening effect of
centrifugal stiffness which is overlooked in NRCBM but
involved in FECCM.
2) Comparison with the results of BM
In this case, the natural frequencies of rotating cracked

Fig. 9 The harmonic vibration responses and spectrums under different rotating speeds: (a) 0 r/min, (b) 4800 r/min, and (c) 9600 r/min.
FECCM: Finite element-based contact crack model; NRCBM: Nonlinear rotating cracked blade model.
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blades are further analyzed by comparing the results
obtained by NRCBM and BM, respectively. The bilinear
frequency was originally introduced to extract the exact
natural frequency for a piecewise linear, single degree of
freedom (SDOF) system. The bilinear frequency was then
applied to predict the nonlinear vibration frequencies of
cracked beams (SDOF system) by assuming that cracked
beam has only two linear systems associated with two
crack configurations, i.e., fully open configuration and
fully closed configuration [50]. It was further extended to
estimate the bilinear resonant frequency of mutil-degree of
freedom cracked plate by Saito et al. [51]. The bilinear
resonant frequency is verified (by Ma et al. [36] with FEM
simulations and Andreaus and Baragatti [35] with experi-
ments) to be accurate for systems with a relatively shallow
crack. As described in Ref. [51], the ith bilinear resonant
frequency of the cracked blade (fbi) can be defined as:

fbi ¼
2f1if2i
f1i þ f2i

, (24)

where f1i and f2i denote the resonant frequencies of ith
mode under the fully open configuration and the fully
closed configuration, respectively. Selecting the rotating
speed as 10000 r/min, the 1st order resonant frequencies of
the cracked blade with different crack parameters (relative
crack depth (γ) and relative crack location (ζ )) obtained by
NRCBM and BM are listed in Tables 3 and 4, respectively,
and compared in Fig. 11. It is indicated that the results
obtained by NRCBM agree well with the results estimated
by BM, especially when the crack is relatively shallow.
The relative error between fbi and fci slightly increases with
the increasing γ and decreasing ζ for systems with shallow
crack. However, when the relative crack depth is pretty
large, meanwhile, the relative crack location approaches to
the blade root, e.g., γ ¼ 0:5 and ζ ¼ 0:1, the error between
fbi and fci gets relatively large (7.04%). Moreover, in the
case of (γ ¼ 0:5, ζ ¼ 0:1), the 1st order resonant frequency
estimated by FECCM is 299 Hz, which means the result
obtained by NRCBM is more accurate than BM for
systems with a deep crack [51]. The comparative results
indicate that both NRCBM and BM can accurately predict
the first-order resonant frequency of the rotating blade with
a relatively shallow crack, while the NRCBM prediction
will be much more accurate than the BM prediction for the
rotating blade with a relatively deep crack.

3.4 Summary of model verification

The comparative results among NRCBM, FECCM, and
BM well verify the validity of the proposed NRCBM.
1) Under stationary conditions, the prediction results of

NRCBM and FECCM are consistent with each other. For
rotating blades, some negligible differences may appear

Table 2 Natural frequency of the cracked blade

Rotating speed, n /(r$min–1) Crack depth, ac/m
Natural frequency/Hz

Error/%
fcFFMi fci

0 0.001 252.0 253.8 0.7143

0.002 250.0 249.7 –0.1200

0.003 246.0 242.5 –1.6260

5000 0.001 274.0 276.0 0.7299

0.002 271.0 273.0 0.5535

0.003 264.0 263.5 –0.3788

10000 0.001 332.0 336.0 1.2048%

0.002 330.0 332.5 1.0638

0.003 326.0 327.0 0.6079

15000 0.001 405.0 414.0 2.2222

0.002 404.0 413.3 2.3020

0.003 401.0 409.0 1.9950

Fig. 10 Relative errors of the natural frequency obtained by
FECCM and NRCBM, respectively. FECCM: Finite element-
based contact crack model; NRCBM: Nonlinear rotating cracked
blade model.
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between the results of NRCBM and FECCM due to the
additional bending moment caused by centrifugal effects
and the centrifugal stiffness reduction induced by crack
opening, which is acceptable in practical engineering. In
view of this, the additional bending moment is neglected in
this study since it is difficult to be accurately modeled by
using analytical method and the basic nonlinear dynamic
behavior can be characterized by the proposed NRCBM.
2) For shallow cracks, both NRCBM and BM can well

predict the first-order natural frequency of the rotating
cracked blades, while the NRCBM prediction will be much
more accurate than the BM estimation for a relatively deep
crack.

4 Dynamic responses of NRCBM

In this section, three cases are selected to analyze the effect

of excitation loads and crack parameters on the dynamic
responses of NRCBM, and these parameters are presented
in Table 5.
Sweep frequency test is utilized to obtain the overall

dynamic behavior of NRCBM under certain rotating speed
ranges. The rotating blade are excited by forces near three
special frequency regions, i.e., super-harmonic resonant
region (fc1=2), primary resonant region (fc1), and sub-
harmonic resonant region (2fc1). The sweep frequency
interval is set as 1 Hz. Spectrum cascades are employed to
compare the frequency-domain features under different
parameters. Phase portraits are selected to characterize the
nonlinear behavior of NRCBM under different parameters.
As can be seen in Section 2.4, the rotating speed mainly
influence the natural frequency of NRCBM. In this section,
the rotating speed is selected as the 10000 r/min, where the
natural frequency of the uncracked blade is 336.3 Hz and
the natural frequency of cracked blade varies from 284.5 to

Table 3 Natural frequency of the cracked blade with different relative crack depths and locations obtained by NRCBM

Relative crack depth γ
Natural frequency/Hz

ζ = 0.1 ζ = 0.2 ζ = 0.3 ζ = 1/3 ζ = 0.4 ζ = 0.5 ζ = 0.6 ζ = 0.7 ζ = 0.8 ζ = 0.9

0.00 336.3 336.3 336.3 336.3 336.3 336.3 336.3 336.3 336.3 336.3

0.05 335.5 336.0 336.0 336.0 336.0 336.0 336.0 336.0 336.0 336.0

0.10 335.0 335.5 335.5 335.5 335.5 336.0 336.0 336.0 336.0 336.0

0.15 333.5 334.5 335.0 335.0 335.5 335.5 336.0 336.0 336.0 336.0

0.20 331.5 333.0 334.5 334.5 335.0 335.5 336.0 336.0 336.0 336.0

0.25 329.0 331.5 333.5 334.0 334.5 335.0 335.5 336.0 336.0 336.0

0.30 325.0 329.5 332.0 333.0 334.0 335.0 335.5 336.0 336.0 336.0

0.35 320.0 326.5 330.0 331.0 333.0 334.5 335.0 335.5 336.0 336.0

0.40 313.0 323.0 327.5 329.0 331.5 333.5 334.5 335.5 336.0 336.0

0.45 302.5 317.5 323.0 325.0 329.0 332.5 334.0 335.0 336.0 336.0

0.50 284.5 309.5 315.5 318.0 324.5 330.5 332.5 334.0 335.5 336.0

Note: γ = ac/h, ζ = lc/L.

Table 4 Natural frequency of the cracked blade with different relative crack depths and locations estimated by BM

Relative crack depth, γ
Natural frequency/Hz

ζ = 0.1 ζ = 0.2 ζ = 0.3 ζ = 0.4 ζ = 0.5 ζ = 0.6 ζ = 0.7 ζ = 0.8 ζ = 0.9

0.00 336.3 336.3 336.3 336.3 336.3 336.3 336.3 336.3 336.3

0.05 336.0 336.2 336.2 336.3 336.3 336.3 336.3 336.3 336.3

0.10 335.2 335.6 335.9 336.1 336.2 336.3 336.3 336.3 336.3

0.15 333.8 334.8 335.4 335.8 336.1 336.2 336.3 336.3 336.3

0.20 331.8 333.6 334.7 335.4 335.9 336.1 336.2 336.3 336.3

0.25 328.9 331.9 333.7 334.9 335.6 335.9 336.2 336.3 336.3

0.30 324.9 329.7 332.2 334.1 335.2 335.7 336.1 336.3 336.3

0.35 319.0 326.6 330.0 332.9 334.6 335.4 335.9 336.2 336.3

0.40 310.1 322.3 326.7 331.1 333.7 334.8 335.7 336.2 336.3

0.45 295.2 316.0 321.0 328.1 332.3 333.8 335.1 336.1 336.3

0.50 265.8 306.0 309.5 322.1 329.8 331.4 333.6 336.0 336.3

Note: γ = ac/h, ζ = lc/L.
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360 Hz when γ 2 ½0:1, 0:5� and ζ 2 ½0:1, 0:9�. Since it is
close to the first-order critical frequency 339 Hz, the
critical vibration may be excited when EO ¼ 2.
In this study, to quantify the nonlinear effect of crack, a

nonlinear damage indicator (NDI) is introduced. Herein,
the NDI (hr) is defined as the relative amount of magnitude
(Hs) of super- or sub-harmonic components (2�, 1=2�, ...)
with respect to the amplitude of the basic harmonic
component (Hb) [35]. The NDI is assessed as

hr ¼
Hs

Hb
: (25)

4.1 Effect of excitation loads

In this section, the effects of excitation frequency on
the nonlinear vibration of rotating cracked blade are
explored.

Fig. 11 Comparison of the first-order resonant frequency obtained by NRCBM and BM, respectively. NRCBM: Nonlinear rotating
cracked blade model; BM: Bilinear model.

Table 5 Condition and crack parameters for the numerical simulation of NRCBM

Influence factors Invariant parameters Varying parameters

EO (Case 1) ðγ, ζ , FEOÞ ¼ ð0:3, 1=3, 2000 NÞ EO ¼ 1, 2, :::, 4

ðγ, ζ , FEOÞ ¼ ð0:5, 1=3, 2000 NÞ EO ¼ 1, 2, :::, 4

ðγ, ζ , FEOÞ ¼ ð0:5, 2=3, 2000 NÞ EO ¼ 1, 2, :::, 4

γ (Case 2) ðζ , EO, FEOÞ ¼ ð1=3, 1, 2000 NÞ γ ¼ 0:10,  0:15, :::,  0:50

ðζ , EO, FEOÞ ¼ ð1=3, 2, 2000 NÞ γ ¼ 0:10,  0:15, :::,  0:50

ðζ , EO, FEOÞ ¼ ð1=3, 3, 2000 NÞ γ ¼ 0:10,  0:15, :::,  0:50

ðζ , EO, FEOÞ ¼ ð1=3, 4, 2000 NÞ γ ¼ 0:10,  0:15, :::,  0:50

ζ (Case 3) ðγ, EO, FEOÞ ¼ ð0:5, 1, 2000 NÞ ζ ¼ 0:10, 0:15, :::, 0:90

ðγ, EO, FEOÞ ¼ ð0:5, 2, 2000 NÞ ζ ¼ 0:10, 0:15, :::, 0:90

ðγ, EO, FEOÞ ¼ ð0:5, 3, 2000 NÞ ζ ¼ 0:10, 0:15, :::, 0:90

ðγ, EO, FEOÞ ¼ ð0:5, 4, 2000 NÞ ζ ¼ 0:10, 0:15, :::, 0:90
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4.1.1 Case 1: Effects of excitation frequency

In this section the effects of excitation frequency on the
system dynamic responses will be investigated. Harmonic
response analysis is performed under the frequency range
from 50 (3000 r/min) to 750 Hz (45000 r/min) with an
interval of 1 Hz (60 r/min), which covers the super-
harmonic, primary, and sub-harmonic resonant regions.
The general dynamic behavior of rotating blade with
breathing crack under different excitation frequency is first
analyzed, and the results are illustrated in Fig. 12. The
comparison of dynamic behavior of rotating blade with
breathing crack under mono- and multi-excitation fre-
quencies are illustrated in Figs. 13 and 14.
A general phenomenon can be observed from Fig. 12

that, besides the primary resonance, the weak second-order
super-harmonic resonances are excited within the sub-

critical (
1

2
fc) speed region, which indicates that super-

harmonic resonance may serve as an indicator for the
presence of crack. However, different crack parameters
may lead to different dynamic behavior, as shown in
Figs. 12(a)–12(c). By comparing Figs. 12(b) and 12(c), it is
suggested that peaks of both primary resonance and super-
harmonic resonance get weakened by the decrease of
relative crack depth. The comparison of Figs. 12(b) and
12(c) reveals that nonlinear effects of the crack close to
blade tip is much weaker than that of the crack nearby the
blade root. These comparative results indicate that the
crack which is deeper and closer to blade root will be much
more dangerous than the one which is shallower and nearer
to blade tip. Moreover, under the condition (γ ¼ 0:5,
ζ ¼ 1=3), the weak third-order super-harmonic resonance
can be observed, as shown in Fig. 12(b), but disappears in
other two conditions (see Figs. 12(a) and 12(c)). It is
implicated that the presence of 3� components and the
third-order super-harmonic resonance offers a potential
indicator for severe crack faults detection. The finding of
the second- and third-order super-harmonic resonances
under rotating condition is consistent the results of Ref.

[52] obtained by analyzing the run-up vibration responses
of rotating cracked blade with finite element analysis.
These phenomena will be further analyzed in the following
context.
According to Ref. [47], if the engine order is an integer

(i.e., EO 2 ℤþ), synchronous vibrations are excited;
otherwise, if the engine order is a non-integer (i.e.,
EO 2 ℝþ \ EO =2ℤþ), asynchronous vibrations are
excited. In Fig. 13, only mono-frequency excitation and
is considered. The synchronous vibrations are excited
since integer engine orders are involved in these cases.
Only periodic motions can be observed from Fig. 13. In
sub-critical speed region (see Fig. 13(a), EO ¼ 1),
periodic-2 motion occurs and an obvious 2� component
can be obviously observed because of the super-harmonic
resonance. Besides, a weak 3� components is also
observed in the spectrums. However, in other cases, only
weak 2� and 3� components can be observed, and the
blade is in periodic-1 motion. Compared with the
responses under mono-frequency excitation, the responses
under multi-frequency excitation are much more sophis-
ticated, as shown in Fig. 14. Because of the frequency
modulation caused by crack closing effect, obvious
combination frequencies can be observed in the spectrums.
From the phase portraits, it is found that the rotating
cracked blade operates at periodic motion if the multi-
frequency force only contains integer EO, but the periodic
motion will switch to quasi-periodic motion if the multi-
frequency force contains non-integer EO. These results
indicate that multi-frequency excitation, especially when it
contains non-integer EO, will be more dangerous than
mono-frequency excitation for rotating cracked blade.
Furthermore, by comparing the spectrum of displace-

ment and velocity, it comes to an important conclusion that
the NDI of velocity is much larger than the NDI of

displacement. For example, when EO ¼ 1, hvelocityr ¼
0:9763, while hdisplacement

r ¼ 0:4874. It is indicated that
the velocity is much more sensitive than the displacement
to the crack closing effect. Further comparison between the
NDI of displacement and velocity is illustrated in Fig. 15.

Fig. 12 Spectrum cascades under different rotating speeds when (a) γ ¼ 0:3, ζ ¼ 1=3; (b) γ ¼ 0:5, ζ ¼ 1=3; and (c) γ ¼ 0:5, ζ ¼ 2=3.
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The comparative results manifest that the NDI of velocity
is larger than the one of displacement under all conditions,
which verifies the implication obtained from Fig. 13. It is
worth further attention that the NDI shown in Fig. 15
makes it more clearly to observe the super-harmonic than
spectrums shown in Fig. 12. As shown in Fig. 15, the
second-order super-harmonic resonance predominant in
the NDI of 2� components, while the third-order super-
harmonic resonance predominant in the NDI of 3�
components.

4.1.2 Summary of the effects of excitation loads

The effects of load parameters on the vibration responses
of NRCBM are analyzed. Some typical features are
summarized as follows:

1) The presence of crack will result in the second-order
super-harmonic resonance; for some dangerous cases, the
third-order super-harmonic resonance may also be
induced. These phenomenon offers a potential indicator
for the detection of severe crack in rotating blade.
2) Under mono-frequency excitation or multi-frequency

excitation only containing integer EO, the motion of
rotating cracked blade is always periodic, but it turns into
quasi-periodic if the system is excited by the multi-
frequency excitation containing non-integer EO. It is
indicated that, multi-frequency excitation, especially when
it contains non-integer EO, will be more dangerous than
mono-frequency excitation for rotating cracked blade.
3) The NDI can better characterize the super-harmonic

resonance of NRCBM, as shown in Fig. 15. It is worth
noting that the NDI of velocity is much larger than the NDI

Fig. 13 Synchronous vibration responses under different excitation frequencies: (a) EO ¼ 1, (b) EO ¼ 2, (c) EO ¼ 3, and (d) EO ¼ 4.
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of displacement, especially in
1

2
fc and

1

3
fc sub-critical

region, which indicates that the velocity will be more
sensitive to crack breathing effect than the displacement
be.

4.2 Effect of crack parameters

In this section, the effects of crack parameters including
both relative crack depth and location the nonlinear
vibration of rotating cracked blade are explored.

4.2.1 Case 2: Effects of relative crack depth

In this section, the effects of the dimensionless relative
crack depth γ on the nonlinear dynamic behavior of
NRCBM are investigated. γ changes from 0.1 to 0.5 with
an interval of 0.05 and other simulation parameters
adopted in this case are shown in Table 5. The AFRs are
utilized to present the overall nonlinear dynamic behavior
of NRCBM, as shown in Fig. 16. From Fig. 16, following
conclusions can be drawn that:

1) Generally, the primary resonant frequency decreases
with the increase of relative crack depth, and the primary
resonant frequency for the crack near the blade root (see
Fig. 16(a), ζ ¼ 1=3) decreases faster than that for the crack
close to the blade tip (see Fig. 16(a), ζ ¼ 2=3). It is worth
noticing that, when ζ ¼ 1=3), the primary resonant
frequency decreases from 335.5 (γ ¼ 0:10) to 318 Hz
(γ ¼ 0:50) as γ increases from 0.1 to 0.5 (see Fig. 16(a)),
which is consistent with the results shown in Table 3.
2) The second-order super-harmonic resonance appears

in
1

2
fc sub-critical region (see Figs. 16(c) and 16(d)) and the

resonance peaks decreases with the decreasing γ. When
γ < 0:20, the resonance peak is so small that it is hard to be
observed.
To further analyze the effects of relative crack depths on

the nonlinear responses, the spectrum cascades under EO
¼ 1,  2,  :::,  4 are presented in Fig. 17, and the phase
portraits obtained with different relative crack depths are
shown in Fig. 18. The results from Fig. 17 indicate that the
2� super-harmonic component appears in the spectrum
when γ³0:15 and EO ¼ 1, and the amplitudes increases
with the increasing γ. This phenomenon can be further

Fig. 14 Vibration responses under different multi-frequency excitation: (a) EOþ 2EO, (b) EOþ 0:5EO, (c) EOþ 3EO,
(d) EOþ 1:7EO, (e) EOþ 5EO, and (f) EOþ 4:7EO.
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Fig. 15 NDIs of displacement and velocity in sub-critical region under different crack parameters: (a) γ ¼ 0:3, ζ ¼ 1=3; (b) γ ¼ 0:5,
ζ ¼ 1=3; and (c) γ ¼ 0:5, ζ ¼ 2=3. NDI: Nonlinear damage indicator.

Fig. 16 AFRs for different relative crack depths. (a) Primary resonant region when ζ ¼ 1=3; (b) sub-critical region when ζ ¼ 1=3;
(c) primary resonant region when ζ ¼ 2=3; (d) sub-critical region when ζ ¼ 2=3. AFR: Amplitude–frequency responses.
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accounted for in Fig. 18, which indicates the state of
NRCBM switches from periodic-2 to periodic-1 motion
under EO ¼ 1 when the crack depth increases from 0.1 to
0.5.
To further illustrate the significant level of the sub- and

super-harmonic components, the NDIs of displacements
under EO ¼ 1 are obtained, as shown in Fig. 19. It is
suggested that the NDI of 2� super-harmonic component
in sub-critical region increases with the increase of
increasing relative crack depth. When the crack is
relatively shallow, i.e., incipient, it is pretty hard to
observe 3� or higher-order components. However, as the
crack propagates to a very large depth, i.e., γ>0:4, weak 3�

appears. This phenomenon is consistent with the analysis
in Section 4.1.

4.2.2 Case 3: Effects of relative crack location

In this case, the effects of the dimensionless relative crack
location ζ on the nonlinear behavior of NRCBM are
investigated. ζ changes from 0.1 to 0.9 with an interval of
0.05 and other simulation parameters adopted in this case
is shown in Table 5. The AFR is utilized to present the
overall nonlinear dynamic behavior of NRCBM, as shown
in Fig. 20. From Fig. 20, following conclusions can be
drawn that:

Fig. 17 Spectrum cascades for rotating blade with crack in different relative crack depths when (a) EO ¼ 1; (b) EO ¼ 2; (c) EO ¼ 3;
and (d) EO ¼ 4.

Fig. 18 Phase portraits under different relative crack depths (ζ ¼ 1=3). (a) EO ¼ 1; (b) EO ¼ 2; (c) EO ¼ 3; and (d) EO ¼ 4.
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1) Generally, the primary resonant frequency increases
with the increase of relative crack location and the larger
the relative crack depth is the increasing speed is, as shown
in Figs. 20(a) and 20(b). It is worth noting that, when
γ ¼ 0:50, the primary resonant frequency increases from
285 to 336 Hz as ζ increases from 0.10 to 0.90, which
matches the results shown in Table 3.

2) Super-harmonic resonance appears in
1

2
fc sub-critical

region (see Figs. 20(c) and 20(d)). When γ ¼ 0:30, the
resonance peak is so small that is hard to be observed. It is
observed that the frequency of super-harmonic resonant
peak increases with the increasing ζ .
To further analyze the effects of relative crack locations

on the nonlinear responses, the spectrums cascades under
EO ¼ 1,  2,  :::,  4 are shown in Fig. 21, respectively. The
phase portraits are displayed in Fig. 22. The comparative
results in Fig. 21 suggest that 2� super-harmonic
component appears in the spectrums when ζ£0:75 and
EO ¼ 1. Under EO ¼ 2 and EO ¼ 4, no obvious sub- or
super-harmonic components occurs in the spectrums. As ζ
increases, the amplitudes of basic harmonic components
under sub- (EO ¼ 1) and super-critical regions (EO ¼ 3
and EO ¼ 4) almost remain constant; however, the
amplitudes of both 2� super-harmonic components
(EO ¼ 1) decreases. This is because the nonlinear effects
of breathing crack are reduced as crack get closer to the
blade tip. This phenomenon can be further accounted for in
Fig. 22, which indicates the state of NRCBM switches
from periodic-2 to periodic-1 motion under EO ¼ 1 when
the relative crack location increases from 0.1 to 0.9.
The NDIs for the sub- and super-harmonic components

are selected to further analyze the sensitivity of the
nonlinear responses to relative crack locations. The results
are shown in Fig. 23. It is indicated that both the 2� super-

harmonic component in sub-critical region (
1

2
fc, 10000

r/min) are much more significant than other components.
Moreover, it is worth noting that it is hard to observe the
second-order super-harmonic resonance from the NDI of
2� super-harmonic component when the crack is very
close to blade tip. With the decrease of ζ , the NDI of 2�

Fig. 19 The variation of NDIs with the change of relative crack
depth γ. NDI: Nonlinear damage indicator.

Fig. 20 AFRs for different relative crack locations: (a) Primary resonant region when ζ ¼ 0:30, (b) sub-critical region when ζ ¼ 0:30,
(c) primary resonant region when ζ ¼ 0:50, and (d) sub-critical region when ζ ¼ 0:50. AFR: Amplitude–frequency responses.
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increases, which indicates that the nonlinearity is reduced
with the increasing ζ .

4.2.3 Summary of the effects of crack parameters

The crack parameters, including the relative crack depth
and relative crack location, on the vibration responses of
NRCBM are analyzed. Some typical features are summa-
rized as follows:
1) The nonlinear dynamic behavior is significantly

affected by the relative crack depth and relative crack
location. Increasing the relative crack depth or the
decreasing relative crack location will result in the
decrease of the primary resonant frequency, as indicated

Fig. 21 Spectrum cascades for rotating blade with crack in different locations when (a) EO ¼ 1, (b) EO ¼ 2, (c) EO ¼ 3, and (d) EO ¼ 4.

Fig. 22 Phase portraits under different relative crack locations. (a) EO ¼ 1; (b) EO ¼ 2; (c) EO ¼ 3; and (d) EO ¼ 4.

Fig. 23 NDIs of the displacement under different relative crack
locations. NDI: Nonlinear damage indicator.
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in Table 3, and Figs. 16 and 20. By comparing the AFRs
when ζ ¼ 1=3 (Figs. 16(a) and 16(c)) and ζ ¼ 2=3
(Figs. 16(b) and 16(d)), it is worth noting that effects of
relative crack depths on the nonlinear responses will be
reduced for a crack closer to the blade tip. The same
conclusion that the effects of relative crack locations on the
nonlinear responses will be weaken for a shallow relative
crack depth is drawn through the comparison of the AFRs
when γ ¼ 0:3 (Figs. 20(a) and 20(c)) and γ ¼ 0:5
(Figs. 20(b) and 20(d)).
2) The synchronous vibrations of the rotating blade with

different crack parameters are analyzed. The comparative
results suggest that the rotating cracked blade will switch
from periodic-1 motion to periodic-2 motion when the
relative crack depth changes from 0.1 to 0.5 or the relative
crack location changes from 0.9 to 0.1. This phenomenon
is attributed to the reason that the second-order super-
harmonic resonance becomes obvious with the increasing
relative crack depth and decreasing relative crack loca-
tions. Correspondingly, the NDI of 2� component also
shows a tendency to increase with the increase of relative
crack depth and the decrease of relative crack location. It is
indicated that the crack with larger depth and smaller
location will be much more dangerous than the crack with
smaller depth and larger location.

5 Discussions of limitations of the
proposed method

The main limitation of the proposed method is that the
coupling effects among the shaft, disk and blade are
neglected. As mentioned in Ref. [12], the coupling
vibration among shaft, disk and blades could be significant
if the shaft and disk are flexible and blade’s stagger angle
varies. For high efficiency and productivity purpose,
reducing the weight of rotor systems is considered as one
of the most efficient way to meet the requirements of high
thrust-weight ratio for gas turbines. Both shafts and disks
become more and more thin, which results in non-
negligible flexibility. It is, therefore, necessary to consider
the coupling vibration shaft, disk, and blade. Moreover,
this study focusses on the effects of breathing crack on a
single blade, thus blade–blade coupling vibration are not
considered. The presence of crack will naturally break the
tuning property of the periodic grouped-blade structure,
leading to vibration localization and further mistuning of
the periodic structure, which are also neglected. In
addition, the blade may be designed to be pre-twist
and installed with a stagger angle, which may also affect its
nonlinear dynamic behavior. The effects of pre-twist
and stagger angle on the nonlinear vibration of NRCBM
are not modeled in this study. Another limitation of
NRCBM is that cosine-breathing function increases the
simulation accuracy compared to BM, but it cannot clearly

characterize the detail of the contact behavior at crack
section. These topics will be investigated and coming soon
in our future works.

6 Conclusions

A nonlinear dynamic model of rotating cracked blade
(NRCBM) is developed on the basis of Euler beam theory
to research the nonlinear dynamics of rotating blade with
transverse crack. The validity of the proposed NRCBM is
verified by using FECCM. The effects of load parameters
and crack parameters on the nonlinear dynamic behavior of
rotating cracked blade are investigated. The main findings
of the study can be summarized as follows:
1) The presence of crack is expected to result in the

decrease of resonant frequencies for rotating blade and
induce super-harmonic resonance, such as the second- and
third-order super-harmonic resonances. The results suggest
that the severer the crack is (i.e., a closer crack position to
blade root as well as larger relative crack depth), the lager
the resonant frequency shifts and the more obvious the
super-harmonic resonance presents. The second-order
super-harmonic resonance is verified to be more sensitive
and distinct than the third-order super-harmonic resonance,
and thus may serve as an indicator to diagnose the crack
existence. It is worth noting that the third-order super-
harmonic resonance only appears for a rotating blade with
severe crack, which indicates the third-order super-
harmonic resonance offers a potential characteristic signal
for severe crack detection and can be utilized to estimate
the severity of crack.
2) NDI is verified to be a distinguishable indicator for

the severity level estimation of the crack in rotating blade.
A significant finding is that the NDI of velocity is much
more sensitive to the super-harmonic resonance in sub-
critical speed region than the NDI of displacement be. The
NDI of 2� super-harmonic components is also found to
increase with the increasing crack severity, i.e., the
increasing relative crack depth (γ) and the decreasing
relative crack location (ζ ).

Acknowledgements This work was sponsored by the National Major
Project of China (Grant No. 2017-V-0009) and the National Natural Science
Foundation of China (Grant No. 51705397). The first author acknowledges
the host and support from the Structural Dynamics and Acoustic Systems
Laboratory at the University of Massachusetts Lowell, USA.

Appendixes

Appendix A: Matrices and vectors related to
the blade

(1) q 2 ℝ2N�1 is the canonical coordinates vector of the
blade, where
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q ¼ ½U1, :::, Ui, :::, UN , V1, :::, Vi, :::, VN �T   ,  

ði ¼ 1, 2, :::, NÞ
(2) The mass matrix M 2 ℝ2N�2N is

Mbði, jÞ ¼ !
L

0
�Af1iðxÞf1jðxÞdx,

Mbðiþ N , jþ NÞ ¼ !
L

0
�Af2iðxÞf2jðxÞdx,

8><
>:

where i, j ¼ 1, 2, :::, N .
(3) The Coriolis force matrix of the blade is denoted by

Gb 2 ℝ2N�2N , which can be expressed as

Gbði, jþ NÞ ¼ – 2Ω!
L

0
�Af2iðxÞf1jðxÞdx,

Gbðiþ N , jÞ ¼ 2Ω!
L

0
�Af1iðxÞf2jðxÞdx,

8><
>:

where i, j ¼ 1, 2, :::, N .
(4) The structural stiffness matrix Ke 2 ℝ2N�2N is

Keðiþ N , jÞ ¼ –!
L

0
EAf$1iðxÞf1jðxÞdx,

Keði, jþ NÞ ¼ !
L

0
EIfð4Þ

2i ðxÞf2jðxÞdx,

8><
>:

where i, j ¼ 1, 2, :::, N .
(5) The spin softening matrix K so 2 ℝ2N�2N is

K so ¼ –ω2Mb:

(6) The centrifugal stiffening matrix K st 2 ℝ2N�2N is

K stðiþ N , jþ NÞ

¼ –!
L

0

�
fcðxÞf$2iðxÞ þ f #cðxÞf#2iðxÞ

�
f2jðxÞdx

    ði, j ¼ 1, 2, :::, NÞ:
(7) Kacc 2 ℝ2N�2N is the stiffness matrix induced by

blade acceleration

Kaccði, jþ NÞ ¼ –!
L

0
�A _Ωf2iðxÞf1jðxÞdx,

Kaccðiþ N , jÞ ¼ !
L

0
�A _Ωf1iðxÞf2jðxÞdx,

8><
>:

where i, j ¼ 1, 2, :::, N .
(8) Db 2 ℝ2N�2N is the Rayleigh damping coefficients

matrix and can be expressed as

Db ¼ αMb þ βKb,

where α and β are the structural damping ratio,

α ¼ 4πfn1fn2ðfn1�2 – fn2�1Þ
f 2n1 – f

2
n2

,

β ¼ fn2�2 – fn1�1
πðf 2n2 – f 2n1Þ

,

8>><
>>:

where fn1 and fn2 denote the first and second natural
frequency of the static blade, respectively, and �1 ¼
0:0268 and �2 ¼ 0:0536 correspond to the modal damping
ratio, respectively.
(9) The external force vector F 2 ℝ2N�1 is

Fðj, 1Þ ¼ !
L

0
�AΩ2ðxþ RdÞf1jðxÞdx,

Fðjþ N , 1Þ ¼ –!
L

0
�A _Ωðxþ RdÞf2jðxÞdx

þ!
L

x
feðx, tÞf2jðxÞdx,

8>>>>><
>>>>>:

where j ¼ 1, 2, :::, N .

Appendix B: Matrices and vectors related to
the crack

Kcr 2 ℝ2N�2N is the stiffness alteration caused by fully
“open” crack:

Kcðiþ N , jþ NÞ

¼ 6ð1 – ν2ÞQðγÞh!
L

0
EIfð4Þ

2i ðxÞf2jðxÞδðx – lcÞdx,

where i, j ¼ 1, 2, :::, N .
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