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Abstract We studied the reliability of machine compo-
nents with parameters that follow an arbitrary statistical
distribution using the principle of maximum entropy
(PME). We used PME to select the statistical distribution
that best fits the available information. We also established
a probability density function (PDF) and a failure
probability model for the parameters of mechanical
components using the concept of entropy and the PME.
We obtained the first four moments of the state function for
reliability analysis and design. Furthermore, we attained an
estimate of the PDF with the fewest human bias factors
using the PME. This function was used to calculate the
reliability of the machine components, including a
connecting rod, a vehicle half-shaft, a front axle, a rear
axle housing, and a leaf spring, which have parameters that
typically follow a non-normal distribution. Simulations
were conducted for comparison. This study provides a
design methodology for the reliability of mechanical
components for practical engineering projects.

Keywords machine components, reliability, arbitrary
distribution parameter, principle of maximum entropy

1 Introduction

Since humans first began to manufacture tools, several
basic principles have been applied. Tools should be
reliable, durable, and easily repairable in the event of
breakage. This notion is the earliest concept of reliability.
Reliability theory was developed during the Second World
War as an integrated engineering discipline to address the
problem of failures in military electronic components and
equipment. Since then, machine reliability has achieved

remarkable progress, and a considerable number of
monographs, textbooks, and papers [1–14] have been
published. Currently, reliability theory is widely used in
the full life cycle (design, production, and maintenance) of
machines in a variety of industrial sectors, such as
aerospace, manufacturing, transportation, metals, petro-
chemicals, medical devices, and food processing. How-
ever, for various reasons, the industrial sectors in China
have not adopted modern reliability engineering practices,
particularly in the areas of machine design and research.
Many sectors and industries in China would benefit from
these practices. In machine design, reducing weight can
not only save material and reduce costs but also lessen the
energy consumed by machines and enhance their perfor-
mance. In reducing the weight of a machine, the machine
should be sufficiently reliable and safe. Thus, designing a
machine to be lightweight involves designing for relia-
bility. Improvements in reliability design methods result in
the production of lightweight, high-performance, and high-
quality machines.
The principle of maximum entropy (PME) is a method

for selecting the statistical distribution of a random
variable that best fits the available information. If only
partial information regarding an unknown probability
distribution is available, then the probability distribution
with the maximum entropy that conforms to this informa-
tion should be selected. This distribution is used for
reliability analysis and the design of machine components.
In other words, when only partial information is available
in the PME, the most reasonable inference regarding the
unknown distribution is the most uncertain or random
inference (i.e., the inference with the highest entropy that
conforms to the known information), and this inference is
the only unbiased choice. Any other choices introduce
other constraints and assumptions that cannot be known
based on the available information. The probability
distribution of a random variable is difficult to determine.
In general, only certain parameters of the distribution, such
as the mean and variance, or certain constraints (e.g.,
kurtosis and skewness) can be measured. More than one
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probability distribution may fit these measured values, but
only one of these probability distributions has the
maximum entropy. The distribution with the maximum
entropy has been investigated in previous studies [15–19].
Although this method is subjective to a certain extent, the
distributions obtained using this method can be considered
the best fit given the known information.
In this study, the statistical properties of various

parameters of mechanical components were used to obtain
a probability density function (PDF) of the state function
and a reliability design model. A solution for the proposed
model was derived, and the first four moments of the state
function were obtained. An estimate of the PDF with the
fewest human bias factors was obtained using the PME,
and this estimate was used to calculate the reliability of the
components. A procedure to calculate the reliability of
components using entropy and the PME when the
probability distribution of the state function is unknown
is presented. A distribution function with the minimum
bias was obtained using the PME, and an approach for
reliability analysis and design of machine components was
established. The proposed reliability design method was
demonstrated with examples of mechanical components
including a connecting rod, a vehicle half-shaft, a front
axle, a rear axle housing, and a leaf spring. We established
a practical, effective method for calculating the reliability
of machine components. Calculating the reliability of a
component can save large amounts of human, material, and
financial resources; improve the design; shorten the design
cycle; increase the quality; reduce energy consumption and
costs; reduce weight; and improve the reliability.

2 Principle of maximum entropy

The PME in the analysis of machine component reliability
is based on the concept of entropy. The maximum entropy
most accurately represents the state of knowledge. When
calculating the reliability of a component, the probability
distribution with the minimum bias for known constraints
is the distribution with the maximum entropy. In the fields
of statistics, physics, and engineering, problems are often
solved based on measured data and certain conditions or
assumptions. In essence, the PME is a deduction from a
simple axiom: Events with a high probability of occurrence
can easily occur. In general, three properties are of concern
for the solution to a problem, namely, existence, unique-
ness, and stability. If one or more of these three properties
does not hold, then the problem is an uncertain one. These
uncertain problems result from incomplete data, complete
data with noise, or incomplete data with noise. Various
methods are available for solving uncertain problems, and
the PME is one method. We selected the maximum entropy
solution because in the case of incomplete information, the
solution must fit the known data with the fewest number of

assumptions possible regarding the unknown part; i.e., the
most scientifically transcendent detached perspective
should be adopted for data extrapolation and interpretation.
Finding the solution can be viewed as extracting informa-
tion from the data, and the extractable information
originates from two sources: The known data and the
assumptions made on the unknown part because of the
limitations of the known data. These assumptions are
equivalent to the insertion of additional information. The
condition of maximum entropy represents the least amount
of known information, and certainty in the known data
requires the minimum amount of added information.
Therefore, the maximum entropy solution is a transcendent
solution. For cases in which only measured data are
available, if no justification is available for selecting a
particular distribution function, the distribution (the form
and the parameters) with the minimum bias is determined
based on the PME. The PME states that when selecting the
probability distribution of a random event, all of the known
conditions should be satisfied, and no subjective assump-
tions should be made regarding the unknown characte-
ristics. This principle yields the most even probability
distribution and the lowest prediction risk because it
maximizes the entropy in the result. Therefore, a model
based on the PME is referred to as a maximum entropy
model.

2.1 Entropy

A model with maximum entropy preserves all uncertain-
ties, and the risk is minimized. Entropy is a fuzzy concept.
Fuzzy concepts generally possess a certain arbitrariness,
but they are derived in a systematic manner. If the
definition of entropy is arbitrary, then entropy is a simple
concept that originates from another arbitrary concept,
information. In information theory, the term “information”
is used in a narrow sense and is defined as follows:

IðxÞ ¼ – logf ðxÞ, (1)

where x represents an event with a given value, and I(x)
represents a measurement of the information relevant to the
event with a given value. In Eq. (1), the base of the
logarithm affects the value of the information function. If
the base of the logarithm is 2, the units of I(x) are bit, and if
the base of the logarithm is e, the units of I(x) are nat.
Entropy is defined as the mean value of the information.

For a continuous variable, entropy (S) is expressed in the
following form:

S½f ðxÞ� ¼ –!
R
f ðxÞlog½f ðxÞ�dx: (2)

Information is a measurement of the uncertainty of an
individual value of x, and entropy is a measurement of the
uncertainty of the value of x within the entire range. High
uncertainty means large entropy.
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2.2 Statistical moment of a sample

If no rationale exists for selecting a particular distribution
function, then the form of the distribution with the
minimum bias based on the distribution of the variable in
question must be selected. The moments of a sample can
be calculated using a simple method based on the
information of the sample. The following are the moments
for a continuous random variable:

S ¼ –!
R
f ðxÞln½f ðxÞ�dx ¼ maximum, (3)

!
R
f ðxÞdx ¼ 1, (4)

!
R
xif ðxÞdx ¼ mi, i ¼ 1,2,:::,n, (5)

where n represents the order of the moment, and mi

represents the ith-order moment about the origin, where the
numerical values are determined from the sample.
From the perspective of entropy as the measurement of

system uncertainty, equiprobable systems have the highest
uncertainty. A PDF itself is a special analytical form. The
method of Lagrange multipliers is employed to find the
optimal solution, and the entropy is maximized by
adjusting f(x).
Let J be the Lagrange function, where l0, l1 , :::, ln are

Lagrange multipliers. Then, we have

J ¼ S þ ðl0 þ 1Þ !
R
f ðxÞdx – 1

� �

þ
Xn
i¼1

li !
R
xif ðxÞdx –mi

� �
: (6)

In practice, to simplify the result, the multiplier (l0+ 1)
is used rather than l0. We set the derivative dJ=df ðxÞ equal
to 0. Then, we have

–!
R
fln½f ðxÞ� þ 1gdx – ðl0 þ 1Þ!

R
dx

–
Xn
i¼1

li !
R
xidx

� �
¼ 0: (7)

By merging the terms inside the integral, we have

ln½f ðxÞ� ¼ l0 þ
Xn
i¼1

lix
i, (8)

or

f ðxÞ ¼ exp l0 þ
Xn
i¼1

lix
i

 !
: (9)

Equations (8) and (9) are the analytical forms of the
maximum entropy density function. The remaining
problem is to determine the value of each li.
To obtain these values, two equations are required.

These two equations are obtained as follows. Substituting
Eq. (9) into Eq. (4), we have

!
R
exp l0 þ

Xn
i¼1

lix
i

!
dx ¼ 1:

 
(10)

Multiplying Eq. (10) by e – l0 , we have

e – l0 ¼ !
R
exp

Xn
i¼1

lix
i

 !
dx: (11)

Thus, the first required equation is obtained:

l0 ¼ – ln!
R
exp

Xn
i¼1

lix
i

 !
dx: (12)

To obtain the second equation, Eq. (11) is differentiated
with respect to li

∂l0
∂li

¼ –!
R
xiexp l0 þ

Xn
i¼1

lix
i

!
dx:

 
(13)

From Eqs. (5) and (9), the second equation is then
obtained:

∂l0
∂li

¼ –mi: (14)

To obtain the value of each li, a system of simultaneous
equations is required. By differentiating Eq. (12) with
respect to li, we have

∂l0
∂li

¼ –

!
R
xiexp

Xn
i¼1

lix
i

 !
dx

!
R
exp

Xn
i¼1

lix
i

 !
dx

: (15)

Equation (15) can be solved for l0,l1,:::,ln. From the
solution, l0 can be calculated using Eq. (12). To simplify
the calculation, Eq. (15) is rewritten as follows:

1 –

!
R
xiexp

Xn
i¼1

lix
i

 !
dx

mi!
R
exp

Xn
i¼1

lix
i

 !
dx

¼ εi, (16)

where εi represents the residual, which can be reduced to
approximately 0. By calculating the minimum of the sum
of the squared residuals, we can obtain the solution to the
problem:
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ε ¼
Xn
i¼1

ε2i ¼ minimum, (17)

where the solution has converged if ε< d or jεij < δ for all
i (where d is the specified allowable error). Equation (12) is
used to calculate l0, and the integral in Eq. (16) can be
calculated using numerical methods.

3 Calculation of the reliability of
mechanical components

In modern manufacturing, product quality and reliability
are becoming increasingly important for market competi-
tiveness, and reliability is one of the most important
performance metrics for machines. The basic task of
machine reliability design is to use mathematical models,
methods, and practical guidance for the design of
components based on mathematics, physics, materials
science, and mechanical engineering in combination with
testing and statistical analyses of failure data. Using this
approach, the operating performance and the state or
service life of a machine under specified operating
conditions can be estimated or predicted in the develop-
ment stage to ensure that the reliability of the machine will
meet the requirements. To enhance the reliability of a
machine, the reliability of the components must be
improved first. Similar to other properties, reliability has
to be designed into the machine and ensured through
production and maintenance. When designing a machine,
the statistical variation of its basic parameters should be
considered, and uncertainty analysis must be performed to
obtain an accurate assessment of the actual conditions and
ensure that the design operating performance is consistent
with the actual operating performance. The PME is a
practical, effective reliability analysis and design method
and is generally applicable to the design of machine
components. Thus, its use can be expanded to other
industrial sectors.
The following steps provide an algorithm for calculating

the reliability of components for design and analysis:
1) Obtain the mean value, the variance, and the third and

fourth moments of each random variable;
2) Calculate the mean value, the variance, and the third

and fourth moments of the state function;
3) Obtain the first four moments and the boundary

values of the state function and select an initial value
determination method;
4) Calculate the values of the Lagrange multipliers

l0, l1, :::, ln;
5) Obtain the expression of the PDF for the state

function;
6) Calculate the reliability of the component;
7) Compare the value obtained in Step 6) with that

obtained using the Monte Carlo method.
Figure 1 show the flow chart of the PME algorithm to

compute the reliability of a component.

4 Numerical examples

The objective of the study is to illustrate the applications of
the proposed method for reliability analysis of machine
components. Several examples are considered [20–23].

4.1 Reliability of a connecting rod

A connecting rod (Fig. 2) is generally forged from medium
carbon steel or alloy steel and consists of a shank and a
hole at each end, one for a pin and the other for a crank.
Failure analysis of connecting rods revealed that connect-
ing rods typically fail by tensile fracture. Connecting rods
can have a variety of cross sections (e.g., circular,
rectangular, and “I”). In this section, a connecting rod
with an “I” cross section is analyzed.
The tensile stress (σ) on the connecting rod is

� ¼ F

aðh – 2tÞ þ 2bt
, (18)

where F represents the maximum tensile force, and a, b, h,
and t are the dimensions of the cross section.
In the stress-strength interference method, the state

function (gðXÞ) for the ultimate state of stress is as follows:

gðXÞ ¼ r –�, (19)

where r represents the material strength of the connecting
rod. The random variables are X =(r F a t h b)T. The mean
value (E(X)), the variance (Var(X)), the third moment
(C3(X)), and the fourth moment (C4(X)) of X are known.
The random variables are independent of one another, but
the distribution of X is unknown.
The material strength r of a connecting rod is (�r,�r)

= (235, 12.92) MPa. The geometry sizes are (�a,�a) = (14,
0.23) mm, (�t,�t) = (27.5, 0.28) mm, (�h,�h) = (140, 0.53)
mm, (�b,�b) = (96, 0.47) mm. The load F is (�F ,�F ,C3(F),
C4(F)) = (4.67�105 N, 3.11�104 N, 3.34�1013 N3, 4.86�
1018 N4) N. We attempted to determine the reliability of the
connecting rod.
We computed the reliability as follows.
1) We obtained the mean value, the variance, and the

third and fourth moments of each random variable and the
first four moments of the state function:

m1 ¼ 162:8207, m2 ¼ 190:4317,

m3 ¼ �123:3200, m4 ¼ 2773:4420:

2) We used the PME to determine the coefficient of the
distribution function of the state function:

24 Front. Mech. Eng. 2019, 14(1): 21–32



l0 ¼ �0:14693� 102, l1 ¼ 0:21271� 10 – 1,

l2 ¼ 0:12808� 10 – 2, l3 ¼ �0:82169� 10 – 5,

l4 ¼ 0:12203� 107:

3) We obtained an analytical expression for the PDF of
the state function:

f ðxÞ ¼ expð�0:14693� 102 þ 0:21271� 10 – 1x

þ 0:12808� 10 – 2x2 – 0:82169� 10 – 5x3

þ 0:12203� 10 – 7x4Þ:

4) We calculated the reliability of the connecting rod as

R¼ 0:99999:

We approximated the reliability of the connecting rod
using the Monte Carlo method RMCS = 1.0.

4.2 Reliability of a half-shaft

A half-shaft, or an axle shaft, is a solid shaft that transmits
power from the differential to the drive wheels in vehicles,
such as automobiles and trucks. The two half-shafts must
be able to rotate independently because the left and right
drive wheels should rotate at different speeds (Fig. 3). The
primary task of the half-shafts is to transmit torque. The
three main configurations of axles that use half-shafts are

Fig. 1 Computational diagram of the maximum entropy method
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fully floating, semifloating, and 3/4 floating. In the second
and third types, the half-shafts and axle housing constitute
a structural member that bears some portion of the weight
and the lateral force in addition to the torque. As a result, in
addition to the torque exerted by the engine, the half-shafts
are also subjected to bending moments.
In the fully floating type, the half-shafts are subjected

only to torsion. The torsional stress on this type of half-
shaft is

τ ¼ 16T

πd3
, (20)

where T represents the torque transmitted by the half-shaft,
and d represents the diameter of the half-shaft.
From the stress-strength interference method, the state

function expressed by the ultimate stress is as follows:

g Xð Þ ¼ r –
16T

πd3
, (21)

where r represents the torsional strength of the shaft
material. The random variables are X =(r T d)T. The mean
value (E(X)), the variance (Var(X)), the third moment
(C3(X)), and the fourth moment (C4(X)) of X are known.

The random variables are independent of one another, but
the distribution of X is unknown.
A half-shaft is effected torsional moment T that is

(T) = (1.1769�107 N$mm, 9.8227�105 N$mm, 1.0722�
1018 (N$mm)3, 5.0473�1024 (N$mm)4). The material
strength r is (�r,�r) = (1050, 40) MPa. The current design
diameter is (�d ,�d) = (42, 0.21) mm. We attempted to
calculate the reliability of the half shaft.
1) We obtained the mean value, the variance, and the

third and fourth moments of each random variable and the
first four moments of the state function:

m1 ¼ 240:9752, m2 ¼ 6306:6520,

m3 ¼ �348291:3000, m4 ¼ 112706300:0000:

2) We used the PME to determine the coefficient of the
distribution function of the state function:

l0 ¼ �0:89630� 10, l1¼ 0:19034� 10 – 1,

l2 ¼ 0:40242� 10 – 4, l3¼ �0:28511� 10 – 6,

l4 ¼ 0:22379� 10 – 9:

3) We obtained an analytical expression for the PDF of
the state function:

f ðxÞ ¼ expð�0:89630� 10þ 0:19034� 10 – 1x

þ 0:40242� 10 – 4x2 – 0:28511� 10 – 6x3

þ 0:22379� 10 – 9x4Þ:
4) We calculated the reliability of the connecting rod

R ¼ 0:99163:

We approximated the reliability of the connecting rod
using the Monte Carlo method

RMCS ¼ 0:99238:

4.3 Reliability of a front axle

The front axle (Fig. 4) of an automobile is mounted
underneath the vehicle frame, and the front wheels are
mounted at each of the two ends of the front axle. The front
axle is connected by the suspension to the frame (or the
monocoque body). The front axle is often low in the
middle portion to provide clearance from the oil pan of the
engine.
To reduce the amount of material and maintain

approximately uniform strength at all points, an H-beam
structure is often used in the middle portion of the front
axle to transmit the forces and moments between the two
wheels and the two springs. As a result, the front axle is

Fig. 2 Connecting rod

Fig. 3 Half-shaft
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subjected to the combined actions of bending and torsion.
The cross-sectional coefficient (Wx) of the front axle is

Wx ¼
aðh – 2tÞ3

6h
þ b

6h
h3 – ðh – 2tÞ3� �

, (22)

and the polar cross-sectional coefficient is

W� ¼ 0:8bt2 þ 0:4
ðh – 2tÞa3

t
: (23)

The maximum normal stress and the maximum shear
stress at the high-stress point are

s ¼ M

Wx
, (24)

τ ¼ T

W�

, (25)

where M and T represent the bending moment and torque,
respectively. In accordance with fourth strength theorem,
the resulting stress on the front axle is

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ 3τ2

p
: (26)

The state equation for the ultimate state of stress is

gðXÞ ¼ r –�, (27)

where r represents the material strength of the front axle.
The random variables are X =(r M T a t h b)T. The mean
value (E(X)), the variance (Var(X)), the third moment
(C3(X)), and the fourth moment (C4(X)) of X are known.
The random variables are independent of one another, but
the distribution of X is unknown.
The fore-axle of a vehicle affects torsional moment and

bending moment. The torsional moment T is (T) = (3.0834
�106 N$mm, 2.5017�105 N$mm, 1.806�1016 (N$mm)3,
2.135�1022 (N$mm)4). The bending moment M is
(M)=(3.5192�106 N$mm, 3.1961�105 N$mm,
3.6947�1016 (N$mm)3, 5.5364�1022 (N$mm)4). The
geometry sizes of risk section are (�a,�a)=(12, 0.06)
mm, (�t,�t)=(14, 0.07) mm, (�h,�h)=(80, 0.4) mm, and
(�b,�b)=(60, 0.3) mm. The material strength is (�r,�r)
=(667, 25.3) MPa. We attempted to determine the

reliability of the front axle.
1) We obtained the mean value, the variance, and the

third and fourth moments of each random variable and the
first four moments of the state function:

m1 ¼ 215:4988, m2 ¼ 1931:8930,

m3 ¼ �52660:16, m4 ¼ 8893478:00:

2) We used the PME to determine the coefficient of the
distribution function of the state function:

l0 ¼ – 0:89004� 10, l1 ¼ �0:46183� 10 – 1,

l2 ¼ 0:82709� 10 – 3, l3 ¼ �0:30545� 10 – 5,

l4 ¼ 0:29611� 10 – 8:

3) We obtained an analytical expression for the PDF of
the state function:

f ðxÞ ¼ expð�0:89004� 10 – 0:46183� 10 – 1x

þ 0:82709� 10 – 3x2 – 0:30545� 10 – 5x3

þ 0:29611� 10 – 8x4Þ:
4) We calculated the reliability of the connecting rod:

R ¼ 0:99963:

We approximated the reliability of the connecting rod
using the Monte Carlo method:

RMCS ¼ 0:99969:

4.4 Reliability of a rear axle housing

The rear axle housing (Fig. 5) of a vehicle supports and
protects the final reduction drive and differential. The axle
housing is both a power-transmission component and a
load-bearing component of the drive axle and ensures that
the relative positions of the left and right wheel axles are
fixed. In addition, the axle housing bears the weight of the
vehicle and transmits various forces on the wheels to the
vehicle body or the frame through the suspension.
Therefore, the axle housing must provide sufficient
strength and stiffness. The weight of the axle housing
can be reduced to improve the ride performance of the
vehicle. The axle housing can be easily produced,
assembled, dissembled, and repaired. The three main
types of axle housings are banjo, split, and unitized carrier.
In general, the rear axle housing is subjected to a

combination of bending and torsion. Under normal
circumstances, the high-stress points of the housing are
located at the bases of the leaf springs and the flange fillets.
The cross sections of the rear axle housing at these

Fig. 4 Fore-axle
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locations are essentially tubular. Therefore, an equation for
the reliability of the rear axle housing is derived for an
annular cross section and for a rectangular cross section
with a hollow circular center.
The housing with an annular cross section is subjected to

bending stress and torsional stress

s ¼ 32DM

πðD4 – d4Þ, (28)

τ ¼ 16DT

πðD4 – d4Þ, (29)

where M and T represent the bending moment and the
torque, respectively, and D and d represent the outer and
inner diameters of the axle tube at the high-stress cross
section, respectively. In accordance with fourth strength
theorem, the resulting stress at the high-stress points of the
housing is

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ 3τ2

p
¼ 32D

πðD4 – d4Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ 0:75T2

p
: (30)

The housing with a rectangular cross section is subjected
mainly to bending, and the bending stress is

� ¼ M

Wn
, (31)

where M represents the bending moment, and Wn

represents the cross-sectional bending resistance coeffi-
cient, which is determined using the following equation:

Wn ¼
bh2

6
1 – 0:59

d4

bh3

� �
, (32)

where d represents the diameter of the inner opening at the
high-stress cross section, and b and h represent the
dimensions of the outer rectangle at the high-stress cross
section.

In the stress-strength interference method, the state
equation for the ultimate state of stress is as follows:

gðXÞ ¼ r –�, (33)

where r represents the material strength of the housing.
The random variables for the housing with an annular cross
section are X =(r M T D d)T, and the random variables for
the housing with a rectangular cross-section center are X
=(r M b h d)T. The mean value (E(X)), the variance
(Var(X)), the third moment (C3(X)), and the fourth moment
(C4(X)) of X are known. The random variables are
independent of one another, but the distribution of X is
unknown.
The torsional moment T is (T) = (4.4868�106 N$mm,

3.7442�105 N$mm, – 4.1743�1016 (N$mm)3, 7.9139
�1022 (N$mm)4). The bending moment M on risk section
is (M)=(6.3809�106 N$mm, 6.0319�105 N$mm,
– 1.6181�1017 (N⋅mm)3, 5.0766�1023 (N$mm)4). The
inside diameter d and outside diameterD of the risk section
are (�d ,�d)=(74, 0.37) and (�D,�D) = (84, 0.42) mm,
respectively. The material strength r is (�r,�r) = (443,
27.5) MPa. We attempted to determine the reliability of the
rear axle housing.
1) We obtained the mean value, the variance, and the

third and fourth moments of each random variable and the
first four moments of the state function:

m1 ¼ 120:1691, m2 ¼ 1614:3290,

m3 ¼ 8442:4190, m4 ¼ 953281:4000:

2) We used the PME to determine the coefficient of the
distribution function of the state function:

l0 ¼ – 0:91056� 10, l1 ¼ 0:76910� 10 – 1,

l2 ¼ – 0:35288� 10 – 3, l3¼ 0:24788� 10 – 6,

l4 ¼ – 0:44315� 10 – 9:

3) We obtained an analytical expression for the PDF of
the state function:

f ðxÞ ¼ expð – 0:91056� 10þ 0:76910� 10 – 1x

– 0:35288� 10 – 3x2 þ 0:24788� 10 – 6x3

– 0:44315� 10 – 9x4Þ:
4) We calculated the reliability of the connecting rod:

R ¼ 0:99869:

We approximated the reliability of the connecting rod
using the Monte Carlo method:

RMCS ¼ 0:99863:

Fig. 5 Rear-axle housing
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The bending moment M on risk section is (M) =
(1.0976�108 N$mm, 1.0367�107 N$mm, – 8.1367�1020

(N$mm)3, 4.4569�1028 (N$mm)4). The inside diameter d
of the risk section is (�d ,�d)=(103, 0.515) mm. The sizes b
and h of quadrate section are (�b,�b) = (123, 0.615) and
(�h,�h) = (143, 0.715) mm, respectively. The material
strength r is (�r,�r) = (433, 27.5) MPa. We attempted to
determine the reliability of the rear axle housing.
1) We obtained the mean value, the variance, and the

third and fourth moments of each random variable and the
first four moments of the state function:

m1 ¼ 111:8853, m2 ¼ 1700:6420,

m3 ¼ 20374:9400, m4 ¼ 3265104:0000:

2) We used the PME to determine the coefficient of the
distribution function of the state function:

l0 ¼ – 0:85830� 10, l1 ¼ 0:81302� 10 – 1,

l2 ¼ – 0:53501� 10 – 3, l3 ¼ 0:13620� 10 – 5,

l4 ¼ – 0:249306� 10 – 8:

3) We obtained an analytical expression for the PDF of
the state function:

f ðxÞ ¼ expð – 0:85830� 10þ 0:81302� 10 – 1x

– 0:53501� 10 – 3x2 þ 0:13620� 10 – 5x3

– 0:249306� 10 – 8x4Þ:
4) We calculated the reliability of the connecting rod:

R ¼ 0:99798:

We approximated the reliability of the connecting rod
using the Monte Carlo method:

RMCS ¼ 0:99942:

4.5 Reliability of a leaf spring

A leaf spring (Fig. 6) is an elastic beam with approximately
uniform strength and is composed of one or more spring
steel plates of various lengths. The load borne by the rear

suspension of a truck often varies over a very wide range.
Therefore, the suspension is required to have variable
stiffness. To achieve this condition, a small leaf spring
(referred to as an auxiliary spring) is often installed above
the main leaf spring. With this arrangement, the stiffness of
the suspension is greater under the fully loaded condition
than under the no-load condition.

4.5.1 Reliability of a single-plate leaf spring

A single-plate leaf spring is an elastic beam with a
longitudinally varying cross section. The advantages of
this type of spring are that it requires much less steel to
produce, it is light in weight, and it improves the ride
performance of the vehicle (because interplate friction,
which is a problem in multiplate leaf springs, does not
occur, so the single-plate leaf spring has remarkable
longevity). A single-plate leaf spring is generally 40%–
50% lighter than a multiplate leaf spring with the same
service life. Several problems with single-plate leaf springs
(e.g., complex production processes, high cost, and safety)
must be addressed. However, single-plate leaf springs are
expected to become common as the design improves.
Another type of leaf spring composed of a small number
(2–4) of steel plates is also in use. This type of leaf spring
has characteristics similar to those of a single-plate leaf
spring and has been used extensively in other countries.
The stress on a single-plate leaf spring is

� ¼ 3Pl

2bh2
, (34)

where P represents the load, b represents the width of the
leaf spring, h represents the thickness of the leaf spring in
the design area, and l represents the span of the leaf spring.
In the stress-strength interference method, the state

equation for the ultimate state of stress is as follows:

g Xð Þ ¼ r –
3Pl

2bh2
, (35)

where r represents the material strength of the leaf spring.
The random variables are X =(r P l b h)T. The mean value
(E(X)), the variance (Var(X)), the third moment (C3(X)),
and the fourth moment (C4(X)) of X are known. The
random variables are independent of one another, but the
distribution of X is unknown.

4.5.2 Reliability of a multiplate leaf spring

The leaf springs in various machines are mostly simply
supported laminated plates that bear loads in the middle
section. Given a certain width, b, a steel plate is cut into
several narrow plates, which are then stacked to form a
multiplate leaf spring. The stress on a multiplate leaf spring
isFig. 6 Multileaf spring
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� ¼ 3Pl

bnh2
, (36)

where P represents the load, b, h, and l represent the width,
thickness, and length of the leaf spring, respectively, and n
represents the number of steel plates comprising the leaf
spring. Strictly speaking, the effect of friction between the
laminated plates on the stress should be considered, but it
was ignored in this analysis. This assumption is commonly
used to design leaf springs for automobiles and trolley cars.
In the stress-strength interference method, the state

equation for the ultimate state of stress is as follows:

g Xð Þ ¼ r –
3Pl

2bnh2
, (37)

where r represents the material strength of the leaf spring.
The random variables are X =(r P l b h)T. The mean value
(E(X)), the variance (Var(X)), the third moment (C3(X)),
and the fourth moment (C4(X)) of X are known. The
random variables are independent of one another, but the
distribution of X is unknown.

4.5.3 Reliability of a multiplate leaf spring composed of
steel plates with different thicknesses

Currently, reliability design methods for leaf springs are
limited to single-plate leaf springs and multiplate leaf
springs composed of steel plates with the same thickness.
An equation for calculating the reliability of a multiplate
leaf spring composed of steel plates with different
thicknesses and a reliability design method for this type
of leaf spring are derived. Under the condition that the
statistical parameters of the random variables are known,
the PME can be used to directly design reliable leaf springs
with numerical methods. In this manner, accurate relia-
bility information for leaf springs can be readily obtained.
Multiplate leaf springs are mostly simply supported

laminated springs that bear loads in the middle section.
Given a certain width, b, a steel plate is cut into several
narrow plates that are then stacked to form a multiplate leaf
spring. The equal-stress beam equation is often used to
calculate the vertical load on a leaf spring. The stress in the
vertical direction on a leaf spring is

� ¼ 3Pl

2b

hi
n1h

3
1 þ n2h

3
2 þ :::þ nmh

3
m
: (38)

The thickest plate bears the largest stress, which is

�max ¼
3Pl

2b

hmax

n1h
3
1 þ n2h

3
2 þ :::þ nmh

3
m
: (39)

The steel plates comprising the spring are assumed to
have the following proportional relationship:

h1 ¼ α1hmax, h2 ¼ α2hmax, :::, hm ¼ αmhmax: (40)

Thus, we have

�max ¼
3Pl

2bh2max

1

n1α
3
1 þ n2α

3
2 þ :::þ nmα

3
m
: (41)

where P represents the load, b, hi, and l represent the width,
thickness, and span of the leaf spring, respectively, and ni
represents the number of steel plates with a thickness of hi.
In the stress-strength interference method, the state

equation for the ultimate state of stress is as follows:

gðXÞ ¼ r –�max, (42)

where r represents the material strength of the leaf spring.
The random variables are X =(r P l b hmax)

T. The mean
value (E(X)), the variance (Var(X)), the third moment
(C3(X)), and the fourth moment (C4(X)) of X are known.
The random variables are independent of one another, but
the distribution of X is unknown.
The geometrical sizes of the composite springs are

(�b,�b) = (90, 0.45) mm, (�l,�l) = (1475.5, 7.375) mm,
(�h1 ,�h1 ) = (11, 0.055) mm, (�h2 ,�h2 ) = (10, 0.05) mm, and
(�h3 ,�h3) = (9, 0.045) mm. The number of panels is n1 = 2,
n2= 6, n3= 4. The load P is (P) = (1.6567�104 N, 8.2516
�102 N, 6.7288�108 N3, 2.6608�1012 N4). The material
strength r is (�r,�r) = (614, 45.8) MPa. We attempted to
determine the reliability of the leaf spring.
1) We obtained the mean value, the variance, and the

third and fourth moments of each random variable and the
first four moments of the state function:

m1 ¼ 226:9287, m2 ¼ 2502:9840,

m3 ¼ – 8581:8110, m4 ¼ 792867:4000:

2) We used the PME to determine the coefficient of the
distribution function of the state function:

l0 ¼ – 0:14364� 102, l1 ¼ 0:82985� 10 – 1,

l2 ¼ – 0:17909� 10 – 3, l3 ¼ – 0:69550� 10 – 9,

l4 ¼ – 0:34835� 10 – 10:

3) We obtained an analytical expression for the PDF of
the state function:

f ðxÞ ¼ expð – 0:14364� 102 þ 0:82985� 10 – 1x

– 0:17909� 10 – 3x2 – 0:69550� 10 – 9x3

– 0:34835� 10 – 10x4Þ:
4) We calculated the reliability of the connecting rod:

R ¼ 0:99999:
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We approximated the reliability of the connecting rod
using the Monte Carlo method:

RMCS ¼ 0:99988:

5 Conclusions

Reliability analysis and design theory are receiving
increasing attention from all industries and are an
important area of research, both in academia and industry.
The method developed in this study allows designers to set
reasonable margins of safety for machines and evaluate the
effects of random parameters on reliability, thereby
ensuring that the predicted operating performance of a
design will be accurate. In addition, with this method,
sufficient safety and reliability and economic efficiency
can be obtained. The PME reliability design method for
mechanical components proposed in this study uses the
PME to obtain an estimate of the PDF of the state function
with the least human bias under the condition that the
statistical parameters of the random variables are known,
and this PDF is used to calculate the reliability of
mechanical components. A theoretical derivation and
numerical results demonstrate that the proposed method
is practical and reliable. The proposed method was used to
calculate the reliability of various mechanical components
including a connecting rod, a half-shaft, a front axle, a rear
axle housing, and several types of leaf springs and quickly
obtain accurate reliability data. By calculating and
analyzing the reliability of mechanical components based
on entropy and the PME, the PME approach for machine
reliability demonstrated the following characteristics: 1)
The PDF generated from the PME is a theoretical model
with an explicit mathematical expression, and a simple
algorithm that can be readily implemented on a computer
can be derived. 2) The PDF of a random variable
determined using the PME has a relatively high goodness
of fit when a relatively large number of samples are
available but a relatively low goodness of fit when only a
relatively small number of samples are available. 3) No
special requirements are needed for the distribution of the
random variables when using the PME to analyze the
reliability of a component. The PME has relatively high
accuracy when used to calculate the reliability of a
component with random parameters that follow a non-
normal distribution. 4) A difference is observed between
the results obtained using the PME and Monte Carlo
method. This deviation mainly occurs because different
upper and lower boundary values are used in the PME
program when estimating the PDF of the state function,
resulting in a slightly different value of the coefficient from
that produced by the Monte Carlo method, which in turn
results in a slightly different distribution for the PDF. Thus,
the value of the cumulative distribution function at the
given value (i.e., the calculated reliability) is different from

that obtained using the Monte Carlo method. 5) When
constraints are properly selected, and a reasonable
randomness is applied, the PDF derived from the PME
can be used to find the specific distribution followed by the
data, providing an accurate probability model for the state
function for the ultimate state of stress used in reliability
design for mechanical components. This approach is an
improvement over approximate method. In particular,
using the PME to calculate reliability is straightforward
when the random variables follow a non-normal distribu-
tion.
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