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Abstract With the development of large rotary machines
for faster and more integrated performance, the condition
monitoring and fault diagnosis for them are becoming
more challenging. Since the time-frequency (TF) pattern of
the vibration signal from the rotary machine often contains
condition information and fault feature, the methods based
on TF analysis have been widely-used to solve these two
problems in the industrial community. This article
introduces an effective non-stationary signal analysis
method based on the general parameterized time–fre-
quency transform (GPTFT). The GPTFT is achieved by
inserting a rotation operator and a shift operator in the
short-time Fourier transform. This method can produce a
high-concentrated TF pattern with a general kernel. A
multi-component instantaneous frequency (IF) extraction
method is proposed based on it. The estimation for the IF
of every component is accomplished by defining a
spectrum concentration index (SCI). Moreover, such an
IF estimation process is iteratively operated until all the
components are extracted. The tests on three simulation
examples and a real vibration signal demonstrate the
effectiveness and superiority of our method.

Keywords rotary machines, condition monitoring, fault
diagnosis, GPTFT, SCI

1 Introduction

A safe and reliable running status of large rotary machines,
such as generator sets, aircraft engines, and draught fans,

plays an important role in industrial applications [1–6].
Therefore, the condition monitoring and fault diagnosis for
these machines are significant. The operational process of a
rotary machine contains speed raising and decline, load
variation, and fault shutdown process. In these non-
stationary processes, the instantaneous frequency (IF) of
the vibration signal from the machine shows a nonlinear or
a non-periodic changing rule, which implicates the rich
information of the running condition of the machine [7]. If
a fault occurs in these processes, then the fault feature will
be reflected in the corresponding IF of the signal. Hence,
the analysis for the IFs of these signals is one of the keys
for condition monitoring and fault diagnosis.
Fourier transform is the most famous tool for frequency

spectrum analysis. However, this tool cannot reveal the
variance rule of the frequency with the time. To solve this
problem, some effective time-frequency (TF) transforms
were proposed, including the short-time Fourier transform
(STFT), wavelet transform (WT), and Wigner-Ville
distribution (WVD) [8]. However, these transforms have
their own shortcomings, e.g., STFT lacks self-adaption,
thereby producing the same scale in the whole TF plane.
WT presents bad time resolution at a low frequency and
bad frequency resolution at a high frequency, and WVD
will generate a cross-term attributing to its bilinear
structure. Furthermore, the common defect for the three
methods is that they are non-parameterized.
Parameterized TF transforms have their own kernel

functions. This kernel function determines the TF pattern
that it fits to. Chirplet transform (CT) and Warblet
transforms are two well-known deputies of the parameter-
ized TF transforms [9–12]. The CT contains a quadratic
polynomial kernel function. This kind of kernel function
enables CT suitable to handle the linear frequency-
modulated signal, whereas the Warblet transform contains
a sine kernel function, which makes Warblet transform
capable of processing the signal with a periodic TF pattern.
However, the complex TF pattern, such as nonlinear or
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non-periodic IF laws, will present one with bad resolution
and concentration. Some modified versions exist for this
issue, but these versions still cannot provide a general
solution [8,13–15].
The general parameterized TF transform (GPTFT) was

proposed to overcome the shortages of these classical TF
analysis approaches [8]. The GPTFT is more than
generalizing the classical parameterized TF analysis
methods. The GPTFT reveals that the essence of the
parameterized TF transform is based on a rotation and a
shift operator with a kernel function, which maximizes the
frequency resolution of the IF under “Heisenberg’s
uncertainty principle.” The biggest merit of the GPTFT
is its generalized kernel function. This method can adapt to
the different kinds of TF patterns, whether linear or
nonlinear, periodic or non-periodic. STFT, CT, Warblet
transform, and FMm let transform [16] are special cases of
the GPTFT.
The GPTFT are mainly focused on a mono-component

or multi-component signals with the IFs of the same trend,
because the GPTFT is only based on one kernel function
[17]. However, circumstances occur with multi-component
signals in reality, and the IFs of these components have
different variation trends. The STFT and WT can also be
used to deal with multi-component signals. However, their
shortcomings will emerge again. EMD is one of the
effective multi-component analysis methods, but this
method is sensitive to noise and cannot process the
situation with overlapped IFs [18,19]. Other multi-
component analysis methods exist, but they may also be
inappropriate in processing the case in this study [20–22].
For the GPTFT, we can use the rotation operator to
estimate the IF of one component by defining a spectrum
concentration index (SCI), although this method cannot be
directly applied to handle the multi-component signal [17].
Then, the rotation operator with the estimated IF can be
used to rotate the corresponding component to be
stationary. This operation is a demodulation for the non-
stationary signal. The stationary component in the TF
plane can be filtered by a band-pass filter and reconstructed
by multiplying the conjugation of the rotation operator.
Finally, the reconstructed component can be subtracted
from the multi-component signal. The IFs of the remaining
components can be extracted through the same method.
This process continues until all the components are
extracted and such an extracting mode is often called
greedy algorithm [17,23].
The remainder of this article is organized as follows.

Section 2 introduces the definition of the GPTFT (its
mathematical expression), kernel modeling, and the
parameter identification method for the kernel. A simula-
tion example based on the polynomial kernel is presented.
Section 3 provides a general expression of the multi-
component signal and the IF estimation process for the
multi-component signal based on the SCI. The whole

component extraction process is illustrated via a flow
diagram. Two simulation examples are presented in this
section. Section 4 verifies the practicability of the proposed
IF extracting method through a real hydroturbine vibration
signal. Section 5 concludes this article.

2 GPTFT

2.1 Definition of GPTFT

The corresponding analytical signal zðtÞ, which is
generated by the Hilbert transform, H , i.e., zðtÞ ¼ sðtÞþ
jH ½sðtÞ�, of any signal sðtÞ 2 L2ðRÞ is represented as
follows:

zðtÞ ¼ AðtÞej2π!IFðtÞdt, (1)

where IFðtÞ is the IF of the signal sðtÞ. The GPTFT for zðtÞ
is defined as follows [8]:

TFsðt0,ω;PÞ ¼ !
þ1

–1zðtÞω*
�ðt – t0Þe – jωtdt, (2)

where

zðtÞ ¼ zðtÞΦr
PðtÞΦs

t0,PðtÞ

Φr
PðtÞ ¼ e

– j2π!κPðtÞdt

Φs
t0,PðtÞ ¼ ej2πtκPðt0Þ

ω�ðtÞ ¼
1

�
ffiffiffiffiffi
2π

p e
– t2

2�2

:

8>>>>>>><
>>>>>>>:

In Eq. (2), Φr
PðtÞ and Φs

t0,PðtÞ are kernel-based rotation
and shift operator; κPðtÞ is an integrable kernel function,
and P denotes its parameter set; and ω�ðtÞ is the window
function. The physical and geometrical meaning of these
functions will be explained further.
The principle of the GPTFT is illustrated in Fig. 1 [8].

First, the IF of the signal is rotated by the rotation operator,
Φr

PðtÞ, which corresponds to that IFðtÞ is subtracted by
κPðtÞ at any time. Then, the rotated IF is shifted by the shift
operator Φs

t0,PðtÞ for κPðt0Þ. Finally, the STFT is operated
by the window function, ω�ðtÞ. Evidently, no limitations
exist for forming the kernel function, which guarantees the
generality of the GPTFT. Moreover, the GPTFT will
degrade the STFT, CT, and Warblet transform when
κPðtÞ � 0, κPðtÞ ¼ αt, and κPðtÞ ¼ βcosðωtÞ, respectively.
Every part of the TF pattern of a signal has its own time

and frequency resolution, such as the enclosed rectangle
area, namely, the TF cell, in Fig. 1. The length and width of
this area represent time and frequency resolution. The time
resolution is only decided by the width of the window
function, whereas the frequency resolution depends on the
width of the window function and the slope of IF.
Therefore, the frequency resolution of the IF after rotation
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and shift can be summarized as ΔIFðt;�Þ þ 1=� from
Fig. 1. When the kernel function completely matches the
IF of the signal, the slope of IF at every TF cell equals to
zeros, i.e., ΔIFðt;�Þ ¼ 0. Thus, the frequency resolution
reaches its minimum 1=�. Therefore, the GPTFT can
provide a signal-dependent frequency resolution.

2.2 Kernel function modeling and parameter identification

According to the principle of the GPTFT above, the model
of the kernel function and its parameter identification
method are the keys for a satisfactory TF pattern of the
GPTFT. Three frequently-used kernel models exist,
namely, polynomial, Fourier series, and cubic spline. We
focus on the polynomial kernel in this study [24]. And
more detailed information for the other two models can
refer to Refs. [8,12,25].
The GPTFT based on the polynomial kernel is called

polynomial chirplet transform (PCT). It is a generalization
of CT. The kernel function model of PCT is a general
polynomial, which is embodied as follows:

κPðtÞ ¼
Xnþ1

i¼2

αi – 1t
i – 1, (3)

where parameter set P ¼ fα1,α2,:::,αng. Equation (3) is
substituted into Eq. (2), and the rotation and shift operator
can be embodied as follows:

Φr
PðτÞ ¼ e

– j2π
Xnþ1

i¼2

αi – 1t
i

i

Φs
t0,PðτÞ ¼ e

j2π
Xnþ1

i¼2

αi – 1t
i – 1
0 t

8>>>>>><
>>>>>>:

: (4)

We use the following nonlinear frequency modulated
signal to demonstrate the superiority of the PCT compared
with the classical TF transforms. The mathematic model of
the signal is as follows:

sðtÞ ¼ cos 2π 30t –
13t2

4
þ 1

6
t3

� �� �
, 0<t<15 s: (5)

The IF of this signal is IFðtÞ ¼ 30 – 6:5t þ 0:5t2. The
sampling frequency is set at 100 Hz. This current signal is
disturbed by a white Gaussian noise with a SNR of – 3 dB.
The TF patterns obtained by the STFT, WT, WVD, and
PCT are illustrated in Fig. 2. The width of the window
function for STFTand PCT is selected at 512 (default). The
deficiencies discussed in the Introduction emerge in the TF
patterns obtained by the STFT, WT, and WVD, but the
PCT overcomes these deficiencies and provides an
accurate and high-concentration TF pattern.
The parameter identification of the kernel function is

achieved by an iterative peak-extracted algorithm with a
rapid convergence speed. The detailed information of this
algorithm can be found in Refs. [8,24]. The parameter
identification result of IF for this example is presented in
Table 1, which is near the real one (f1 is the base frequency
of the signal).

3 Multi-component IF extraction based on
the GPTFT

3.1 SCI-based IF estimation method

The GPTFT is mainly focused on a mono-component
signal or multi-component signals with the IFs of the same
trend, because both require only one kernel function to
match the IF. However, a number of situations occur with
multi-component signals in reality, in which the TF
patterns are completely different. The idea of the GPTFT
can still be borrowed to solve this problem, although the IF
extraction for the multi-component signal is much more
complex than mono-component [17]. We start by defining
the general multi-component frequency modulated signal
to present a complete solution, as follows:

sðtÞ ¼
Xm
κ¼1

aκðtÞcos 2π fκt þ!φκðtÞdt
� �� �

: (6)

The IF of every component of the multi-component
signal is fκ þ φκðtÞ, where fκ denotes carrier frequency, and
φκðtÞ denotes modulated one. In order to unify with the
previous sections, Eq. (6) is taken Hilbert transform at first
and the corresponding analytical signal is expressed as

zðtÞ ¼ sðtÞ þ jH
�
sðtÞ

�

¼
Xm
κ¼1

aκðtÞe
j2π fκ tþ!φκðtÞdt
� �

:

(7)

All the IFs are nearly impossible to extract at one time,
because the TF pattern of each component may be
absolutely different. Therefore, extracting them one by

Fig. 1 Principle of the GPTFT (vector graph)
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one is a good substitute. Moreover, the rotation operator in
the GPTFT can still be used to estimate the IF of one
component by defining a SCI [17].
The multi-component model Eq. (7) multiplied by a

rotation operator becomes the following:

~zðtÞ ¼ zðtÞe – j2π!γðt;PÞdt

¼
Xm
κ¼1

aκðtÞe
j2π fκ tþ!½φκðtÞ – γðt;PÞ�dt
� �

:

(8)

Then, the SCI can be applied to the Eq. (8) to evaluate
the rotation effect

SCIðPÞ ¼ E jFð~zðtÞÞj4	 

, (9)

where Fð�Þ stands for the Fourier transform, and Eð�Þ
denotes the expectation on the frequency region. If the
parameterized kernel function γðt;PÞ of the rotation
operator completely matches the IF of a component in
the signal, that one will be rotated as a stationary
component at its carrier frequency. Actually, this is also a
demodulation process. At that time, the frequency
spectrum of the rotated signal would come into being a

concentrated peak at the carrier frequency of the matched
component. Also, the SCI reaches a local maximum on the
parameter region P simultaneously. This phenomenon is
the name source of SCI as depicted in Fig. 3 [17]. Hence,
the SCI can be used to estimate the IF of every component
in a multi-component signal with proper initial values of
parameter set P. The extraction sequence of IFs is ranked
by the energy of every component of the signal follow-up
to aim for an artificial process [17,23].
Based on the analysis above, every time the IF is

extracted, the IF can transform to solve the following
optimization problem:

~Pκ ¼ argmax
P

SCIðPÞ

¼ argmax
P

E jF zðtÞe – j2π!γðt;PÞdt
� �

j4
� �

:
(10)

The kernel function of a rotation operator can be
formulated by the polynomial, Fourier series, or the cubic
spline according to Section 2.3. Hereinafter, the poly-
nomial model and the corresponding PCT are employed to
demonstrate the effectiveness of the proposed method.
Thus, the kernel function γðt;PÞ and Eq. (10) can be

Table 1 Estimated parameters based on the PCT for signal in Eq. (5)

Parameter type f1 /Hz α1 α2

Estimated 29.898 – 6.446 0.492

Exact 30.000 – 6.500 0.500

Fig. 2 TF patterns of the signal in Eq. (5). (a) STFT; (b) WT; (c) WVD; (d) PCT
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specified as follows:

γðt;a1,a2,:::,anÞ ¼
Xn
i¼1

ait
i, (11)

~a1,~a2,:::,~anf gκ ¼ arg max
a1,a2,:::,an

SCIða1,a2,:::,anÞ: (12)

Equation (12) can be resolved by numerous optimization
algorithms, and we select particle swarm optimization
(PSO) in this article [17].

3.2 Multi-component IF extraction

When the IF of the component with the greatest energy has
been estimated, a series of measures can be used to extract
the corresponding component and continue this process.
We present a flow diagram (Fig. 4) in this article to
illustrate this extraction process, and a typical example is
attached to explain this process. More detailed demonstra-
tion of this process can refer to Ref. [17].
Such an extracting mode ranked by energy is called

greedy algorithm. An example to explain this algorithm is
the following formula:

zðtÞ ¼ z1ðtÞ þ z2ðtÞ ¼ ej2πð10tþ0:5t2Þ

þe – 0:03te
j2π 20tþ2t2 – t3

15

� �
,  0<t<15  s: (13)

Fig. 3 (a) TF pattern of the original signal; (b) frequency spectrum of the original signal; (c) TF pattern after rotation; (d) frequency
spectrum after rotation

Fig. 4 Multi-component IF extraction process (vector graph)
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The IFs of these two components are f1ðtÞ ¼ 10þ t
and f2 ¼ 20þ 4t – 0:2t2. The sampling frequency is set
at 100 Hz. Moreover, this signal is disturbed by a
white Gauss noise with a SNR of –5 dB. The order
of the kernel function is set at two, and the search ranges
of a1 and a2 for the PSO are set at [ –10, 10] in this
Section.
The main steps of the extraction process for this example

are presented in Fig. 5. The STFT of the original signal
with a SNR of – 5 dB is depicted in Fig. 5(a). The first
component with highest energy is rotated as a stationary
signal at its carrier frequency with the estimated parameters
by Eq. (12), and the TF pattern is illustrated in Fig. 5(b).
Then, the first component is filtered by a band-pass filter

and is reconstructed by modulating with the conjugation of
the operation operator. The TF pattern of the filtered
part and the PCT of the reconstructed one are shown in
Figs. 5(c) and 5(d), respectively, whereas Fig. 5(e) shows
the PCT of the second component after reconstructing with
the same operation. Finally, the TF patterns of these two
components are assembled in Fig. 5(f). The parameter
estimation results for the IFs of the two components are
displayed in Table 2.
A more complex example is handled subsequently to

further demonstrate the effectiveness of our method. This
example is a three-component signal, and the IF of one
component intersects with the other two. The mathematic
model of this signal is expressed as follows:

Fig. 5 TF patterns in several steps of the proposed algorithm. (a) STFT of the original signal; (b) STFT after demodulating the first
component; (c) filtering the first component; (d) PCTof the reconstructed component; (e) PCTof the second component; (f) assembled TF
pattern
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zðtÞ ¼ z1ðtÞ þ z2ðtÞ þ z3ðtÞ

¼ e
j2π 40t – 76t

2

� �
þ e – 0:05te

j2π 20t – 23t
2þ 2

45t
3

� �

þ0:8e – 0:05te
j2π 5tþt2

3

� �
,  0<t<15  s:

(14)

The IFs of these three components are f1 tð Þ ¼ 40 –
7t

3
,

f2 ¼ 20 –
4t

3
þ 2

15
t2 and f3 ¼ 5þ 2

3
t. The sampling fre-

quency is set at 100 Hz. The current signal is disturbed by a
white Gauss noise with a SNR of – 5 dB.

For comparison, the STFT, WT, and WVD are also
considered to present their results. In Fig. 6, the four TF
patterns obtained by the STFT, WT,WVD, and our method
are illustrated. The deficiencies concluded in the introduc-
tion to these three classical TF analysis methods become
prominent for this complex signal. However, the TF
pattern generated by our method exhibits a good anti-noise
capability and resolution. The IFs of the three components
are characterized accurately, and the parameters of the IFs
identified by our method are listed in Table 3. The
comparison with the real ones further demonstrates the
effectiveness of this multi-component IF extraction
method.

Fig. 6 TF patterns of signal in Eq. (14). (a) STFT; (b) WT; (c) WVD; (d) assembled PCT

Table 3 Estimated parameters based on SCI for signal in Eq. (14)

k Parameter type fk /Hz a1 a2

First one (k = 1) Estimated 39.995 – 2.332 – 6.384�10–5

Real 40.000 – 7/3 0

Second one (k = 2) Estimated 19.998 – 1.331 0.133

Real 20.000 – 4/3 2/15

Third one (k = 3) Estimated 4.996 0.663 5.150�10–4

Real 5.000 2/3 0

Table 2 Estimated parameters based on the SCI for signal in Eq. (13)

k Parameter type fk /Hz a1 a2

First one (k = 1) Estimated 9.997 1.001 – 1.159�10–4

Exact 10.000 1.000 0.000

Second one (k = 2) Estimated 20.001 3.998 – 0.199

Exact 20.000 4.000 – 0.200

298 Front. Mech. Eng. 2018, 13(2): 292–300



4 Application in feature extraction of a
rotary machine

In this section, we use a real hydroturbine vibration signal
to verify the practicability of our method [17,23]. This
multi-component signal is measured from the shutdown
process of a hydroturbine by the transducer. Moreover, the
signal from this non-stationary process contains the fault
information of the rotary machine. The sampling frequency
is set at 16 Hz, and the sampled points are 1032. The width
of the window function is set at 256. The order of kernel
function is set at three, and the search ranges of a1, a2, and
a3 for the PSO are set at [–1, 1] in this section.
The STFT, WT, and WVD of the vibration signal are

depicted in Figs. 7(a)–7(c), respectively. These methods
fail to extract the TF features of the signal. The four
components of this signal are successfully extracted one-
by-one successfully. Due to the limited space, they are not
exhibited individually but their assembled pattern is
presented in Fig. 7(d). The estimated IF parameters of
these components are presented in Table 4. Obviously, four

components exist in this signal, which corresponds to the
fundamental frequency component and the high-frequency
ones (2�, 3�, and 4�). The TF features of these four
components can be further used to compute the relevant
physical quantities, such as the instantaneous speed of the
rotator, and to achieve the condition monitoring and fault
diagnosis ultimately [1–6].

5 Conclusions

This article discussed in detail an effective non-stationary
signal analysis method based on the GPTFT. The definition
and principle of the GPTFT were first introduced [8]. The
kernel modeling and the parameter identification method
for the GPTFT were illustrated. A typical example was
used to present the superiority of the GPTFT over the
classical TF transforms. Then, a multi-component IF
extraction method was proposed based on the GPTFT
[17]. The IF estimation of each component is the key step
of this method. This step was accomplished by defining a

Fig. 7 TF patterns of the hydroturbine vibration signal. (a) STFT; (b) WT; (c) WVD; (d) assembled PCT

Table 4 Estimated parameters of the four IFs of the vibration signal

Components fk /Hz a1 a2 a3

Fundamental
frequency

1.6045 – 0.0618 0.0011 – 7.8561�10–6

2� 3.1383 – 0.1215 0.0023 – 1.6728�10–5

3� 4.7132 – 0.1840 0.0036 – 2.5872�10–5

4� 6.2118 – 0.2367 0.0045 – 3.2075�10–5
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SCI. A greedy algorithm based on the GPTFT was
executed subsequently until all the components had been
extracted. The effectiveness of our method was demon-
strated by two simulation signals and a real vibration
signal, which implicates the potential of our method for
feature extraction of the large rotary machine in order to
achieve the condition monitoring and fault diagnosis [1–6].
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