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Abstract
A Hyperledger Fabric is a popular permissioned blockchain platform and has great com-
mercial application prospects. However, the limited transaction throughput of Hyperledger
Fabric hampers its performance, especially when transactions with concurrency conflicts
are initiated. In this paper, we focus on transactions with concurrency conflicts and propose
solutions to optimize the performance of Hyperledger Fabric. Firstly, we propose a novel
method LMLS to improve the Write-Write Conflict. This method introduces a lock mech-
anism in the transaction flow to enable some conflicting transactions to be marked at the
beginning of the transaction process. And indexes are added to conflicting transactions to
optimize the storage of the ledger. Secondly, we propose a cache-based method to improve
the Read-Write Conflict. The cache is used to speed up reading data, and a cache log is
added to Hyperledger Fabric to ensure the data consistency. Extensive experiments demon-
strate that the proposed novel methods can significantly increase transaction throughput
in the case of concurrency conflicts, and maintain high efficiency in transactions without
concurrency conflicts.

Keywords Blockchain · Hyperledger fabric · Concurrency · Locking mechanism ·
Caching mechanism

1 Introduction

Blockchain technologies have become popular these years and can be applied to different
domains. Unlike a common database system, a Blockchain is a distributed, shared ledger
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system where the nodes do not fully trust each other. Each node holds the copy of the ledger
which is represented as a chain of blocks, with each block being a sequence of transactions.
With the characteristics of decentralization, distrust and tamper-proof, blockchain is adopted
in a wide variety of industries. A number of blockchain platforms have been developed,
including Bitcoin [13], Ethereum [7], Hyperledger Fabric [12] etc. Among them, Hyper-
ledger Fabric is a representative blockchain platform and has attracted much attention due
to the wide application range of it.

Hyperledger Fabric is a permissioned blockchain platform which is highly suitable for
developing enterprise-class applications and has a modular design. In Hyperledger Fabric,
the identity of each participant is known and authenticated cryptographically. Different from
many blockchains whose nodes are peer-to-peer, nodes in Hyperledger Fabric are of differ-
ent types. The nodes in Hyperledger Fabric contain Client, Peer and Orderer, and each of
them performs individual duty in the transaction flow. A transaction is initiated by Client
and sent to endorsing Peers. Endorsing Peers do endorsement and send response to Client,
then Client broadcasts the transaction proposal and response to Orderer which orders them
into blocks. The blocks containing some transactions are delivered to all Peers. At last,
Peers update the ledger and the transaction flow finishes. In addition, Hyperledger Fabric
has better scalability and security, and superior in performance [16] such as latency and
throughput to other blockchain platforms. Hyperledger Fabric which our work focuses on is
currently being used in many different applications such as Global Trade Digitization [23],
SecureKey [19] and Everledger [8].

Hyperledger Fabric has received a lot of concerns, but has exposed many problems at
the same time. The main problem is the performance of transaction processing, that is,
blockchain system including Hyperledger Fabric can only handle a huge volume of transac-
tions with a low throughput. Some papers analyze the performance of Hyperledger Fabric,
Gupta et al. [10] [11] present two models to optimize the temporal query performance of
Hyperledger Fabric. Thakkar et al. [22] study the impact of various configuration parame-
ters on the performance of Hyperledger Fabric. Gorenflo et al. [9] improve the throughput of
Hyperledger Fabric by reducing computation and I/O overhead during the transaction flow.

Although these studies have made great contributions, their proposed methods can-
not be directly used to tackle the following task, i.e., multiple operations updating the
same data in the ledger simultaneously. This is because approaches developed in existing
work can only conduct the operations having no conflicting transactions. Unfortunately,
this problem, which is called concurrency conflicts, is ubiquitous in Hyperledger Fabric
where the data is distributedly stored. We define the concurrency conflict in Hyper-
ledger Fabric as multiple proposals reading or writing the same data in the ledger
simultaneously.

We analyze the concurrency probelm on Hyperledger Fabric and find that when read
and write operations are performed on the platform at the same time, the read operations
are much faster than the write operations, so the read operations are submitted before the
update of the ledger by the write requests. As a result, the value read by the read opera-
tion is actually a old value. In addition, when there are multiple transactions to modify the
same data at the same time, since a transaction passes through multiple nodes and the trans-
action flow is relatively complicated, the system will only process one of the transactions
and modify the value successfully. The remaining transactions will return a “MVCC READ
CONFLICT” error and cannot be successfully updated, which leads to the inefficient pro-
cessing of transactions in Hyperledger Fabric. Therefore, we summarize the concurrency
problem on Hyperledger Fabric into two categories: Read-Write Concurrency Conflict and
Write-Write Concurrency Conflict. Among them, Read-Write Concurrency Conflict means
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that the read operations and the write operations are submitted at the same time for the
same data, which leads to the submission of wrong data. Write-Write Concurrency Conflict
means that there are multiple transactions were initiated at the same time and required to
modify the same data in the ledger, causing some transactions to fail to update the ledger.

To address above mentioned problem, we propose a novel method LMLS and a Cache-
based method. Since Read-Write Concurrency Conflict includes Write-Write Concurrency
Conflict, we first propose a LMLS method [24] for Write-Write Concurrency Conflict.
Firstly, a locking mechanism is proposed to discovery conflicting transactions at the begin-
ning of the transaction flow. For example, there are two transactions that are transferred to
the same account at the same time. Since the previous transaction first updated the account
data, the conflict of data inconsistency occurred in the latter transaction, which caused the
transfer to fail. If there are multiple times of the above transactions, the processing efficiency
will be low. The locking mechanism can prevent some conflicting transactions from occu-
pying resources of the nodes. We use redis [18] to implement the locking mechanism which
mainly contains locking and unlocking. When a transaction request is initiated, it is first
checked to ensure if its corresponding key is locked, thereby determining whether the trans-
action is a conflicting transaction. Moreover, a listener is used to control the lock and unlock
operations. Secondly, based on the locking mechanism, database indexes corresponding
to conflicting transactions are changed and temporally stored to improve processing effi-
ciency. In Hyperledger Fabric, the data is stored as a key-value pair 〈k, v〉. We transform
the index of the data corresponding to the conflict transaction from k to (k, d), where d is a
unique identifier of a transaction and (k, d) is the composite key generated by k and d . This
allows conflicting transactions who share the same key not to fail. Then, based on the LMLS
method, we propose a cache-based method to improve the system for Read-Write Concur-
rency Conflict. This method adds a cache mechanism to the entire transaction flow so that
when a read operation is initiated, it can first try to read the cached data. This can greatly
reduce the time used for the read operation. In addition, in order to ensure the consistency
of the cache and the ledger data , we add a cached log to prevent cache deletion failures that
cause the cache and ledger data to be out of sync. Combined with the LMLS method men-
tioned above, it can effectively improve the efficiency of Read-Write Concurrency Conflict
on Hyperledger Fabric. That is to say, based on LMLS and Cached-based methods, we can
address concurrency conflicts on Hyperledger Fabric. To sum up, the contributions of this
paper are as follows.

• To the best of our knowledge, we are the first to improve the performance of
Hyperledger Fabric in transaction processing by considering concurrency conflicts.

• To tackle the issue of concurrency conflicts, firstly, we design a novel method LMLS
which contains Locking Mechanism and Ledger Storage to improve Write-Write Con-
currency Conflict. Then, we propose a Cache-based method to improve Read-Write
Concurrency Conflict.

• The experimental results show that our method can significantly increase transac-
tion throughput in the case of concurrency conflicts and maintain high efficiency in
transactions without concurrency conflicts.

The rest of the paper is organized as follows: We present the related work in Section 2
and formulate the problem in Section 3. Section 4 gives a brief introduction of Hyperledger
Fabric architecture. In Section 5 we propose LMLS method to improve the performance
of Hyperledger Fabric with Write-Write Concurrency Conflict. In Section 5 we propose
Cache-based method to improve the performance of Hyperledger Fabric with Read-Write
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Concurrency Conflict. In Section 7, experiments are conducted to validate the effectiveness
of the proposed methods. Finally, we conclude this paper in Section 8.

2 Related work

Efficient handling of concurrency conflicts is a hot research topic in distributed database,
and conflicting transactions are also existing in Hyperledger Fabric which is a distributed
system. Hyperledger Fabric is a recent system that is still undergoing rapid development.
Hence, there is relatively little work on the performance analysis of the system or sugges-
tions for architectural improvements. Next, we will introduce the recent work related to this
research.

Analyzing blockchain performance. Blockchain performance analysis is an emerging
area. Recently the BLOCKBENCH system [6] benchmarked the popular blockchain imple-
mentations - Hyperledger Fabric, Ethereum and Parity [15] against a set of database work-
loads. Similar efforts include - benchmarking Hyperledger Fabric and Ethereum against
transactional workloads [16]. They find that Hyperledger Fabric outperforms Ethereum in
all metrics. Our paper focuses on improve the performance of Hyperledger Fabric.

Analyzing Hyperledger Fabric performance. Some studies have also looked at per-
formance studies of Hyperledger Fabric, and analyzed the performance from multiple
perspectives. For example, Nasir et al. [14] compare the performance of Hyperledger Fab-
ric 0.6 and 1.0 which find that the 1.0 version outperforms the 0.6 version. Baliga et al. [2]
show that application-level parameters such as the read-write set size of the transaction and
chaincode as well as event payload sizes significantly impact transaction latency.

Optimizing transaction processing performance. Many studies have proposed the opti-
mization of the performance for processing transactions in Hyperledger Fabric [25]. In
recent work, Thakkar et al. [22] study the impact of various configuration parameters on
the performance of Hyperledger Fabric. They identify some major performance bottlenecks
and provide some optimizations such as MSP cache, parallel VSCC validation. Gupta et al.
[10] [11] present two models to optimize the temporal query performance of Hyperledger
Fabric. Gorenflo et al. [9] improve the throughput of Hyperledger Fabric by reducing com-
putation and I/O overhead during the transaction flow. Sharma et al. [20] study the use of
database techniques to reorder transaction to remove serialization conflicts and abort trans-
actions which have no chance to commit early to improve the performance of Hyperledger
Fabric.

Optimizing other aspects of performance. In addition, some papers have optimized the
performance of other aspects of Hyperledger Fabric, i.e., channel, oderer component. As
known to all, Hyperledger Fabric’s orderer component can be a bottleneck so Sousa et al.
[21] study the use of the well-known BFT-SMART [3] implementation as a part of Hyper-
ledger Fabric to improve it. Androulaki et al. [1] study the use of channels for scaling Fabric.
However, this work does not present a performance evaluation to quantitatively establish
the benefits from their approach. Raman et al. [17] study the use of lossy compression
to reduce the communication cost of sharing state between Fabric endorsers and commit-
ters. However, their approach is only applicable to scenarios which are insensitive to lossy
compression, which is not the general case for blockchain-based applications.
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However, only few studies have looked at the issues concurrency conflicts on blockchain.
Thus, to improve the performance of Hyperledger Fabric, we focuses on concurrency
conflicts of transactions on this platform.

3 Problem definition

3.1 Concurrency conflicts problem in Hyperledger Fabric

Although Hyperledger Fabric has a higher transaction throughput than other permissioned
blockchain systems and some papers have studied its transaction performance, they almost
assume that multiple requests do not modify the same data in the ledger at the same time.
For the Hyperledger Fabric blockchain platform, its essence as a distributed database also
has the concurrency problems. On Hyperledger Fabric, every transaction that is initiated will
pass through Client, Peer, Orderer, etc., each transaction will be processed asynchronously,
and the process will continuously perform identity verification, key verification, etc. Work
to ensure the security of the data, and different from traditional databases, the data being
writen to the ledger needs to be verified by multiple nodes for consistency.The overall pro-
cess is more complicated. The speed of data being writen to the ledger and the speed of
data being written to traditional databases are very different. Simply treating the blockchain
as an ordinary database to do concurrency control processing, we need to find a suitable
method based on the characteristics of the blockchain.

We analyze the concurrency probelm on Hyperledger Fabric and find that when read
and write operations are performed on the platform at the same time, the read operations
are much faster than the write operations, so the read operations are submitted before the
update of the ledger by the write requests. As a result, the value read by the read operation
is actually a old value. In additon, when multiple requests want to modify the same data
simultaneously, Hyperledger Fabric will process one of the requests and successfully mod-
ify the value, and the rest will return “MVCC READ CONFLICT” errors, which cannot
be successfully updated. In detail, according to the transaction flow of Hyperledger Fab-
ric, both requests should be sent to Peers for endorsement, and the results of endorsement
will be sent to Orderer. Orderer packages and sorts the transaction proposals and responses,
then send them to all Peers for final validation. In the process of validation, Peers need to
ensure that the current state of the ledger is consistent with the state of the ledger in which
the transaction is generated. When multiple requests are initiated at the same time, one of
the requests update the value of the data first, causing errors in the remaining requests when
the requests verify consistency and returning failures. Such concurrency conflicts result in
lower efficiency in processing transactions.

3.2 Instance for conflicting transactions

Specifically, as shown in Figure 1, there are three people Tom, John and Amy. In the initial
state, the account balance of Tom, John and Amy is $100, $50, and $0. At a certain point,
Tom and John simultaneously transfer $10 to Amy, that is, there are two requests to update
Amy’s account balance at the same time. Here, they are initiated almost simultaneously,
through endorsement by Peers, ordering by Orderers. Then, the two transactions are packed
into the block and successively delivered to Peers for verification. It should be noted that
the transactions in the block contain much information, one of them is the status of the
ledger when the transaction is initiated (here, the status of the ledger is the initial state
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Figure 1 The instance for conflicting transactions (Tx1 represents Tom transfers $10 to Amy and Tx2
represents John transfers $10 to Amy)

shown in Figure 1). Without loss of generality, we assume that Tx1 arrives earlier, and Peers
compare the local ledger with the initial state in Tx1(the values corresponding to Tom are
both 100 and to Amy are both 0) finding that they are consistent. Therefore, the balance of
Tom is successfully updated to $90 and the balance of Amy is successfully updated to $10.
However, at this time, Tx2 is delivered to Peers, and repeating the above comparison, Peers
find it is not consistent with the current value of the local ledger(the value corresponding to
Amy in local ledger is 10 while the value in Tx2 is 0). Thus, the request of Tx2 is failed to
update the ledger and it should be initiated again.

Problem formalization. On Hyperledger Fabric, multiple transactions are initiated simul-
taneously at the same time to modify the same data in the ledger, resulting in at
least one transaction being successful and the remaining transactions failing. This sit-
uation is referred to as the Write-Write Concurrency Conflict of Hyperledger Fabric.
On Hyperledger Fabric Blockchain, read transactions and write transactions that operate
on the same data are submitted at the same time, resulting in the submission of erro-
neous data. This situation is called Write-Write Concurrency Conflict of Hyperledger
Fabric.

4 Architecture of Hyperledger Fabric

4.1 Nodes in Hyperledger Fabric

Nodes are the communication entities of the blockchain. Different from many blockchains
whose nodes are peer-to-peer, nodes in Hyperledger Fabric play different roles in the
network. There are three types of nodes shown in Figure 2:

Client. A Client represents an entity operated by the end user. A Client submits transac-
tion proposal to the Endorser Peer and broadcasts proposal and responses to Orderer.

Peer. A Peer is mainly responsible for reading and writing the ledger by executing chain-
code. All Peers are committing peers (Committers) responsible for maintaining the
state and the ledger. Peers can additionally take up a special role of an endorsing peer
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Figure 2 The transaction flow of Hyperledger Fabric

(Endorser). The endorsing peer is a dynamic role, and Peer is the endorsement node only
when the application initiates a transaction endorsement request to it, otherwise it is a
normal committing peer.

Orderer. A number of Orderers make up ordering service. Since the Hyperledger Fabric
is a distributed system, a ledger is stored on each node. When each node wants to mod-
ify the state of the ledger, there must be a mechanism to ensure the consistency of all
these operations,which is the orderer service. Orderers are responsible for ordering the
unpackaged transactions into blocks.

4.2 Transaction flow

Figure 2 depicts the transaction flow which involves 5 steps. This flow assumes that the
application user has registered and enrolled with the organization ’s certificate authority
(CA). The transaction flow is as follows:

1) Initiating Transaction. Client using Fabric SDK constructs a transaction proposal and
sends the proposal which is signed with credentials to one or more endorsement Peers
simultaneously.

2) Endorsement. First, the endorsing Peers verify the signature (using MSP). Second,
the endorsing Peers take the transaction proposal arguments as inputs and execute the
chaincode against the current state database to produce transaction results including a
response, read set and write set. Third, the results, along with the endorsing Peer’s sig-
nature and a YES/NO endorsement statement are passed back as a proposal response to
Client. Client will collect enough proposal responses from Peers and verify if the result
are same.

3) Ordering. Client broadcasts the transaction proposal and response within a transaction
message to the Orderer. The Orderer orders them chronologically by channel, and creates
blocks of transactions per channel.
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4) Validation. The blocks containing some transactions are delivered to all Peers. Peers
need to verify the signature by Orderer and need to do VSCC validation. A VSCC val-
idation will check if the endorsement policy is satisfied, if not, the transaction will be
marked invalid.

5) Ledger Updation. Each Peer appends the block to the local ledger, and for each valid
transaction the write sets are committed to the state-db which stores the current state of
all keys.

5 Proposedmethod LMLS

In order to solve the Write-Write Concurrency Conflict in Hyperledger Fabric, we propose
the following novel method LMLS to optimize the transaction flow to increase efficiency.
Firstly, a locking mechanism is proposed so that conflicting transactions can be discov-
ered at the beginning of the transaction flow. Secondly, based on the lock mechanism, we
add a database index for conflicting transactions and change the storage way of conflicting
transactions, so that they can be temporarily stored in the database. The above methods can
effectively improve the performance of Hyperledger Fabric with Write-Write Concurrency
Conflict.

5.1 Lockingmechanism

By analyzing the existing problems of Hyperledger Fabric, the main reason for the ineffi-
ciency is that invalid transactions (which ultimately failed to successfully update the ledger)
are found to be invalid after almost completing the whole transaction flow. Therefore, we
consider adding a locking mechanism at the beginning of the transaction process. The lock-
ing mechanism can prevent some of the conflicting transactions from occupying resources
of the nodes, so that some invalid transactions can be found in the early stage of the
transaction flow, thereby improving efficiency.

Implementation of the lockingmechanism. In this paper, we use redis [18] to implement
the locking mechanism. Redis is essentially a database of key-value types. Due to the advan-
tages of redis in performance and concurrency, the use of redis scenarios is mostly a highly
concurrent scenario. The idea of implementation is not complicated. In general, we can be
divided into two steps: locking and unlocking. First introduce the process of locking, the
distinguished name of a task in the request as a key to the redis. If there is a request with the
same distinguished name arriving, try to insert it into redis. If it can be successfully inserted,
return T rue, that is, it is successfully locked and will get a lock identifier. Otherwise, return
False, that is, the other request with the same distinguished name is operating, and the lock
fails. The process of unlocking is relatively simple. The lock identifier is passed as a param-
eter to check whether the lock exists. If it exists, the lock identifier can be deleted from the
redis.

Listener. To determine when to unlock, we used a listener which can be used to know
when the transaction was successfully written to the blockchain. Because of knowing that
the transaction has been written to the block, the identifier can be unlocked. In this paper,
we use Hyperledger Fabric officially provided listening interface ChannelEventHub [5].
Transaction processing in Hyperledger Fabric is a long operation. As a result the applica-
tions must design their handling of the transaction lifecycle in an asynchronous fashion. We
mainly use registerTxEvent interface to listen the transaction flow. When a transaction is
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initiated, a transaction listener is registered and returns a specific sequence number as the
identifier. When the transaction is written to the blockchain, it will be listened to by the
listener, and the listener will call the function to unlock the lock identifier corresponding to
the transaction.

5.2 Optimization of ledger storage

Although the lock mechanism can cause invalid transactions to be discovered earlier, users
need to re-initiate these transactions which does not improve the user experience. When
multiple conflicting transactions are initiated simultaneously, there will still be only one
transaction that can be successfully updated to the blockchain ledger and the other transac-
tions need to be initiated again. Therefore, based on the locking mechanism, we improve the
storage of the blockchain ledger and transform the database indexes to avoid concurrency
conflicts.

In Hyperledger Fabric, the data in ledger is stored in key-value pair. For a key k, the lat-
est pair is called the current state of the key k which is stored in state-db, while all the pairs
including the latest pair form the historical states of key k which is stored in history-db.
Obviously, the collection of current states for all keys is termed as state-db, and the collec-
tion of historical states is termed as history-db. In this paper, all the changes transactions
initiated are in the current state, so we only pay attention to state-db.

Usually, we modify the data in state-db by initiating a proposal. In this paper, we assume
that each time a proposal is initiated, only one data in state-db is modified, that is, a trans-
action T generates a proposal P , which corresponds to a key-value pair 〈k, v〉 in state-db.
If two transactions Ti and Tj are initiated at the same time, two proposals Pi and Pj will
be generated, corresponding to the key-value pairs 〈ki, vi〉 and 〈kj , vj 〉 in the state-db. If
ki = kj , this is the case of concurrency conflicts. In order to effectively avoid conflicts
and enable both proposals to be successfully executed, we transform the database indexes
of state-db. Specifically, for conflicting transactions, we transformed 〈k, v〉 to 〈(k, d), v〉
where (k, d) is the composite key generated by k and d , and d is a transaction id for trans-
action T , which is a unique identifier that is randomly generated. For transactions Ti and
Tj , without losing generality, we assume that Ti is processed before Tj , then we trans-
form 〈kj , vj 〉 to 〈k′

j , vj 〉 where k′
j represents the composite key (kj , dj ). Thus, ki and k′

j

are not equal and both transactions Ti and Tj can update the ledger avoiding concurrency
conflicts.

5.3 Steps of LMLS

Combining the ledger storage improvements with locking mechanism, the steps of LMLS
are shown in Figure 3, which can be divided into the following steps.

I A user initiates a transaction, and Client pre-processes the transaction, including
obtaining the key k of the data that the transaction wants to update. Client checks if
k is locked. If it is, directly turn to III, otherwise, turn to II.

II Lock k and get a lock identifier l.
III Client opens the listener, generates the corresponding transaction proposal, and

sends the proposal to Peers.
IV(i) If k obtains the corresponding lock identifier l, Peers generate the key-value pair

〈k′, v〉 according to the transaction id, and endorse to simulate the execution of
smart contracts.
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Figure 3 The complete transaction flow with LMLS

IV(ii) If k does not obtain l, Peers generate the key-value pair 〈k, v〉, and endorse to
simulate the execution of smart contracts.

V Peers return the endorsement result to Client, and Client sends the proposal and
result to Orderer which order and package them to new block. Orderer send the
packaged block to Peers, and Peers perform the final verification.

VI(i)] If k obtains the corresponding lock identifier l, Peers save 〈k′, v〉 into state-db to
update ledger. Client listens to the operation and closes the listener.

VI(ii) If k does not obtain l, Peers save 〈k, v〉 into state-db to update the ledger. Client
listens to the operation, then it unlocks the lock identifier l corresponding to k first
and closes the listener.

VII After all the above steps are finished, 〈k′, v〉 will merge with 〈k, v〉 by chaincode
safely and the former will be deleted.
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Figure 4 The example for LMLS to process conflicting transactions (Tx1 represents Tom transfers $10 to
Amy and Tx2 represents John transfers $10 to Amy)
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5.4 Example for LMLS

Continue the example in Section 3, we assume that Tx1 in Figure 4 arrives earlier, then
Client locks two keys(‘Tom’ and ‘Amy’) in Tx1 and starts listening. Subsequently, the
request of Tx2 is initiated, at this time Client only locks the key ‘John’ , then starts lis-
tening. When the above two proposals are sent to Peers, Peers generate the corresponding
key-value pair respectively and endorse them. The difference is that for Tx1, two key-value
pairs 〈T om, 90〉 and 〈Amy, 10〉 are generated, but for Tx2, a key-value pair 〈John, 40〉 and
a composite index-key-value pair 〈(Amy, T x2), 10〉 are generated. Then, the two transac-
tions are ordered and delivered to Peers where validation need to be done. In this example,
Peers first validate Tx1. They compare the local ledger with the initial state in Tx1(the val-
ues corresponding to Tom are both 100 and to Amy are both 0) finding that it is consistent.
Therefore, the balance of Tom is successfully updated to $90 and the balance of Amy is
successfully updated to $10. Next, Peers validate Tx2, since it has be known as a conflicting
transaction in the previous process where the value corresponding to Amy is being operated
by another request, a composite key-value pair 〈(Amy, T x2), 10〉 will be added to the ledger
instead of 〈Amy, 20〉. In addition, the balance of John will be successfully updated to $40.
As shown in Figure 4, there are two indexes related to Amy in the final ledger where the
sum of them is 20. When we request to query Amy’s balance, it will return 20 instead of 10.

6 Proposed cache-basedmethod

In order to solve the Read-Write Concurrency Conflict in Hyperledger Fabric, based on
the LMLS method mentioned above, we propose the following Cache-based method. This
method adds a cache mechanism to the entire transaction flow so that when a read operation
is initiated, it can first try to read the cached data. This can greatly reduce the time used
for the read operation. In addition, in order to ensure the consistency of the cache and the
ledger data, we add a cached log to prevent cache deletion failures that cause the cache and
ledger data to be out of sync.

6.1 Cachemechanism

By analyzing Read-Write Concurrency on Hyperledger Fabric, we find the main reason for
the problem is that when read and write operations are performed on the platform at the same
time, the read operations are much faster than the write operations, so the read operations
are much faster than the write operations, so the read operations are submitted before the
update of the ledger by the write requests. As a result, the value read by the read operation
is actually an old value. To solve this problem, a Cache-based method is proposed, and its
specific method is as shown in Figure 5.

First, for a write operation, after the user initiates a write operation, the Client node will
first add a read-write lock to the data corresponding to the operation, and then update the
ledger. After the update is completed, the listener will receive this information and then
proceed. A check to check whether the operation is the last write operation of the current
data.If it is, it means that there are no other operations to update the current data in the
ledger, you can update the cache, and unlock the corresponding data after updating the
cache, otherwise Unlock directly. At this point, the write operation is complete. Next, for
the read operation, after the user initiates the read operation, the Client node will first check
whether the corresponding data is added with a read-write lock. If so, it means that a write
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Figure 5 The cache flow

operation is updating the data at this time, so wait, otherwise start the check. Cache, if there
is a cache, then read the cached data directly, otherwise read the ledger data, and finally
submit the result.

For the specific flow of the cache mechanism, there is a step to check whether it is the last
write operation. Explain the meaning of this operation. For the read operation, we stipulate
that the data it reads must be all the data updated by the ledger after the write operation
initiated earlier than it; for the write operation, different write operations for the same data
can be performed asynchronously at the same time, without mutual interaction. It may be
affected by this situation: two write operations W1 and W2 are initiated at the same time,
of which W1 completes the update of the ledger earlier than W2. If the completion of the
update of the ledger has to update the cache, this situation will occur It is possible that W2
updates the cache earlier than w1 due to network delays, which means that W1 overwrites
the new results of W2, which will cause subsequent read operations to read the old results.
Therefore, plus the above check operation, there are two main advantages: one is to ensure
correctness, so that the read operation can read the latest results; the other is to reduce the
number of updates to the cache.

6.2 Data consistency

After the introduction of the cache mechanism described above, it is possible to speed up
the query of high-frequency access or data that is not modified long, preventing a large
number of requests from entering the transaction process and causing delays in other opera-
tions. Then, ensuring the consistency of the data in the cache and the database is a necessary
prerequisite for the cache to be effective. Among them, through the cache mechanism,
although the speed of reading data can be accelerated, the above scheme does not take
into account the failure of updating the cache. Imagine that if for some reason, the write
transaction did not successfully update the data in the cache after the ledger was success-
fully updated, at this time the read request to read the cache still read the old data, and at
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this time the data in the database It is obviously inconsistent with the data in the cache. To
this end, we add logs to manage cached updates, as shown in Figure 6. The specific scheme
is as follows: (1) The write transaction successfully updates the data in the ledger; (2) The
ledger database will write the operation information into the log; (3) The subscription pro-
gram extracts the required data and key; (4) The subscription program attempts to delete
the cache operation and finds that the deletion fails; (5) Send this information to the mes-
sage queue; (6) The program obtains the data from the message queue again and retry the
operation.

7 Experiments and analysis

7.1 Experiment setup

Since there are many concurrencies in the trading scenario, we implement a concurrency
scenario, which can be used for trading, with a chaincode [4]. Our chaincode enables users
to register their accounts, deposit, withdraw and transfer and check balances. In this paper,
we mainly simulated saving money with concurrency. We use Fabric release v1.2, single
peer setup running on a Lenovo T430 machine with 8GB RAM, dual core Intel i5 processor.
We use a single peer but we keep the consensus mechanism turned on. We use all default
configuration settings to run our experiments.

7.2 Comparedmethods andmetrics for experiments

For the Write-Write Concurrency Conflict on Hyperledger Fabric, we compare the per-
formance of our method LMLS with the original Hyperledger Fabric system. Although
existing methods [22] [9] also work on the performance of transaction processing, their
results are not comparable here, as their methods only work for transactions without concur-
rency conflicts. In additon, due to the original Hyperledger Fabric blockchain platform did
not control concurrency for transactions with Read-Write Concurrency Conflict, this article
uses a method only having read-write lock method which is containing in the cache-based
method as a baseline, and compares it with our cache-based method to test the performance
and effectiveness of the proposed method. We call the former RWlock based and the latter
Cache based.

Figure 6 The log for data consistency
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In this paper, we compare the performance of LMLS and Fabric with following metrics:
(1) Total time - the time cost to process all transactions. (2) Success rate - the ratio of trans-
actions successfully written to the ledger to all transactions. (3) Throughput - the amount of
transactions successfully written into the ledger per unit time.

7.3 Datasets

7.3.1 Datasets for write-write concurrency conflict

For Write-Write Concurrency Conflict, we carry out experiments with three synthetically
generated datasets. We implement a data generator to generate sets of transactions. In each
transaction {username, operation, amount}, operation denotes the type of the transaction,
such as deposit and withdrawal. The generated datasets are as follows.

• DS1: In this dataset, the accounts for all transactions are the same, that is, each
transaction deposits for the same account. The number of transactions is 10K.

• DS2: In this dataset, the accounts for all transactions are not necessarily the same. The
number of transactions and accounts are 10K and 1000.

• DS3: In this dataset, the accounts for all transactions are different, that is, each transac-
tion deposits for different accounts. Therefore, there is no concurrency conflict in this
dataset. The number of transactions is 1K.

7.3.2 Datasets for read-write concurrency conflict

Since this experiments mainly compares the problem of Read-Write Concurrency Conflict,
it mainly includes read operations and write operations. Considering the complexity and
uncertainty of concurrent scenarios, we randomly generate according to the proportion of
control read operations and write operations. Data for experiments. Here, we define the
read-write ratio Rrw , which is the ratio of read operations and write operations initiated in
the average unit time. Assuming that the number of read operations per unit time is Nr and
the number of write operations is Nw , then

Rrw = Nr

Nw

(1)

Each of our experiments randomly generates different transaction sets based on the
read-write ratio Rrw . The transaction datasets we generated mainly contain two opera-
tions of querying user balance and deposit, which correspond to read operations and write
operations respectively. Each transaction mainly includes the following information: (1)
transaction type (operation), including two types of deposit (saveMoney) and query bal-
ance (queryBalance); (2) transaction content, mainly including query or update Account
name (accountID); and the number of deposits (amount).

7.4 Experimental results

7.4.1 Experiment for DS1

First, we do experiment in DS1 which the accounts for all transactions are the same. We
change the transaction arrival rate, which is the average of transactions initiated per second,
from 10 tps to 200 tps. Four groups of experiment are tested which with different transaction
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Figure 7 Time cost and success rate of LMLS and Fabric at different transaction arrival rates in DS1 (N
denotes the transaction volume)

volume N of 10, 100, 1K and 10K. We test time cost and success rate, and the results can
be seen from Figure 7.

As can be seen from Figure 7, on the one hand, regardless of the transactions volume,
the total time of the two methods is similar, which shows that LMLS does not reduce the
efficiency of the system in processing transactions. On the one hand, LMLS obviously has
a higher success rate and the success rate can reach 100% no matter how high transaction
arrival rate is. However, except in the case of a transaction volume of 10, with the increase
of the transaction arrival rate, the success rates of Fabric have decreased significantly. Espe-
cially when the transaction arrival rate rises to 200 tps, the success rate is close to 0%. This
shows that LMLS can successfully handle almost all transactions in the case of high con-
currency conflicts, while Fabric cannot. Thus, LMLS is more suitable for scenarios with
concurrency conflicts and the efficiency is obviously better than Fabric.

7.4.2 Experiment for DS2

To further validate the performance of our methods, we do experiment in DS2 which the
accounts for all transactions are not necessarily the same. In the experiment, we initiate
multiple transactions with concurrency conflicts and these transactions will modify different
accounts. We define the average transaction number per user as n, the computation method
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Figure 8 Throughput of LMLS and Fabric in DS2 varying n (r denotes the transaction arrival rate)

as follows:

n =
∑u

i=1 ai

u
(2)

where u denotes the number of accounts modified in the experiment and ai denotes the
number of times the i-th account modified. For convenience, the number of times of each
account modified is the same in our experiment, that is, ∀i, j ∈ {1, 2, ..., u}, ai = aj , thus,
n = ai (i = 1, 2, ..., u). We test the throughput for two methods varying n and the results
can be seen from Figure 8.

In Figure 8, n denotes the average transaction number per user and r denotes the transac-
tion arrival rate. First, we can see that with the increase of n, the gap of throughput between
Fabric and LMLS is increased. The results illustrate that LMLS is more suitable for sce-
narios with multiple concurrency conflicts. Second, with the increase of n, the throughput
of LMLS is generally on the rise, while Fabric’s unchanged, moreover, when r = 200, its
throughput drops significantly. This shows that the efficiency of Fabric is greatly reduced
in high-concurrency scenarios, but LMLS not. Third, horizontally comparing the four line
charts, we can see that, as r increases, the throughput of LMLS is also increasing, which
illustrates LMLS also performs well in the case of high concurrency conflicts. The experi-
mental results show that our method is significantly more efficient than fabric in complex
trading scenarios involving concurrency conflicts.
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Figure 9 Throughput of LMLS and Fabric at different transaction arrival rates in DS3
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7.4.3 Experiment for DS3

In order to verify the efficiency of our method in transactions without concurrent conflicts,
we do experiment in DS3 which the accounts for all transactions are different, that is, no
concurrency conflict in this dataset. As shown in Figure 9, we test the throughput of two
methods at different arrival rates from 1 tps to 200 tps. We can see that as the transaction
arrival rate increases, the throughput of Fabric as well as LMLS is increasing. In the absence
of concurrency conflicts, LMLS performance is similar to Fabric. Although we add a lock
mechanism, our efficiency has not decreased. The experimental results show that our meth-
ods are applicable regardless of whether there are scenarios with concurrency conflicts or
without.

7.4.4 Experiments for Cache based and RWlock based

We performed experiments on multiple randomly generated datasets, with an average
transaction volume of 10,000 transactions per dataset, and finally recorded the average
throughput. Our experiment compares the RWlock based method with the Cache based
method, and conducts experiments with the transaction arrival rate (that is, the average value
of transactions initiated per second from 10tps to 200tps). Four groups of experiments were
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Figure 10 Throughput of RWlock based and Cache based with different transaction arrival rate(R denotes
the read-write ratio Rrw)

479



World Wide Web (202 ) 2 : –463 4821 4

100

125

150

175

200

1 10 50 100

)s
pt(t

h
g

u
or

h
T

r = 200

RWlock_based Cache_based

180

210

240

270

300

1 10 50 100

T
h
ro

u
g
h

t(
tp

s)

r = 1000

Figure 11 Throughput of RWlock based and Cache based with different Rrw(r denotes the transaction
arrival rate)

performed on the read-write ratio Rrw , and the results can be seen in Figure 10. As can be
seen from Figure 10, as the transaction arrival rate increases, the throughput of the system
is greatly improved.

In addition, when the read-write ratio is 1, the throughput of the cache based method
is only slightly higher than that of the RWlock based method. This is because the number
of read operations is low when the read-write ratio is low. It is relatively small, so the read
operation waits for less time. At this time, the utilization of the cache will be reduced.
Therefore, in the cache based method, the total processing efficiency will become lower;
and as the read-write ratio increases, the cache based scheme will be significantly higher
than that of RWlock based, and the gap will be more obvious when the transaction arrival
rate is higher, indicating that the cache based method is suitable for high concurrency and
read operations. When the number is greater than the number of write operations, it performs
well. At the same time, the efficiency does not decrease much when the number of read
operations is not large.

In addition, when the transaction arrival rates r were 200 and 1000, we perform
two sets of different read-write ratios. The experimental results are shown in Figure 11.
From the figure we can see that when the transaction arrival rate is low, the transac-
tion throughput of the RWlock based method and the cache based method are close, and
the cache based method is slightly higher, and the throughput also increases slightly as
the read-write ratio increases; when the transaction arrival rate is high, the difference in
throughput between the two is more obvious, especially the larger the read-write ratio,
the more obvious the gap. The experimental results also show that the method proposed
in this paper has better results in scenarios with high concurrency or more frequent read
operations.

7.4.5 Cost analysis

We we consider the time overhead for LMLS. On the one hand, LMLS compared to Fab-
ric have the cost of lock-mechanism construction time. However, compared to the time it
takes for the system to process the transactions, the time to build a lock is negligible, as
the experimental results show. In addition, although LMLS changes the database indexing
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method, it does not increase the time overhead of storage. On the other hand, we analyze the
storage cost of two methods. LMLS builds composite key-value pairs for each transaction
with concurrency conflicts, so the number of key-value pairs on state-db increase. How-
ever, we eventually merge the composite pairs with the original pairs. Therefore, in general,
storage cost has not increased. Moreover, in Hyperledger Fabric, regardless of whether the
transaction is valid, it will be stored in the block if it has been sorted by Orderer. There-
fore, in the case of transactions with concurrency conflicts, Fabric will package a large
number of invalid transactions into blocks. In contrast, LMLS can reduce the cost of block
storage.

8 Conclusion

In this paper, we focus on optimize the performance of Hyperledger Fabric by
improving the handling efficiency of transactions with concurrency conflicts. We propose a
novel method LMLS to optimize the performance of Hyperledger Fabric. Firstly, we design
a locking mechanism to discovery conflicting transactions at the beginning of the transac-
tion flow. Secondly, we optimize the ledger storage based on the locking mechanism, where
the database indexes corresponding to conflicting transactions are changed and temporally
stored in ledger. To validate the performance of the proposed solutions, extensive exper-
iments are conducted and results demonstrate that our method outperforms the original
method.
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Computer Security - 23rd European Symposium on Research in Computer Security, ESORICS 2018,
Barcelona, Spain, September 3–7, 2018, Proceedings, Part I, Lecture Notes in Computer Science,
vol. 11098, pp. 111–131. Springer (2018)

2. Baliga, A., Solanki, N., Verekar, S., Pednekar, A., Kamat, P., Chatterjee, S.: In: Crypto Valley Confer-
ence on Blockchain Technology, CVCBT 2018, Zug, Switzerland, June 20–22, 2018, pp. 65–74. IEEE
(2018)

3. Bessani, A.N., Sousa, J., Alchieri, E.A.P.: In: 44th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks, DSN 2014, Atlanta, GA, USA, June 23–26, 2014, pp. 355–362.
IEEE Computer Society (2014)

4. Chaincodes. http://hyperledger-fabric.readthedocs.io/en/release-1.2
5. ChannelEventHub. https://fabric-sdk-node.github.io/ChannelEventHub.html
6. Dinh, T.T.A., Wang, J., Chen, G., Liu, R., Ooi, B.C., Tan, K.: In: Salihoglu, S., Zhou, W., Chirkova, R.,

Yang, J., Suciu, D. (eds.) Proceedings of the 2017 ACM International Conference on Management of
Data, SIGMOD Conference 2017, Chicago, IL, USA, May 14–19, 2017, pp. 1085–1100. ACM (2017)

7. Ethereum blockchain app platform. https://ethereum.org/
8. Everledger: A digital global ledger. https://www.everledger.io/
9. Gorenflo, C., Lee, S., Golab, L., Keshav, S.: In: IEEE International Conference on Blockchain and

Cryptocurrency, ICBC 2019, Seoul, Korea (South), May 14–17, 2019, pp. 455–463. IEEE (2019)

481

http://hyperledger-fabric.readthedocs.io/en/release-1.2
https://fabric-sdk-node.github.io/ChannelEventHub.html
https://ethereum.org/
https://www.everledger.io/


World Wide Web (202 ) 2 : –463 4821 4

10. Gupta, H., Hans, S., Aggarwal, K., Mehta, S., Chatterjee, B., Jayachandran, P.: In: 34th IEEE Interna-
tional Conference on Data Engineering, ICDE 2018, Paris, France, April 16–19, 2018, IEEE Computer
Society, pp. 1489–1494 (2018)

11. Gupta, H., Hans, S., Mehta, S., Jayachandran, P.: In: 2018 IEEE 11th International Conference on Cloud
Computing (CLOUD), pp. 294–301. IEEE (2018)

12. Hyperledger fabric. https://www.hyperledger.org/projects/fabric
13. Nakamoto, S.: In: Bitcoin: A Peer-To-Peer Electronic Cash System (2008)
14. Nasir, Q., Qasse, I.A., Talib, M.W.A., Nassif, A.B.: Security and Communication Networks 2018,

3976093:1 (2018)
15. Parity. https://www.parity.io/
16. Pongnumkul, S., Siripanpornchana, C., Thajchayapong, S.: In: 26th International Conference on Com-

puter Communication and Networks, ICCCN 2017, Vancouver, BC, Canada, July 31–Aug. 3, 2017,
IEEE, pp. 1–6 (2017)

17. Raman, R.K., Vaculı́n, R., Hind, M., Remy, S.L., Pissadaki, E.K., Bore, N.K., Daneshvar, R., Srivastava,
B., Varshney, K.R.: In: IEEE International Conference on Blockchain and Cryptocurrency, ICBC 2019,
Seoul, Korea (South), May 14–17, 2019, pp. 277–284. IEEE (2019)

18. Redis. https://redis.io/
19. Securekey: Building trusted identity networks. https://securekey.com/
20. Sharma, A., Schuhknecht, F.M., Agrawal, D., Dittrich, J.: arXiv:1810.13177 (2018)
21. Sousa, J., Bessani, A., Vukolic, M.: In: 48th Annual IEEE/IFIP International Conference on Dependable

Systems and Networks, DSN 2018, Luxembourg City, Luxembourg, June 25–28, 2018, pp. 51–58. IEEE
Computer Society (2018)

22. Thakkar, P., Nathan, S., Viswanathan, B.: In: 26th IEEE International Symposium on Modeling, Anal-
ysis, and Simulation of Computer and Telecommunication Systems, MASCOTS 2018, Milwaukee, WI,
USA, September 25–28, 2018, IEEE Computer Society, pp. 264–276 (2018)

23. White, M.: Digitizing global trade with maersk and ibm. https://www.ibm.com/blogs/blockchain/2018/
01/digitizing-global-trade-maersk-ibm/

24. Xu, L., Chen, W., Li, Z., Xu, J., Liu, A., Zhao, L.: In: Cheng, R., Mamoulis, N., Sun, Y., Huang,
X. (eds.) Web Information Systems Engineering - WISE 2019 - 20th International Conference, Hong
Kong, China, November 26–30, 2019, Proceedings, Lecture Notes in Computer Science, vol. 11881,
pp. 32–47. Springer (2019)

25. Zhang, C., Xu, C., Xu, J., Tang, Y., Choi, B.: In: 35th IEEE International Conference on Data
Engineering, ICDE 2019, Macao, China, April 8–11, 2019, pp. 842–853. IEEE (2019)

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Affiliations

Lu Xu1 ·Wei Chen1 ·Zhixu Li1 · Jiajie Xu1 ·An Liu1 · Lei Zhao1

Lu Xu
lxu7@stu.suda.edu.cn

Zhixu Li
zhixuli@suda.edu.cn

Jiajie Xu
xujj@suda.edu.cn

An Liu
anliu@suda.edu.cn

1 Soochow University, Suzhou, China

482

https://www.hyperledger.org/projects/fabric
https://www.parity.io/
https://redis.io/
https://securekey.com/
http://arxiv.org/abs/1810.13177
https://www.ibm.com/blogs/blockchain/2018/01/digitizing-global-trade-maersk-ibm/
https://www.ibm.com/blogs/blockchain/2018/01/digitizing-global-trade-maersk-ibm/
http://orcid.org/0000-0002-5123-9279
mailto: lxu7@stu.suda.edu.cn
mailto: zhixuli@suda.edu.cn
mailto: xujj@suda.edu.cn
mailto: anliu@suda.edu.cn

	Solutions for concurrency conflict problem on Hyperledger Fabric
	Abstract
	Introduction
	Related work
	Analyzing blockchain performance.
	Analyzing Hyperledger Fabric performance.
	Optimizing transaction processing performance.
	Optimizing other aspects of performance.



	Problem definition
	Concurrency conflicts problem in Hyperledger Fabric
	Instance for conflicting transactions
	Problem formalization.


	Architecture of Hyperledger Fabric
	Nodes in Hyperledger Fabric
	Transaction flow

	Proposed method LMLS
	Locking mechanism
	Implementation of the locking mechanism.
	Listener.


	Optimization of ledger storage
	Steps of LMLS
	Example for LMLS

	Proposed cache-based method
	Cache mechanism
	Data consistency

	Experiments and analysis
	Experiment setup
	Compared methods and metrics for experiments
	Datasets
	Datasets for write-write concurrency conflict
	Datasets for read-write concurrency conflict

	Experimental results
	Experiment for DS1
	Experiment for DS2
	Experiment for DS3
	Experiments for Cache_based and RWlock_based
	Cost analysis


	Conclusion
	References
	Affiliations




