
World Wide Web (202) 2 : –375 3961 4
https://doi.org/10.1007/s11280-020-00846-3

Leveraging pointwise prediction with learning to rank
for top-N recommendation

Nengjun Zhu1 · Jian Cao1 ·Xinjiang Lu2 ·Qi Gu1

Received: 7 March 2020 / Revised: 12 July 2020 / Accepted: 21 September 2020 /

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
Pointwise prediction and Learning to Rank (L2R) are two hot strategies to model user
preference in recommender systems. Currently, these two types of approaches are often
considered independently, and most existing efforts utilize them separately. Unfortunately,
pointwise prediction tends to cause the problem of overfitting, while L2R is more prone
to higher variance. On the other hand, the advantages of multi-task learning and ensem-
ble learning inspire us to utilize multiple approaches jointly so that methods can promote
together synergistically. Therefore, we propose a new framework called CPL, where point-
wise prediction and L2R are inherently combined to improve the performance of top-N
recommendations. To verify the effectiveness of CPL, an instantiation of CPL, which is
named CPLmg, is introduced. CPLmg is based on two components, i.e., Factorized SLIM
(Sparse LInear Method) and GAPfm (Graded Average Precision factor model), to perform
pointwise prediction and L2R, respectively. Different from the original version of SLIM,
FSLIM reconstructs a denser representation both for users and items. Moreover, the low-
rank users’ and item’s latent factor matrices act as a bridge between FSLIM and GAPfm.
Extensive experiments on four real-world datasets show that CPLmg significantly outper-
forms the compared methods. To explore other possible combinations for CPL further, we

This article belongs to the Topical Collection: Special Issue on Web Information Systems Engineering 2019
Guest Editors: Reynold Cheng, Nikos Mamoulis, and Xin Huang

� Jian Cao
cao-jian@sjtu.edu.cn

Nengjun Zhu
zhu nj@sjtu.edu.cn

Xinjiang Lu
luxinjiang@baidu.com

Qi Gu
guqi@sjtu.edu.cn

1 Shanghai Institute for Advanced Communication and Data Science, Department of Computer
Science and Engineering, Shanghai Jiao Tong University, Shanghai, China

2 Baidu Business Intelligence Lab, Baidu Research, Beijing, China

Published online: 23 October 2020

http://crossmark.crossref.org/dialog/?doi=10.1007/s11280-020-00846-3&domain=pdf
mailto: cao-jian@sjtu.edu.cn
mailto: zhu_nj@sjtu.edu.cn
mailto: luxinjiang@baidu.com
mailto: guqi@sjtu.edu.cn

World Wide Web (202) 2 : –375 3961 4

selected another pointwise method, i.e., FunkSVD, and L2R approach, i.e., BPR, to imple-
ment CPLdb. The experimental results demonstrate the superiority of CPL again as it can
help improve the performance of its pointwise prediction and L2R components.

Keywords Implicit feedback · Personalized recommendation · Collaborative filtering ·
Learning to Rank · Metrics optimization · Similarity method

1 Introduction

Recommender systems have been widely adopted by many online services, since they are
able to solve the problem of information overload as well as facilitate interactions between
users and systems. Most recommender systems infer users’ interests through users’ his-
torical behaviors, either represented in explicit form or implicit form. Explicit feedbacks,
such as ratings, are given by users and they can indicate a users’ interest in a particu-
lar product. However, explicit feedbacks are not always available in practical systems. On
the contrary, implicit feedbacks, such as users’ browsing history, search patterns, or even
mouse movements, can be easily obtained from the system and do not burden the users. This
information can also reflect users’ preferences, although in an indirect way. Consequently,
recommendation approaches based on implicit feedback are becoming more widely used.

Pointwise prediction and learning to rank (L2R) are two representative genres of the
approaches for recommender systems [31]. Pointwise prediction tries to estimate the value
of an item to a user based on historical data with the aim of minimizing prediction errors.
It is straightforward and effective when users’ historical data is organized in rating forms.
In domains where only binary relevance data is available, there are also two definitional
levels, i.e., 1 for observed examples and 0 for missing ones, which can reflect the connection
strength between a user and an item. However, pointwise prediction models are inclined to
generate large bias, i.e., overfitting problem, since they are confined to being finely tuned
to each value of individual examples, even it is a noise. On the other hand, L2R methods
explore the preferential relations among multiple items, i.e., the relation that a user prefers
item i over item j , and consider the entire ranking list as a target for optimization. In contrast
to pointwise prediction, L2R methods may cause high variances since they are not sensitive
to small changes in the estimated value of each individual example unless it is compared to
the other one. In order to balance variance and bias, regularization terms are added to the
target functions of both methods.

We explore a new framework, CPL (a Combined framework of Pointwise prediction and
L2R), which tries to balance bias and variance not only by regularization but also based
on the inherent features of pointwise prediction and L2R. We train the two models itera-
tively with shared underlying variables, and trade-off controlling parameters are auto-tuned.
In addition to the real partial relations between items, we also apply L2R component to
model potential partial relations, which are mined according to the predicted results of the
pointwise prediction component. Then, the estimated value of each example is supposed to
be approaching the real value as well as keeping the correct preferential relations between
items.

In this paper, to verify the effectiveness of CPL, we choose SLIM [18] which is one of the
pointwise prediction methods, and GAPfm [26] which is one of the L2R methods, as the two
components to implement the CPL. SLIM and GAPfm both have been demonstrated to have
a stronger performance than other state-of-the-art approaches to top-N recommendations.
SLIM utilizes the intuition of item-based K-nearest neighborhood (ItemKNN) collaborative
filtering and makes use of the learning process of matrix factorization (MF) techniques to

376

World Wide Web (202) 2 : –375 3961 4

estimate the coefficients between every two items. The estimated coefficients are analogous
to item similarities in the traditional ItemKNN method, but they are learned from observed
data instead of being calculated based on the similarities between the items’ attribute
vectors. GAPfm takes the Graded Average Precision (GAP) metric as the extreme optimiza-
tion objective function which is proposed to address the top-N recommendation problem in
domains with grade relevance data. However, we would like to utilize the highly discrimi-
native trait of GAP to dynamically mine potential positive examples and to avoid the trap of
suppression of preferences for items of which the user is unaware [19, 23, 30].

In order to combine SLIM and GAPfm in a better way, we revise their original versions
and combine them into the CPLmg framework, which is an implementation of CPL. Specif-
ically, we improve the SLIM to be a more general factor model, namely FSLIM. FSLIM
inherits all the desirable characteristics of SLIM: it has a sparse coding coefficient matrix
to improve the training process and to mine the similarities between items and it can uti-
lize feature selection in the same way as SLIM. The difference is that FSLIM reconstructs
a denser representation both for users and items, which can improve the recommendation
performance [13]. Then, the low-rank users’ and item’s latent factor matrices act as a bridge
between FSLIM and GAPfm, so that the learned denser representation can be transferred to
each other. Moreover, we pass the relevant information from positive examples to unknown
items according to the learned item similarities for GAPfm, and the confidence score of
a grade to be the threshold that separates unknown items is also updated dynamically in
every training round. Thus, the combination of FSLIM and GAPfm results in the consid-
erably improved learning accuracy of GPLmg. Extensive experiments on four real-world
datasets demonstrate the effectiveness of CPL and CPLmg. The experimental results show
that CPLmg significantly outperforms the compared methods, and CPL framework can help
improve the performance of its pointwise prediction and L2R components.

Finally, to further verify CPL’s superiority and flexibility, other possible pointwise ap-
proaches, e.g., FunkSVD, and L2R approaches, e.g., BPR, are selected to implement another
instantiation of CPL, which is named CPLdb in the experiment section. Although the per-
formance of CPLdb is not as good as CPLmg, it is still better than FunkSVD and BPR. It
further proves the combination can make a more significant impact than individual efforts.

The main contributions of this paper are as follows:

1. We introduce a new framework CPL to combine pointwise prediction and L2R methods
to address the top-N recommendation in domains with binary implicit feedback.

2. We propose an implementation of CPLmg for CPL. In CPLmg, we combine the FSLIM
and GAPfm models. FSLIM is extended from SLIM by incorporating the idea of
matrix factorization (MF) methods. Moreover, strategies are designed to better integrate
FSLIM and GAPfm.

3. We explore another possibility to implement CPL and choose FunkSVD and BPR to
conduct the pointwise and L2R components of CPL.

4. Extensive experiments are conducted, which show that CPLmg outperforms other base-
lines on various evaluation metrics, and CPL framework promotes the performance of
its pointwise prediction and L2R components.

The rest of this paper is organized as follows: we first introduce the related work in
Section 2. In Section 3, we give the definitions and notations as well as describe the two
basic models, SLIM and GAPfm. Then, in Section 4, CPLmg is described with its two
components in detail. The experimental evaluation and CPLdb are introduced in Section 5,
which is followed by the conclusions and future work in Section 6.

377

World Wide Web (202) 2 : –375 3961 4

2 Related work

Our proposed model, which is based on a combination of pointwise prediction and learning
to ranking, addresses the top-N recommendation problem with implicit feedback. There-
fore, it is related to state-of-the-art top-N recommendation technologies, including matrix
factorization (MF) methods and L2R approaches. Besides, since SLIM, an original compo-
nent of our model, is also a kind of similarity method, we also provide an overview of recent
research on similarity methods related to SLIM.

2.1 Matrix factorization (MF)

Collaborative filtering (CF) is a core technology in recommender systems, which infers
user preferences by utilizing relationships between users or between items directly or indi-
rectly. It can be divided into memory-based methods and model-based methods [6]. Matrix
factorization is one of the most popular model-based methods. It learns latent factor rep-
resentations with respect to users and items to model user preferences as the dot product
of latent factor vectors. It has multiple extensions, such as SPMF [2], SVD++ [12], PMF
[22] and HeteroMF [9]. Due to the excellent scalability of MF, some recent work has
explored the combination of MF and other technologies, such as deep learning for recom-
mendation. Neural network-based collaborative filtering (NCF) [8] is a general framework
and is essentially a fusion model of Generalized Matrix Factorization (GMF) and Multi-
Layer Perceptron (MLP). ConvMF [11] is a novel context-aware recommendation model
that integrates the convolutional neural network (CNN) into probabilistic matrix factoriza-
tion (PMF). The work in [5] proposed another hybrid model, which makes use of both
the rating matrix and side information. It also combines the Additional Stacked Denoising
Autoencoder (aSDAE) and matrix factorization together.

2.2 Similarity methods (SM)

The similarity method models the user preference for an item based on user similarities
or item similarities, which are called user-based nearest neighbourhood (UserKNN) and
item-based nearest neighbourhood (ItemKNN), respectively. In traditional CF methods, the
similarity is calculated based on user historical data according to certain criteria, such as
Jaccard and Cosine. SLIM [18] directly learns a similarity matrix from the data, and thus
becomes a novel learning model. To address the quadratic computation problem of SLIM,
a factorized similarity model FISM [10] is proposed. FISM factorizes the similarity matrix
into two low rank matrices. However, both SLIM and FISM do not produce a user-specific
latent factor matrix. Thus, LRec [23] and GSLIM [13] are proposed to overcome this limi-
tation. LRec is interpreted as a linear classification model for each user, and GSLIM learns
the latent factor matrices of the users and the items via a traditional matrix factorization
approach, followed by reconstructing the latent user or item matrix via prototypes that are
learned using sparse coding. As SLIM is a particular case of MF, it inherits the excellent
scalability of MF, which results in SLIM having many variants incorporating contextual
information or auxiliary information, such as CSLIM [29], a contextual SLIM recommen-
dation algorithm. Furthermore, there are many studies on the localized SLIM, such as
GLSLIM [4] and LorSLIM [3].

378

World Wide Web (202) 2 : –375 3961 4

2.3 Learning to rank approaches (L2R)

Learning to Rank (L2R) is a popular research area, since it directly models partial order-
ing relations between items, which happens to be in consistent with top-N recommendation
tasks. One key element of L2R methods is the objective measures, defined as either ranking
error functions or optimization metrics. Thus, based on different objective measures, many
L2R methods have been proposed. BPR [20] maximizes AUC (the area under the curve)
metrics by utilizing the partial order relations between items. CLiMF [25] and xCLiMF
[27] are two L2R methods based on mean reciprocal rank (MRR) and expected reciprocal
rank (ERR) [1], respectively. Moreover, SVM-MAP [28] and TFMAP [24] optimize MAP
metric directly. To alleviate the overfitting problem of L2R, GTRM [30] optimizes the met-
ric group-oriented mean average precision (GMAP) that considers the similarities between
items, and PRIGP [19] integrates item-based pairwise preferences and item group-based
pairwise preferences into the framework based on BPR-OPT derived from BPR.

Local-based L2R is another hot research topic in recommender systems. This research
learns partial ordering relations between items based on local information instead of global
data. For example, LLORMA [14] and LCR [15] assume that the rating matrix is low-rank
within certain neighborhoods of the metric space and thus optimize these objective measures,
such as Frobenius norm loss function and pairwise loss function, based on local data.

However, the above-mentioned approaches only utilize regularization terms to balance
bias and variance, and none of them combine pointwise prediction and L2R for top-N
recommendations.

3 Definitions and notations

Assume that the implicit feedback data is from M users’ behaviors on N items, and we use
the symbol u to index a user, the symbol i and j to index items, and the symbol k to index
a latent factor. The set of all users and items are represented by U = {u = 1, 2, . . . , M}
and I = {i = 1, 2, . . . , N}, respectively. O(u) is the set of all observed items of user
u and O(u) = I\O(u) denotes the set of all unobserved items of user u. The matrices
P ∈RM×K and Q ∈RN×K are latent factor matrices related to users and items respectively,
and each latent vector has K-dimension. The entire set of user historical feedback such as
purchases/clicking are represented by a user-item interaction matrix A ∈ R

M×N , in which
each entry is represented by Aui ∈ {0, 1}, where Aui = 1 means that user u has at some
point interacted with item i, otherwise the entry is marked as 0.

In the rest of the paper, vectors and matrices are both denoted by upper bold symbols,
where the symbol with no subscript represents the matrix itself. The symbol with one sub-
script (e.g., Pu) represents a vector extracted from its matrix by the row/column subscript
index, and the symbol with two subscripts (e.g., Puk) represents the entry. A predicted value
is denoted by the symbol with a wide tilde head (e.g., ˜Aui). Unless stated differently, all
vectors are column vectors by default, but the vectors with the transposed subscript T (e.g.,
PT

u) are row vectors.

3.1 SLIM

Item-based approaches based on SLIM (Sparse LInear Methods) have demonstrated very
good performance for top-N recommendation. Different from traditional similarity models
that calculate similarities based on attributes according to certain criteria, SLIM learns the

379

World Wide Web (202) 2 : –375 3961 4

item similarities from the data directly. That is, SLIM estimates a sparse N ×N aggregation
coefficient matrix W, in which each entry Wij can be viewed as the similarity between items
i and j . Then the recommendation score from user u to an unobserved item i is computed
as a sparse aggregation of all the observed items of the user, as follows:

˜Aui = AT
uWi (1)

where AT
u is the row vector extracted from A by the row/user index u, and Wi is a column

vector, which represents the i-th column vector of matrix W. Then, SLIM estimates/learns
the W by solving the following optimization problem:

minimize
W

1

2
||A − AW||2F + β

2
||W||2F + λ||W||1

subject to W ≥ 0

diag(W) = 0 (2)

Here, ||W||1 is the entry-wise �1-norm of W which encourages sparsity, and ‖ • ‖F is the
matrix Frobenius norm. The constraint diag(W) = 0 prevents learned item similarities from
being affected by the item itself. As for the nonnegativity constraint, [16] showed that it
could be ignored without affecting performance.

3.2 GAPfm

GAPfm is a listwise L2R method which directly optimizes a smoothed approximation of the
GAP metric. GAP generalizes average precision (AP) to the case of multi-graded relevance
and inherits the most important property of the AP metric which guarantees that mistakes in
recommended items at the top of the list carry a higher penalty than mistakes at the bottom
of the list. The definition of GAP is as follows:

GAPu = 1

Zu

N
∑

i=1

Iui

Rui

N
∑

j=1

Iuj I(Ruj ≤ Rui)

(

I(yui < yuj)

yui
∑

l=1

δl + I(yuj ≤ yui)

yuj
∑

l=1

δl

)

(3)

where Rui denotes the ranked position of item i for user u, e.g., Rui = 1 denotes the item
is ranked in the first/highest position. Iui = 1 (Iui ∈ {0, 1}) denotes the item is a positive
example, otherwise it is a negative/missing example. yui denotes the grade of item i to
user u. I(x) is a binary indicator function, i.e., it is equal to 1 if x is true, otherwise 0.
Zu = ∑ymax

l=1 nul

∑l
c=1 δc is a constant normalizing coefficient for user u, where nul denotes

the number of items rated with grade l by user u, and δl denotes the threshold probability
that the user sets as a threshold of relevance at grade l, i.e., regarding items with grades equal
or larger than l as relevant ones, and the others as irrelevant ones, as defined as follows:

δl =
{

2l−1
2ymax , ymax > 1

1, ymax = 1
(4)

Then, with a small manipulation, (3) can be smoothed to be an optimization objective func-
tion with respect to the learned parameters, i.e., P and Q, the details of which are given in
the following sections.

380

World Wide Web (202) 2 : –375 3961 4

4 Proposedmethodology

In this section, we show in detail how to combine SLIM and GAPfm to implement CPL.
Before this, we firstly introduce its two components: (1) a variant of SLIM, namely
Factorized SLIM (FSLIM), and (2) GAPfm with sampling strategy.

4.1 Factorized SLIM (FSLIM)

Factorized SLIM is a new version of SLIM that incorporates ideas from traditional matrix
factorization (MF) methods. We still define the recommendation score from user u to an
unobserved item i as a sparse aggregation of the scores of all observed items by the user.
However, the representation of each item is no longer a numerical value, i.e., 1, but is a
latent factor vector, i.e., Qi . Then, the entry of Aui is estimated as the product of the user
latent vector and the linear combination of item latent vectors as follows:

˜Aui = g

⎛

⎝PT
u

∑

j∈O(u)

QjWji

⎞

⎠ (5)

where g(x) = 1/(1 + e−k(x−c)) is a sigmoid function, which is a common choice for
one-class recommendation. In order to simplify the analysis and computation process, we
suppose c = 0 and k = 1 in g(x). W is a sparse aggregation coefficient matrix like that
in SLIM. Taking into account all the observed data, the final loss function is defined as
follows:

LF = 1

2

M
∑

u=1

N
∑

i=1

‖Aui − g

⎛

⎝Pu

∑

j∈O(u)

QjWij

⎞

⎠ ‖2
F

+β1

2
‖P‖2

F + β2

2
‖Q|‖2

F + β3

2
‖W‖2

F + λ‖W‖1 (6)

where diag(W) = 0, and we drop the constraint of W ≥ 0 compared to SLIM. We have
previously provided the reason for this.

Stochastic gradient decent technology (SGD) is used to solve this optimization problem,
and the gradients of the parameters are as follows:

∂LF

∂Pu

= −(Aui − g(˜Aui))g
′(˜Aui)

∑

j∈O(u)

QjWji + β1Pu (7)

∂LF

∂Qi

= −
∑

j∈O(u)

(Auj − g(˜Auj))g
′(˜Auj)PuWij + β2Qi (8)

∂LF

∂Wij

= −(Aui − g(˜Aui))g
′(˜Aui)PT

uQj + β3Wij ± λ (9)

where g′(x) = g(x)/(1 − g(x)) is the derivative of function g(x). Then, with a learning
step size η1, the updated formula for FSLIM is as follows:

�(t) ← �(t−1) − η1
∂LF

∂�
(10)

where � represents the model parameter, and �(t) is the value of � at t-th SGD step.

381

World Wide Web (202) 2 : –375 3961 4

4.2 GAPfmwith sampling strategy

The work in [26] mainly focuses on graded relevance domains, such as rating data, and takes
GAP as the objective metric in learning to rank. However, in domains with binary relevance
data, we would still like to take full advantage of high informativeness and discriminative
power of GAP [21] to dynamically mine potential positive examples and to avoid the trap of
the suppression of preferences for items about which the user is unaware. That is, we utilize
the sparse aggregation coefficient matrix learned from FSLIM to estimate the connection
strength of each unobserved item for each user, which can be demonstrated as:

yui =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

g

⎛

⎝PT
u

∑

j∈O(u)

QjWji

⎞

⎠ , i /∈ O(u)

1, i ∈ O(u)

(11)

It is likely that some values will be prefilled into matrix A. The closer the value of yui to 1,
the more likely item i is a potential preferred item for user u, since the value of yui depicts
the relationship between item i and the user. Thus, according to the value of yui , we select
the top-N unobserved items as potential preferred items for user u, and record the indexes
of all these items and already observed items into a set O′(u) as well as record the pseudo
ratings (the values of yui) of all items in O′(u) into a set Y (u). We let pn denote the number
of the potential preferred items we select. Then, we change the threshold probability δu(y)

as a confidence score of that pseudo rating y ∈ Y (u) being the threshold value for user u,
i.e., regarding items with a pseudo rating equal or larger than y as potential preferred ones,
and the others as not preferred ones, as follows:

δu(y) = y
∑

t∈Y (u) t
(12)

The larger the value of δu(y), the more credible the result of this division. Then, we update
the formulation of GAP as:

GAPu = 1

Zu

N
∑

i=1

Iui

Rui

N
∑

j=1

Suij Iuj I(Ruj ≤ Rui) (13)

where Suij is defined as follows:

Suij = I(yui < yuj)
∑

t∈Y (u)&t≤yui

δu(t)

+I(yuj ≤ yui)
∑

t∈Y (u)&t≤yuj

δu(t) (14)

and Zu is defined as follows:

Zu =
∑

t∈Y (u)

nut

∑

l∈Y (u)&l≤t

δu(l) (15)

Then we use g(x) function and parameters P,Q to estimate the term of 1
Rui

and I(Ruj ≤
Rui) in (13) to get a smoothed version of GAP as follows:

GAPu ≈ 1

Zu

N
∑

i=1

Iuig(fui)

N
∑

j=1

Suij Iuj g(fu(j−i)) (16)

382

World Wide Web (202) 2 : –375 3961 4

where fui = PT
uQi and fu(j−i) = PT

u (Qj − Qi). Then, taking into account all users
and adding two Frobenius norms ‖P‖F and ‖Q‖F as well as a parameter β to control the
magnitude of regularization, the final objective function of GAPfm is shown as follows:

LG =
M
∑

u=1

N
∑

i=1

Iuig(fui)

N
∑

j=1

Suij Iuj g(fu(j−i)) − β4

2
‖P‖2

F − β5

2
‖Q|‖2

F (17)

Note that, (17) has dropped the coefficient 1/M and 1/Zu since they are independent of
the latent factors and have no influence on the optimization procedure. Now, we use the
stochastic gradient ascent (SGA) to solve this optimization problem, and the gradients of
the parameters are as follows:

∂LG

∂Pu

=
N

∑

i=1

Iui

⎛

⎝g′(fui)

N
∑

j=1

IujSuij g(fu(j−i)) · Qi

+g(fui)

N
∑

j=1

IujSuij g
′(fu(j−i)) · (Qj − Qi)

⎞

⎠ − λPu (18)

∂LG

∂Qi

= Iui

⎛

⎝g′(fui)

N
∑

j=1

Iuj Suij g(fu(j−i)) +
N

∑

j=1

Iuj

[Sujig(fuj) − Suij g(fui)]g′(fu(j−i))
)

Pu − λQi (19)

Then, the updated formula for GAPfm is:

�(t) ← �(t−1) + η2
∂LF

∂�
(20)

in which the direction to update the parameters is reversed compared to (10).

...

MGAPfm

FSLIM

W ji

latent vectors of
items

latent vector
 of item i

latent vector
 of user u

sampling

aggregation
for item i

Aui
~

Figure 1 The framework of CPLmg

383

World Wide Web (202) 2 : –375 3961 4

4.3 CPLmg recommendationmodel

Now, we introduce how to combine FSLIM and GAPfm under the MF framework to imple-
ment CPLmg, so that they can mutually reinforce each other and can better learn from the
complex user-item interactions. A straightforward approach is to define an objective func-
tion as a weighted linear combination of LF and LG, i.e., L = α ∗ LF + (α − 1)LG.
However, by doing so, it might lower the training efficiency as previously mentioned. For
example, it means FSLIM cannot use the stochastic gradient decent technology that updates
model parameters according to each gradient of the individual examples, since the other part
of CPLmg, the GAPfm, must compute GAPu based on all observed items for each user.
Besides, this combination makes it hard to apply a dynamic sampling process which will be
discussed later.

We propose to train FSLIM and GAPfm using a multi-task learning approach [17].
FSLIM and GAPfm are updated iteratively according to their respective objective functions
with shared underlying variables, i.e., the latent factor matrices P and Q, and the learned
item similarity matrix W, as shown in Figure 1. The matrices P and Q are jointly updated
by FSLIM and GAPfm in each co-training round, and the item similarity matrix W helps
GAPfm mine potential positive examples. Furthermore, the trade-off controlling parameters
in CPLmg are the learning rate parameters, i.e., η1 and η2, since the relationship between
the values of η1 and η2 determines the impact of each component on the model learning
process. CPLmg is trained until both FSLIM and GAPfm are converged. The entire learning
algorithm of CPLmg is illustrated in Algorithm 1.

384

World Wide Web (202) 2 : –375 3961 4

4.4 Discussion

Recommendation At the prediction phase, we measure the preference value of the
unobserved items to each user as follows:

˜Aui = g

⎛

⎝PT
u

∑

j∈O(u)∪{i}
QjW′

ji

⎞

⎠ (21)

where W′ = W + w ∗ I, and I ∈ R
N×N is an identity matrix, and w is a weight parameter

of the combination of prediction functions in FSLIM, i.e., ˜Aui = g
(

PT
u

∑

j∈O(u) QjWji

)

and in GAPfm, i.e., ˜Aui = g(PT
uQi), respectively. The value of w is related to the trade-off

controlling parameters of the framework CPL, and we set the value of the ratio of η2
η1

to w.

The items from the unobserved item set O(u) with the largest prediction values based on
(21) are recommended to the user.

Components So far, we have implemented CPLmg based on two components: FSLIM
and GAPfm. A question then arises: why does the combination of these methods promote
the top-N performance under CPL framework. There are four possible reasons: (1) The
learning directions of FSLIM and GAPfm are generally consistent when learning the model
parameters P and Q through the gradient approach. Both of them tend to increase the value
of a dot product with respect to positive examples. (2) The sampling procedure based on
the item similarity matrix W brings more information from FSLIM to GAPfm to make
GAPfm more informative. (3) The multi-task learning approach allows information transfer
between the two tasks. (4) CPLmg balances the variance and bias of the model, as previously
discussed. Thus, our proposed CPLmg approach can yield better performance for top-N
recommendations, which is demonstrated by the following experiments.

Time complexity The time complexity of CPLmg comprises two parts: the time cost of
FSLIM and the time cost of GAPfm.

Regarding FSLIM, for each user-item pair, the time complexities of updating the latent
factors for each user based on (7) and for each item based on (8) are O(|O(u)|K) and
O(|O(u)|2K) respectively, where |O(u)| denotes the number of all observed items to user
u, and K is the dimensionality of latent factor vectors. Then, taking into account all the
positive user-item pairs, the total complexities of updating matrix P and matrix Q are
O(M|Ī |K) and O(M|Ī |3K) in each iteration, respectively, where the |Ī | is the average
number of observed items across all users. Based on (9), the time cost of updating W is also
O(M|Ī |3K) in each iteration.

As for GAPfm, the time complexity of updating the latent factors for each user based
on (18) is O(|O(u)|2K). Taking into account all M users, the total complexity of updating
matrix P is O(M|Ī |2K) in each iteration. Based on (19), the time complexity of updating the
latent factors with respect to all observed items to a given user u is also O(|O(u)|2K), since
each observed item is computed to every observed item ranked higher than it. Similarly,
in each iteration, the total complexity of updating matrix Q across all users is the same as
that of updating matrix P, i.e., O(M|Ī |2K). In the process of sampling, we compute the
prediction value of each unobserved item i ∈ O(u) based on (5) for each user u, followed
by a sort operation, and thus the time cost is O(|J̄ |(|Ī | + ln(|J̄ |)), where |J̄ | = N −
|Ī | represents the average number of unobserved items across all users. However, |J̄ | is

385

World Wide Web (202) 2 : –375 3961 4

Table 1 The datasets used in evaluation

Dataset #usersa #items #trans Densityb Ratingsc

AppData 20,467 40,259 1,022,339 0.124% –

ML100K 943 1,682 100,000 6.30% 1–5

FilmTrust 1,508 2,071 35,497 1.14% 0.5–4.0

LastFM 1,892 17,632 92,834 0.28% –

aColumns corresponding to #users, #items and #trans show the number of users, the number of items and the
number of transactions in each dataset
bDensity = #trans/(#users × #items)
cThe column corresponding to ratings shows the rating range of each dataset, where AppData and LastFM
only contain positive examples

quite large in real systems. Thus, to control the time complexity, we randomly compute the
prediction value of some unobserved items.

The time costs of FSLIM and GAPfm accumulate linearly, and thus CPLmg finally takes
O(M|Ī |3K + M|J̄ |(|Ī | + ln(|J̄ |)) time costs to update the parameters in each iteration.
Note that the term (M|Ī |) represents the number of all observed items across all users. We
substitute |R| for (M|Ī |), and |R| � |Ī |, |J̄ |, K . This means the time complexity in each
iteration can be regarded as O(|R|). This is a linear complexity with respect to the number
of all positive examples in the given dataset.

5 Experimental results

We implement CPLmg based on a Java library for recommendation systems (LibRec) [7].
LibRec is an open-source project with some current state-of-the-art algorithms, and we
choose some of these to compare them with our CPLmg method, so as to validate the effec-
tiveness of CPLmg. We also test the influence of different component and parameter settings
followed by a discussion.

5.1 Data sets and experimental setup

Dataset Our experiments are based on four datasets, AppData, MovieLens-100K
(ML100K), FilmTrus, and LastFM. The characteristics of these datasets are shown in
Table 1.

The first dataset AppData is from users’ log files where the users’ interactive behaviors
with mobile applications are recorded for one month. Since we are more concerned about
which applications the user will install on their smartphone, we only keep already installed
mobile applications for users. Then, each observed user-item pair represents one record of
the user installing the application.

The MovieLens-100K and FilmTrust1 are two public dataset in the field of movie rec-
ommendation systems. They are both organized in rating forms. However, since we only
discuss the one-class recommendation problem in this paper, the ratings are converted to the

1https://www.librec.net/datasets.html#filmtrust

386

https://www.librec.net/datasets.html#filmtrust

World Wide Web (202) 2 : –375 3961 4

appropriate binary, i.e., all user-item pairs with ratings are treated as positive examples, the
others are the missing ones.

LastFM contains music artist listening information. The dataset is released in the
framework of the international workshop on information heterogeneity and fusion in recom-
mender systems.2 In the experiment, mobile applications, movies, and artists are the items
to be recommended.

5.2 Implementation details

We randomly select records from the users’ historical data to keep a certain number of
observed items for each user as test data, and set the rest of the records as the training set.
For example, “Given 5” denotes that for each user, we randomly select five observed items
as unknowns in the training set, but as positive examples in the test set, i.e., in the future,
the user will be interested in these items. Then, recommendation lists are produced by the
trained models. Finally, we measure the performance over these positive examples in the
test data.

All the parameters of the compared methods are set to optimal values in the experiments,
e.g., the number of features (the dimensionality of feature vectors) on the four datasets are
all 10. To simplify the analysis, the regularization parameters of Forbenius norms in CPLmg
are the same in each component, i.e., β1 = β2 = β3 = 0.5 and β4 = β5 = 0.01.

5.3 Evaluationmetrics

Precision is a common evaluation metric in recommender systems. In the case of top-N
recommender systems, MAP and MRR (mean reciprocal rank) are more practical, as they
are position-related metrics. To better verify the properties of the model, we apply all three
metrics to evaluate the performance of the new and compared methods in this paper.

Precision reflects the ratio of relevant items in the ranked list given a truncated position,
e.g., given a top-N recommendation list R(u) and a set T (u) that records all observed
items of user u on test set, precision is defined as

Precision =
∑

u∈U |R(u) ∩ T (u)|
∑

u∈U |R(u)| (22)

MAP is a binary list-based metric that gives larger credit to correctly recommended items
in top ranks. AP@N is defined as the average of precision computed at all positions
before the position at N with a relevant item, namely,

AP@N =
∑N

k=1 Precision@k × rel(k)
∑N

k=1 rel(k)
(23)

where Precision@k is the ratio of relevant items in the ranked list given a truncated
position k, and rel(k) is an indicator function equaling 1 if the item at position k is a
relevant item, 0 otherwise. Finally, MAP@N is defined as the mean of the AP@N scores
across all users.

2http://ir.ii.uam.es/hetrec2011

387

http://ir.ii.uam.es/hetrec2011

World Wide Web (202) 2 : –375 3961 4

MRR is the average value of the reciprocal ranks of recommendation results for the first
relevant item at the highest position and is defined as

MRR =
M

∑

u=1

1

ranku

(24)

where ranku refers to the rank position of the first relevant item for user u.

5.4 Experimental comparisons with previous models

We compare our methods CPLmg and FSLIM with six baseline ones, namely iPOP,
ItemKNN, FISMauc, NeuMF, GAPfm and SLIM. The implementations of iPOP, ItemKNN,
FISMauc and SLIM are provided by LibRec. A description of the compared methods is as
follows:

– iPOP. It recommends a certain number of the most popular items from the training set
to all users.

– ItemKNN. It is a traditional item-based collaborative filtering method, and we use
Jaccard similarity to calculate the relations between items.

– FISMauc [10]. FISM is a variant of SLIM and it factorizes the similarity matrix into
two low rank matrices as discussed in Section 2. FISMauc considers ranking errors
based on loss function and obtains better performance than FISMrmse, which considers
the pointwise squared error loss function, in our experiments. Therefore, we do not
further report on the performance of FISMrmse.

– NeuMF [8]. It is a state-of-the-art method using neural network-based collaborative
filtering (NCF) framework.

– SLIM [18]. It is a novel learning model, which is the pointwise prediction component
of our model. SLIM directly learns a similarity matrix between items from the data.

– GAPfm [26]. It is an another component of our model, and it belongs to one kind of
L2R approach.

For each model, the parameters were empirically tuned to their optimal values in the
experiments and these were recorded in Table 2, i.e., for ItemKNN, they are the number of
neighbors; for FISMauc, they are the user-specific parameter α and the learning rate; for
GAPfm, they are the regularization parameters; for SLIM and FSLIM, they are both the
�1-norm and �2-norm regularization parameter; for NeuMF, it is the number of negative
samples; for CPLmg, they are the number of near neighborhoods iknn and the number of
candidate potential positive examples pn. Since the size of the recommendation window
is limited in practice, we measure all the performance values in the experiments which are
reported in this section based on the top-5 recommendation.

Table 2 shows that both CPLmg and FSLIM achieve better performance than the base-
lines according to all three metrics, especially CPLmg, which is the best. It proves that the
proposed CPLmg is highly competitive for top-N recommendation tasks for reasons previ-
ously discussed. We can also observe that the performance of FSLIM is better than SLIM.
This indicates that denser representations of the user and item matrix can better model users’
preferences. The results also show SLIM and GAPfm outperform the remaining methods,
i.e., iPOP, ItemKNN and FISMauc. This observation provides empirical evidence that the
SLIM and GAPfm approaches are more effective for top-N recommendation. This is one
reason why we choose SLIM and GAPfm as the two components in our new framework.
Furthermore, it can be noted that the performance of all methods is better when the number

388

World Wide Web (202) 2 : –375 3961 4

Table 2 Performance comparison based on the top-5 recommendation items

Method AppData/Given 3 AppData/Given 10

Params Precision MRR MAP Params Precision MRR MAP

iPOP – – 0.0989 0.2874 0.1098 – – 0.2830 0.6303 0.2264

ItemKNN 50 – 0.1126 0.3164 0.1290 50 – 0.3601 0.6089 0.2971

FISMauc 0.8 1e−5 0.1002 0.2895 0.1108 0.9 1e−5 0.2989 0.6338 0.2395

GAPfm 0.01 – 0.1186 0.3136 0.1348 0.01 – 0.3862 0.7053 0.3132

SLIM 0.1 0.5 0.1563 0.3948 0.1759 0.1 0.5 0.4017 0.7070 0.3177

FSLIM 0.06 0.14 0.1601 0.4158 0.1801 0.04 0.12 0.4072 0.7164 0.3173

NeuMF 10 – 0.1698 0.4209 0.1894 10 – 0.4098 0.7203 0.3184

CPLmg 245 22 0.1799 0.4377 0.2022 245 22 0.4208 0.7345 0.3305

Method ML100K/Given 3 ML100K/Given 10

params Precision MRR MAP params Precision MRR MAP

iPOP – – 0.0417 0.1153 0.0415 – – 0.1324 0.3001 0.0823

ItemKNN 50 – 0.0697 0.1855 0.0696 50 – 0.1769 0.3885 0.1152

FISMauc 0.7 5e−6 0.0491 0.1119 0.0413 0.6 1e−6 0.1342 0.2948 0.0808

GAPfm 0.05 – 0.0923 0.2497 0.0987 0.05 – 0.1820 0.3998 0.1475

SLIM 0.2 0.6 0.0982 0.2519 0.1009 0.1 0.5 0.2232 0.4722 0.1537

FSLIM 0.002 0.005 0.1034 0.2590 0.1113 0.001 0.005 0.2398 0.4795 0.1599

NeuMF 8 – 0.1078 0.2601 0.1132 8 – 0.2399 0.4819 0.1614

CPLmg 350 35 0.1194 0.2708 0.1298 350 35 0.2483 0.4916 0.1712

Method FilmTrust/Given 3 FilmTrust/Given 10

params Precision MRR MAP params Precision MRR MAP

iPOP – – 0.2928 0.5795 0.3951 – – 0.5524 0.7345 0.4981

ItemKNN 50 – 0.2958 0.5850 0.3967 50 – 0.5420 0.7201 0.4845

FISMauc 0.6 1e−5 0.2204 0.3805 0.2786 0.8 1e−5 0.5004 0.7046 0.4513

GAPfm 0.02 – 0.3031 0.5998 0.4087 0.01 – 0.5626 0.7432 0.5128

SLIM 0.1 0.5 0.2948 0.5979 0.4061 0.1 0.5 0.5637 0.7487 0.5187

FSLIM 0.05 0.15 0.3072 0.6076 0.4103 0.05 0.15 0.5721 0.7546 0.5279

NeuMF 10 – 0.3164 0.6101 0.4238 10 – 0.5792 0.7503 0.5342

CPLmg 250 25 0.3278 0.6257 0.4451 250 25 0.5888 0.7705 0.5505

Method LastFM/Given 3 LastFm/Given 10

params Precision MRR MAP params Precision MRR MAP

iPOP – – 0.0276 0.0771 0.0285 – – 0.0849 0.1883 0.0554

ItemKNN 50 – 0.0456 0.1337 0.0535 50 – 0.1350 0.2815 0.1006

FISMauc 0.5 5e−5 0.0274 0.0724 0.0269 0.5 1e−5 0.0849 0.1883 0.0554

GAPfm 0.05 – 0.0460 0.1167 0.0465 0.05 – 0.1288 0.2661 0.0966

SLIM 0.2 0.6 0.0512 0.1426 0.0591 0.1 0.5 0.1329 0.2928 0.1173

FSLIM 0.05 0.005 0.0647 0.1597 0.0669 0.02 0.001 0.1497 0.3068 0.1290

NeuMF 10 – 0.0723 0.1602 0.0729 8 – 0.1602 0.3182 0.1389

CPLmg 300 50 0.0924 0.1812 0.0809 300 50 0.1803 0.3305 0.1529

Bold values represent the best performance in the experiments

389

World Wide Web (202) 2 : –375 3961 4

Table 3 Different approaches to combine pointwise prediction and L2R

Combo Method Pointwise L2R Sampling strategy

FSLIM + GAPfm CPLmg-dy FSLIM GAPfm Dynamical sampling

CPLmg-st FSLIM GAPfm Static sampling

CPLmg-no FSLIM GAPfm Without sampling

FunkSVD + BPR CPLdb-dy FunkSVD BPR Dynamical sampling

CPLdb-st FunkSVD BPR Static sampling

CPLdb-no FunkSVD BPR Without sampling

of given items increases from 3 to 10. The reason for this lies in the fact that more relevant
items in the test data can better reveal the preferences of users and more relevant items in
the test means a higher chance of ranking potential positive examples in the top positions.

5.5 Analysis of CPLmg components

To explore the effectiveness of our proposed framework, i.e., CPL, as well as the instantia-
tion of CPL, i.e., CPLmg, we modify the original version of CPLmg to some variants and
then compare their performance with CPLmg.

The key points of CPL include three parts: 1) the pointwise prediction module, 2) the
L2R module, and 3) the bridge between the two modules. In CPLmg, the third part further
involves two operations: 1) the decomposed matrices are shared between the pointwise pre-
diction module and L2R module, and 2) the dynamical sampling strategy is conducted when
training the model. To simplify the analysis, we let the variants of CPLmg all have shared
decomposed matrices. Then, there are three factors whose effects on the CPLmg should be
tested. They are the pointwise prediction module, L2R module, and the sampling strategy.
We list some possible configurations of these three factors in Table 3.

In addition to the combination of FSLIM and GAPfm, there are many other combinations
of various pointwise methods and L2R approaches. However, we can’t test them all. There-
fore, we choose two classical and representative methods, i.e. FunkSVD3 and BPR [20],
to replace FSLIM and GAPfm in CPLmg respectively, to implement a new instantiation of
CPL named CPLdb. CPLdb is conducted to demonstrate whether the CPL can also improve
the performance of other single pointwise methods and L2R approaches. Equations (25) and
(26) summarize the objective functions of FunkSVD and BPR, respectively.

Lsvd =
∑

(u,i)∈
svd

‖Aui − g(P
u Qi)‖2

F + 1

2
(‖P‖2

F + ‖Q|‖2
F) (25)

Lbpr =
∑

(u,i,j)∈
bpr

−g(P
u Qi − P

u Qj) + 1

2
(‖P‖2

F + ‖Q|‖2
F) (26)

where
 is the set of examples. For FunkSVD,
svd records all observed user-item pairs,
while for BPR,
bpr records all (user, positive item, negative item) triple tuples. g(·) is a
sigmoid function as that in (5).

On the other hand, we further investigate the influences from different settings of the
sampling strategy. We have already introduced a dynamical sampling strategy when we

3https://sifter.org/%7Esimon/journal

390

https://sifter.org/%7Esimon/journal

World Wide Web (202) 2 : –375 3961 4

describe the CPLmg. The sampling process occurs in the joint training round with the help
of the sample division mechanism of GAPfm. Alternatively, we can adopt a static sampling
technique, i.e., we first train the pointwise model and then we feed the predicted values
of unobserved items into the L2R method as potential positive examples. There exists new
partial relations between the real and potential positive examples as well as between the
potential positive and negative examples. L2R approaches have an inherent advantage in
modeling these relations. Also, we want to know the performance of CPL if there is no
sampling process. In this setting, we only have a unified objective function of pointwise
method and L2R approach to be trained, i.e., LCPLmg−no = LF − LG and LCPLdb−no =
Lsvd + Lbpr .

So far, we have six instantiations shown in Table 3, where CPLmg-dy in this part stands
for the original version of CPLmg for a better distinction. Since BPR has no sample division
mechanism like GAPfm, in each training iteration, we select top-N unobserved items with
the largest values, which are predicted by FunkSVD, as potential positive examples for each
user in CPLdb-dy. The value of N is finely tuned to 20 in the experiment.

Figure 2 shows the experimental results of all six instantiations. From Figure 2, we can
have the following four key observations:

Figure 2 Experimental results on different ways to combine pointwise prediction and L2R

391

World Wide Web (202) 2 : –375 3961 4

– With the parameters carefully adjusted, the unified framework, i.e., CPL can outper-
form its two single units, i.e., pointwise prediction method and L2R approach. For
example, almost all CPL-dy, CPL-st, and CPL-no approaches can achieve better per-
formance than single components, i.e., FSLIM, GAPfm, FunkSVD, and BPR. It proves
the effectiveness of CPL framework.

– Generally, the performance of CPL-dy is better than that of CPL-st and CPL-no.
Compared to the “static sampling” and “without sampling” strategies, the “dynamic
sampling” strategy can enhance the interaction between the pointwise method and L2R
approach, which might be the reason for performance improvements.

– Although CPLdb, including CPLdb-dy, CPLdb-st, and CPL-no, can improve the per-
formance of FunkSVD and BPR, its corresponding performance is not as good as
CPLmg’s. One reason for this result might be as follows: the performance of the com-
ponents of CPLmg, i.e., FSLIM and GAPfm, is generally better than that of CPLdb,
i.e., FunkSVD and BPR.

– Furthermore, CPLmg-dy outperforms CPLdb-dy. It might be not only caused by the
performance of the components, but also caused by the sample division mechanism
of GAPfm. CPLmg-dy has a more elaborate process to evaluate potential positive
examples.

5.6 Analysis of CPLmg parameters

In this section, we describe the experiments conducted to explore the influences of the
main parameters on CPLmg, such as the number of neighborhoods iknn for the feature
selection algorithm, the size of the candidate potential positive examples pn, the learning
rate parameters η1 and η2. It is also worth pointing out, when we change the value of one of
these parameters, the others are set to their optimal values, i.e., iknn = 245, pn = 22, η1 =
0.05, η2 = 0.00001. Based on the optimal settings, all the experiment results given in this
section are under the condition that “Given 10”. Without loss of generality and due to the
space limitation, we only report the parameter influences for the top-10 recommendations
on AppData. Similar results are observed on the other datasets.

5.6.1 iknn

We first conduct an experiment to investigate the influence of the number of the nearest
neighborhoods iknn. This parameter influences the experiment results in two phases: (1)
updating the gradient of FSLIM, and (2) selecting the candidate potential positive examples
for GAPfm. To simplify the analysis, we set the same value of iknn for these two phases.
The results are shown in Figure 3a, c, and e. We can observe that the values of all three
metrics including precision, MRR, and MAP significantly increase at the beginning, then
after the turning points, i.e., 240, all values decline. This proves the effectiveness of the
feature selection algorithm and it might have an optimal value of iknn. The value of iknn is
not the bigger the better, since too many similar items may blur the preference information
to be learned for a user. Note that the iknn is not the final number of neighborhoods to
be considered since |N (i) ∩ O(u)| ≤ iknn, |O(u)|, and usually |O(u)| might be small in
practice, e.g., the average number of installed applications over users in AppData is smaller
than 50.

392

World Wide Web (202) 2 : –375 3961 4

Figure 3 Experimental results on different parameters iknn and pn

5.6.2 pn

The value of pn controls the number of candidate potential preferred items in the sampling
process of GAPfm. The influence of pn on the recommendation performance is shown in
Figure 3b, d, and f. We can observe that precision, MRR, and MAP performance can be
improved by properly increasing pn. However, when the increase is over a turning point,
i.e., 20, the performance starts to decline sharply. The reason for this is that a larger value of
pn also introduces more false preferred items. This observation proves that it is critical to
properly take into account missing values within the model in domains with binary implicit
feedbacks, since the selected missing values can alleviate the overfitting risk.

393

World Wide Web (202) 2 : –375 3961 4

Figure 4 Experimental results on different parameters η1 and η2

5.6.3 η1 and η2

In this part, we provide the experiment results based on different values for two parameters
η1 and η2, where η1 is from (10) and η2 is from (20). η1 and η2 control the learning step
sizes of FSLIM and GAPfm, respectively. As previously mentioned, these two parameters
also act as a trade-off between the two components of CPLmg, i.e., FSLIM and GAPfm.
The influences of η1 and η2 are shown in Figure 4. We observe that all criteria show the
same trends on different η1 and η2 values. We also observe that some of the performance
values are lower than the normal level. This is because η1 and η2 will restrain each other
in some settings where both η1 and η2 try to dominate the learning process, i.e., η1 and η2
have very close values. Furthermore, the largest performance values are fastened in the top
right corner, while the performance values in the bottom left corner also tend to increase.
All these results show that the performance values increase with the proper increase of
divergence between these two parameters.

6 Conclusions and future work

In this paper, we first analyzed the strengths and limitations of traditional pointwise
prediction and L2R methods. Then, we proposed a new framework, CPL, where point-
wise prediction and L2R are inherently combined to improve the performance of top-N
recommendations. Moreover, to verify the effectiveness of CPL, we implemented two
instantiations of CPL: CPLmg and CPLdb. The former takes FSLIM and GAPfm as its

394

World Wide Web (202) 2 : –375 3961 4

two components, where FSLIM is a variant of SLIM by infusing denser representations.
Whereas, the latter takes FunkSVD and BPR as its components. The components rein-
force each other through information interchange based on the denser representations and
aggregation coefficients. The experimental results show that CPLmg significantly outper-
forms the compared methods, and CPL framework can help improve the performance of the
pointwise and L2R components in CPLmg and CPLdb.

There are also some potential research topics. Firstly, the combination approach between
two components of CPLmg can be extended. For example, we would like to explore a more
complex combination motivated by NCF [8], which fuses two components based on the neu-
ral network framework. Secondly, other models of pointwise prediction and L2R methods
can be tried in the framework. Thirdly but not lastly, we can make use of other side infor-
mation, such as the number of times users’ visited items or the social relationships among
users to infer the connection strengths between users and items.

Acknowledgements This work is partially supported by National Key Research and Development Plan
(No. 2018YFB1003800).

References

1. Chapelle, O., Metlzer, D., Zhang, Y., Grinspan, P.: Expected reciprocal rank for graded relevance. In:
Proceedings of the 18th ACM Conference on Information and Knowledge Management, pp. 621–630.
ACM (2009)

2. Chen, H., Niu, D., Lai, K., Xu, Y., Ardakani, M.: Separating-plane factorization models: scalable rec-
ommendation from one-class implicit feedback. In: Proceedings of the 25th ACM International on
Conference on Information and Knowledge Management, pp. 669–678. ACM (2016)

3. Cheng, Y., Yin, L., Yu, Y.: Lorslim: low rank sparse linear methods for top-n recommendations. In: 2014
IEEE International Conference on Data Mining (ICDM), pp. 90–99. IEEE (2014)

4. Christakopoulou, E., Karypis, G.: Local item-item models for top-n recommendation. In: Proceedings
of the 10th ACM Conference on Recommender Systems, pp. 67–74. ACM (2016)

5. Dong, X., Yu, L., Wu, Z., Sun, Y., Yuan, L., Zhang, F.: A hybrid collaborative filtering model with deep
structure for recommender systems. In: AAAI, pp. 1309–1315 (2017)

6. Friedrich, G., Zanker, M.: A taxonomy for generating explanations in recommender systems. AI Mag.
32(3), 90–98 (2011)

7. Guo, G., Zhang, J., Sun, Z., Yorke-Smith, N.: Librec: a java library for recommender systems. In: UMAP
Workshops (2015)

8. He, X., Liao, L., Zhang, H., Nie, L., Hu, X., Chua, T.-S.: Neural collaborative filtering. In: Proceedings
of the 26th International Conference on World Wide Web, pp. 173–182. International World Wide Web
Conferences Steering Committee (2017)

9. Jamali, M., Lakshmanan, L.: Heteromf: recommendation in heterogeneous information networks using
context dependent factor models. In: Proceedings of the 22nd International Conference on World Wide
Web, pp. 643–654. International World Wide Web Conferences Steering Committee (2013)

10. Kabbur, S., Ning, X., Karypis, G.: Fism: factored item similarity models for top-n recommender systems.
In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pp. 659–667. ACM (2013)

11. Kim, D., Park, C., Oh, J., Lee, S., Yu, H.: Convolutional matrix factorization for document context-aware
recommendation. In: Proceedings of the 10th ACM Conference on Recommender Systems, pp. 233–240.
ACM (2016)

12. Koren, Y.: Factorization meets the neighborhood: a multifaceted collaborative filtering model. In: Pro-
ceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pp. 426–434. ACM (2008)

13. Larraı́n, S., Parra, D., Soto, A.: Towards improving top-n recommendation by generalization of slim. In:
RecSys Posters (2015)

14. Lee, J., Kim, S., Lebanon, G., Singer, Y.: Local low-rank matrix approximation. ICML (2) 28, 82–90
(2013)

395

World Wide Web (202) 2 : –375 3961 4

15. Lee, J., Bengio, S., Kim, S., Lebanon, G., Singer, Y.: Local collaborative ranking. In: Proceedings of the
23rd International Conference on World Wide Web, pp. 85–96. ACM (2014)

16. Levy, M., Jack, K.: Efficient top-n recommendation by linear regression. In: RecSys Large Scale
Recommender Systems Workshop (2013)

17. Ma, J., Zhao, Z., Yi, X., Chen, J., Hong, L., Chi, E.H.: Modeling task relationships in multi-task learning
with multi-gate mixture-of-experts. In: Proceedings of the 24th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pp. 1930–1939. ACM (2018)

18. Ning, X., Karypis, G.: Slim: sparse linear methods for top-n recommender systems. In: 2011 IEEE 11th
International Conference on Data Mining (ICDM), pp. 497–506. IEEE (2011)

19. Qiu, S., Cheng, J., Yuan, T., Leng, C., Lu, H.: Item group based pairwise preference learning for per-
sonalized ranking. In: Proceedings of the 37th International ACM SIGIR Conference on Research &
Development in Information Retrieval, pp. 1219–1222. ACM (2014)

20. Rendle, S., Freudenthaler, C., Gantner, Z., Schmidt-Thieme, L.: Bpr: Bayesian personalized ranking
from implicit feedback. In: Proceedings of the Twenty-fifth Conference on Uncertainty in Artificial
Intelligence, pp. 452–461. AUAI Press (2009)

21. Robertson, S.E., Kanoulas, E., Yilmaz, E.: Extending average precision to graded relevance judgments.
In: Proceedings of the 33rd International ACM SIGIR Conference on Research and Development in
Information Retrieval, pp. 603–610. ACM (2010)

22. Salakhutdinov, R., A.Mnih.: Bayesian probabilistic matrix factorization using Markov Chain Monte
Carlo. In: Proceedings of the 25th International Conference on Machine Learning, pp. 880–887. ACM
(2008)

23. Sedhain, S., Menon, A.K., Sanner, S., Braziunas, D.: On the effectiveness of linear models for one-class
collaborative filtering. In: AAAI, pp. 229–235 (2016)

24. Shi, Y., Karatzoglou, A., Baltrunas, L., Larson, M., Hanjalic, A., Oliver, N.: Tfmap: optimizing map for
top-n context-aware recommendation. In: Proceedings of the 35th International ACM SIGIR Conference
on Research and Development in Information Retrieval, pp. 155–164. ACM (2012)

25. Shi, Y., Karatzoglou, A., Baltrunas, L., Larson, M., Oliver, N., Hanjalic, A.: Climf: learning to maximize
reciprocal rank with collaborative less-is-more filtering. In: Proceedings of the Sixth ACM Conference
on Recommender Systems, pp. 139–146. ACM (2012)

26. Shi, Y., Karatzoglou, A., Baltrunas, L., Larson, M., Hanjalic, A.: Gapfm: optimal top-n recommendations
for graded relevance domains. In: Proceedings of the 22nd ACM International Conference on Conference
on Information & Knowledge Management, pp. 2261–2266. ACM (2013)

27. Shi, Y., Karatzoglou, A., Baltrunas, L., Larson, M., Hanjalic, A.: xclimf: optimizing expected recip-
rocal rank for data with multiple levels of relevance. In: Proceedings of the 7th ACM Conference on
Recommender Systems, pp. 431–434. ACM (2013)

28. Yue, Y., Finley, T., Radlinski, F., Joachims, T.: A support vector method for optimizing average precision.
In: Proceedings of the 30th Annual International ACM SIGIR Conference on Research and Development
in Information Retrieval, pp. 271–278. ACM (2007)

29. Zheng, Y., Mobasher, B., Burke, R.: Cslim: contextual slim recommendation algorithms. In: Proceedings
of the 8th ACM Conference on Recommender Systems, pp. 301–304. ACM (2014)

30. Zhu, N., Cao, J.: Gtrm: a top-n recommendation model for smartphone applications. In: 2017 IEEE
International Conference on Web Services (ICWS), pp. 309–316. IEEE (2017)

31. Zhu, N., Cao, J.: Cpl: a combined framework of pointwise prediction and learning to rank for top-
n recommendations with implicit feedback. In: Proceedings of the International Conference on Web
Information Systems Engineering, pp. 259–273. Springer (2019)

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

396

	Leveraging pointwise prediction with learning to rank for top-N recommendation
	Abstract
	Introduction
	Related work
	Matrix factorization (MF)
	Similarity methods (SM)
	Learning to rank approaches (L2R)

	Definitions and notations
	SLIM
	GAPfm

	Proposed methodology
	Factorized SLIM (FSLIM)
	GAPfm with sampling strategy
	CPLmg recommendation model
	Discussion
	Recommendation
	Components
	Time complexity

	Experimental results
	Data sets and experimental setup
	Implementation details
	Evaluation metrics
	Experimental comparisons with previous models
	Analysis of CPLmg components
	Analysis of CPLmg parameters
	iknn
	pn
	1 and 2

	Conclusions and future work
	References

