
World Wide Web (202) 2 : –397 4171 4
https://doi.org/10.1007/s11280-020-00843-6

Parallel algorithms for parameter-free structural
diversity search on graphs

Jinbin Huang1 ·Xin Huang1 ·Yuanyuan Zhu2 · Jianliang Xu1

Received: 21 March 2020 / Revised: 22 July 2020 / Accepted: 21 September 2020 /

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
Structural diversity of a user in a social network is the number of social contexts in his/her
contact neighborhood. The problem of structural diversity search is to find the top-k vertices
with the largest structural diversity in a graph. However, when identifying distinct social contexts,
existing structural diversity models (e.g., t-sized component, t-core, and t-brace) are sensitive to
an input parameter of t . To address this drawback, we propose a parameter-free structural
diversity model. Specifically, we propose a novel notation of discriminative core, which
automatically models various kinds of social contexts without parameter t . Leveraging on
discriminative cores and h-index, the structural diversity score for a vertex is calculated. We
study the problem of parameter-free structural diversity search in this paper. An efficient
top-k search algorithm with a well-designed upper bound for pruning is proposed. To further
speed up the computation, we design a novel parallel algorithm for efficient top-k search over
large graphs. The parallel algorithm computes diversity scores for a batch of vertices simul-
taneously using multi-threads. Extensive experiment results demonstrate the parameter
sensitivity of existing t-core based model and verify the superiority of our methods.

Keywords Structural diversity search · Parallelization · Parameter-free · H-index

This article belongs to the Topical Collection: Special Issue on Web Information Systems Engineering
2019
Guest Editors: Reynold Cheng, Nikos Mamoulis, and Xin Huang

� Xin Huang
xinhuang@comp.hkbu.edu.hk

Jinbin Huang
jbhuang@comp.hkbu.edu.hk

Yuanyuan Zhu
yyzhu@whu.edu.cn

Jianliang Xu
xujl@comp.hkbu.edu.hk

1 Hong Kong Baptist University, Kowloon Tong, Hong Kong
2 Wuhan University, Wuhan, China

Published online: 20 November 2020

http://crossmark.crossref.org/dialog/?doi=10.1007/s11280-020-00843-6&domain=pdf
mailto: xinhuang@comp.hkbu.edu.hk
mailto: jbhuang@comp.hkbu.edu.hk
mailto: yyzhu@whu.edu.cn
mailto: xujl@comp.hkbu.edu.hk

World Wide Web (202) 2 : –397 4171 4

1 Introduction

Nowadays, information spreads quickly and widely on social networks (e.g., Twitter,
Facebook) [24, 29, 35, 47]. Individuals are usually influenced easily by the information
received from their social neighborhoods. Recent studies show that social decisions made by
individuals often depend on the multiplicity of social contexts inside his/her contact neigh-
borhood, which is termed as structural diversity [22, 47]. Individuals with larger structural
diversity, are shown to have higher probability to be affected in the process of social con-
tagion [47]. Structural diversity search, finding the individuals with the highest structural
diversity in graphs, has many applications such as political campaigns [26], viral market-
ing [30], promotion of health practices [47], facebook user invitations [47], twitter user
retention [45], social reputation evaluation [53] and so on.

In the literature, several structural diversity models (e.g., t-sized component, t-core and
t-brace) need an input of specific parameter t to model distinct social contexts. A social
context is formed by a number of connected users. The component-based structural diver-
sity [47] regards each connected component whose size is larger than t as a social context.
Another core-based structural diversity model is defined based on t-core. A t-core is the
largest subgraph such that each vertex has at least t neighbors within t-core. The core-based
structural diversity model regards each maximal connected t-core as a distinct social con-
text. Figure 1 shows the contact neighborhood (ego-network) GN(v) of a user v. All vertices
and edges in ego-network GN(v) are in solid lines. Consider the core-based structural diver-
sity model and parameter t = 2. Subgraphs H1, H2 and H3 are maximal connected 2-cores.
H1, H2, and H3 are regarded as 3 distinct social contexts. Thus, the core-based structural
diversity of v is 3.

This paper proposes a new parameter-free structural diversity model based on the core-
based model [21] and h-index measure [18]. Our parameter-free model does not need
the input of parameter t any more. This avoids suffering from the limitations of setting
parameter t . We show two major drawbacks of the t-core based model as follows.

– Sensitivity of t-core based model. The number of social contexts is sensitive to
parameter t . On the one hand, if t is set to a large value, it may discard small and
weakly-connected social contexts; On the other hand, if t is set to a small value, it may
have weak ability of recognizing strongly-connected social contexts fully. Consider the
contact neighborhood GN(v) of a user v in Figure 1. When t = 2, the structural diver-

Figure 1 The ego-network GN(v)

of vertex v

398

World Wide Web (202) 2 : –397 4171 4

sity of v is 3. When t = 3, H2 and H3 are 2-cores and disqualified for social contexts,
due to the requirement of social contexts as 3-core. Meanwhile, H1 is decomposed as
two components of 3-core as H4 and H5. Thus, the structural diversity of v becomes 2.
However, when t ≥ 4, the structural diversity of v is 0. This example clearly shows the
sensitivity of structural diversity w.r.t. parameter t .

– Inflexibility of t-core based model. Structural diversity model lacks flexibility for
different vertices using the same parameter t . Generally, different social contexts should
not be modeled and quantified using the same criteria of parameter t . For example, in
a social network, the social contexts of a famous singer and a junior student can be
dramatically different in terms of size and density. Thus, it is difficult to choose one
consistent value t for different vertices in a graph. In Figure 1, H1 can be decomposed
into two social contexts H4 and H5, which requires the setting of t = 3. However, the
identification of H2 and H3 requires t = 2. This indicates the necessary of personalized
parameter t for different social contexts.

To address the above two limitations, we define a novel notation of discriminative core
to represent each distinct social context without inputing any parameters. Specifically, a
discriminative core is a densest and maximal connected subgraph inside a user’s contact
neighborhood. It can be regarded as a criteria for representing unique and strong social con-
text. However, the distribution of discriminative cores in two users’ contact neighborhoods
can be totally different in terms of density and quantity, which cannot be compared directly.
To tackle this issue, we propose a new structural diversity model based on h-index. In the
literature, the h-index is defined as the maximum number of h such that a researcher has
published h papers whose citations have at least h [18]. We apply the similar idea to mea-
sure structural diversity in ego-networks. Given a vertex v, the structural diversity of v is
the largest number h such that there exist at least h discriminative cores with the coreness of
at least h.

In this paper, we study the problem of top-k h-index based structural diversity search,
which finds k vertices with the largest h-index based structural diversity. To address the
problem, we first propose a baseline algorithm to compute the structural diversity scores
for all vertices in a graph. In order to improve the top-k search efficiency, we develop an
upper bound of structural diversity to prune the vertices whose structural diversity scores
certainly absent in the results. Leveraging this pruning technique, our efficient top-k search
framework can reduce the search space and terminate in a faster way.

Over the conference version [23] of this manuscript, we further study a parallel algorithm for
h-index based structural diversity search over large graphs in Section 6, where multiple
threads are utilized for parallel computing in single machine. The motivations are intuitive.
A commodity machine usually has multiple processors nowadays, top-k search algorithms
run in the single thread, which wastes the computing resources and makes utilization in
low efficiency. Moreover, we observe that the computations of upper bounds and structural
diversity scores for different vertices are independent, which can be extended to compute
in parallel. Thus, we further accelerate the structural diversity search using multi-threading
techniques. Although the parallel computation of diversity scores is straightforward, it is
difficult to make use of the existing pruning strategy to terminate the algorithm early.
Thus, the parallel efficiency is still bottlenecked, due to quite a large workload of score
computations for all vertices. To address this issue, we design a new parallel scheme
for top-k structural diversity search, in which the search space can be pruned efficiently.
Specifically, we develop parallel computations for estimating upper bounds and calculating
diversity scores. To ensure the answer correctness, we propose a new vertex search order and

399

World Wide Web (202) 2 : –397 4171 4

synchronous computations for ranking vertices and updating top-k answers. All these
strategies ensure the high efficiency and correct answers for our parallel algorithm.

In summary, we make the following contributions:

– We propose a novel definition of discriminative core to provide a parameter-free scheme
for identifying social contexts. To simultaneously measure the quantity and strength
of social contexts in one’s contact neighborhood, we propose a new h-index based
structural diversity model. We formulate the problem of top-k h-index based structural
diversity search in a graph (Section 3).

– We propose a useful approach for computing the h-index based structural diversity
score h(v) for a vertex v and give a baseline algorithm for solving the top-k structural
diversity search problem (Section 4).

– Based on the analysis of the discriminative core structure and the property of h-index,
we design an upper bound of h(v). Equipped with the upper bound, we propose an
efficient top-k search framework to improve the efficiency (Section 5).

– To further speed up the computation, we design a novel parallel algorithm for effi-
cient top-k structural diversity search in a multiprocessor shared memory machine
(Section 6).

– We conduct extensive experiments on four real-world large datasets to demonstrate
the parameter sensitivity of the existing core-based structural diversity model and
verify the effectiveness of our proposed model. Moreover, we implement the par-
allel algorithm for top-k structural diversity search in multi-threads and validate
the high-performance efficiency, which achieves up to 13X speedup on large Orkut
graph. Experiment results also validate the efficiency of our proposed algorithms
(Section 7).

2 Related work

This work is related to the studies of structural diversity search, k-core mining, and parallel
and distributed graph analytic.

Structural diversity search In [47], Ugander et al. study the structural diversity models
in the real-world applications of social contagion. Recently, Su et al. [45] conduct exper-
imental studies on the Twitter platform to investigate the role of structural diversity on
retention. In [53], Zhang et al. show that the social reputation of a user is highly controlled
by his/her structural diversity. The problem of top-k structural diversity search is proposed
and studied by Huang et al. [20, 21]. The goal of the problem is to find k vertices with the
highest structural diversity scores. Two structural diversity models based on t-sized com-
ponent and t-core respectively are studied w.r.t. a parameter threshold t . By improving the
efficiency and scalability of the methods [20], Chang et al. [6] propose fast algorithms to
address structural diversity search. Recently, Zhang et al. [54] propose an edge based struc-
tural diversity model for structural diversity search. Huang et al. [25] develop index-based
approaches for top-k truss-based structural diversity search. Besides the structural diversity
in social contagion, other structural diversity concepts are proposed for different applica-
tions. Cheng et al. [7] propose an approach of diversity-based keyword search to solve the
mashup construction problem. Sanz-Cruzado [40] et al. propose a network-based structural

400

World Wide Web (202) 2 : –397 4171 4

diversity for evaluating the effectiveness of link prediction. Different from above studies,
we propose a parameter-free structural diversity model based on the novel definition of
discriminative cores, which avoids suffering from the difficulties of parameter tuning. Com-
paring to the conference paper in [23], in this paper, we design an novel parallelization
scheme to accelerate the computation of top-k structural diversity search.

K-coremining There exists lots of studies on k-core mining in the literature. k-core is a def-
inition of cohesive subgraph, in which each vertex has degree at least k [5]. The task of core
decomposition is finding all non-empty k-cores for all possible k’s. Batagelj et al. [3] pro-
posed an in-memory algorithm of core decomposition. Core decomposition has also been
widely studied in different computing environment such as external-memory algorithms [8],
streaming algorithms [41], distributed algorithms [38], and I/O efficient algorithms [50].
The study of core decomposition is also extended to different types of graphs such as
dynamic graphs [1, 27], uncertain graphs [4], directed graphs [13, 33], temporal graphs [51],
and multi-layer networks [16]. Recently, core maintenance in dynamic graphs has attracted
significant interest in the literature [1, 34, 52]. In addition, several k-core based community
models have been proposed for community search [12, 14, 15, 36].

Parallel and distributed graph analytic In recent years, graph analytic algorithms have
been widely studied on a multi-core single machine and distributed computing systems.
There exist several studies that focus on developing scalable computing frameworks for
graph processing [39, 42, 43]. However, these parallelization frameworks usually target at
general purposes for flexibly adapting various graph algorithms. On the other hand, many
studies aim at designing parallelization algorithms for tackling specific graph problems,
such as pagerank computing [49], triangle listing [2, 48], connected components comput-
ing [19, 31], core decomposition [11, 27, 38], truss decomposition [44], and so on. Different
from the above studies, we apply parallel techniques on the problem of structural diversity
search for finding vertices with the largest structural diversity.

3 Problem statement

In this section, we formulate the problem of h-index based structural diversity search.

3.1 Preliminaries

We consider an undirected and unweighted simple graph G = (V ,E), where V is the set
of vertices and E is the set of edges. We denote n = |V | and m = |E| as the number of
vertices and edges in G respectively. W.l.o.g. we assume the input graph G is a connected
graph, which implies that m ≥ n − 1. For a given vertex v in a subgraph H of G, we define
NH (v) = {u in H : (u, v) ∈ E(H)} as the set of neighbors of v in H , and dH (v) =
|NH (v)| as the degree of v in H . We drop the subscript of NG(v) and dG(v) if the context
is exactly G itself, i.e. N(v), d(v). The maximum degree of graph G is denoted by dmax =
maxv∈V dG(v).

Given a subset of vertices S ⊆ V , the subgraph of G induced by S is denoted by GS =
(S,E(S)), where the edge set E(S) = {(u, v) ∈ E : u, v ∈ S}. Based on the definition of
induced subgraph, we define the ego-network [10, 37] as follows.

401

World Wide Web (202) 2 : –397 4171 4

Definition 1 (Ego-network) Given a vertex v in graph G, the ego-network of v is the
induced subgraph of G by its neighbors N(v), denoted by GN(v).

In the literature, the term “neighborhood induced subgraph” [21] is also used to describe
the ego-network of a vertex. For example, consider the graph G in Figure 1. The ego-
network of vertex v is shown in the gray area of Figure 1, which excludes v itself with its
incident edges. The t-core of a graph G is the largest subgraph of G in which all the vertices
have degree at least t . However, the t-core of a graph can be disconnected, which may not be
suitable to directly depict social contexts. Hence, we define the connected t-core as follows.

Definition 2 (Connected t-Core) Given a graph G and a positive integer t , a subgraph
H ⊆ G is called a connected t-Core iff H is connected and each vertex v ∈ V (H) has
degree at least t in H .

Given a parameter t , the core-based structural diversity model treats each maximal con-
nected t-core as a distinct social context [21, 47]. To measure the structural diversity of
an ego-network, one essential step is to tune a proper value for parameter t . However,
such parameter setting is not easy and even critically challenging. The following example
illustrates it.

Example 1 Figure 1 shows an ego-network GN(v) of vertex v. Given an integer t = 2,
three maximal connected 2-core (H1, H2 and H3) will be treated as distinct social contexts.
The core-based structural diversity of v is 3. When we set t = 3, the core-based structural
diversity of v will be 2, since H4 and H5 will be treated as two distinct social contexts. In
this case, H2 and H3 are no longer treated as social contexts. If we set t to be some values
higher than 3, no social contexts can be identified. The core-based structural diversity of
v will then be 0. From this example, we can see that if the value of t is tuned too high,
no social contexts can be identified. But if the value of t is set too low, some strong social
contexts with denser structures cannot be captured. Thus, to choose a proper value of t for
all vertices in a graph is a challenging task.

To tackle the above issue, we propose a parameter-free scheme for automatically iden-
tifying strong social contexts in one’s ego-network. We firstly give a novel definition of
discriminative core based on the concept of coreness as follows.

Definition 3 (Coreness) Given a subgraph H ⊆ G, the coreness of H is the minimum
degree of vertices in H , denoted by ϕ(H) = minv∈H {dH (v)}. The coreness of a vertex
v ∈ V (G) is ϕG(v) = maxH⊆G,v∈V (H){ϕ(H)}.

Definition 4 (Discriminative Core) Given a graph G and a subgraph H ⊆ G, H is a
discriminative core if and only if H is a maximal connected subgraph such that there exists
no subgraph H ′ ⊆ H with ϕ(H ′) > ϕ(H).

By Definition 4, a discriminative core H is a maximal connected component that cannot
be further decomposed into smaller subgraphs with a higher coreness. It indicates that a
discriminative core is the densest and most important component of a social context, which
can be used as a distinct element to represent a social context. In addition, the coreness of

402

World Wide Web (202) 2 : –397 4171 4

a discriminative core reflects the strength of its representative social context. For example,
H4 is a discriminative core with ϕ(H4) = 3. And H2 is another discriminative core with
ϕ(H2) = 2. According to the core-based structural diversity, they cannot be identified as
distinct social contexts simultaneously using the same value of parameter t . But by our
discriminative core definition, they will be treated as distinct social contexts automatically
without loosing the information of their strength.

For an ego-network GN(v), the whole network may consist of multiple discriminative
cores with various corenesses, which can be depicted as a coreness distribution of dis-
criminative cores. Moreover, to rank the structural diversity of two vertices, it is difficult
to directly compare the coreness distributions of two ego-networks. Because it is not
easy to measure both the number of social contexts and the strength of social contexts
simultaneously.

Making use of the idea of h-index criteria, we define the diversity vector and diversity
score as follows.

Definition 5 (Diversity Vector and Diversity Score) Given a graph G and a vertex v, the
diversity vector of v is the coreness distribution of discriminative cores in GN(v), denoted
by C(v) = [cv(1), ..., cv(n)], where cv(r) = |{H : ϕ(H) = r and H is a discriminative core
in GN(v)}|. The h-index based structural diversity score of v, denoted by h(v), is defined as
h(v) = max{r : ∑n

r cv(r) ≥ r}. For short, diversity score is called.

Example 2 Consider the ego-network of v shown in Figure 1, subgraph H1 is not a 2-
core discriminative component since it can be further decomposed into two 3-cores H4
and H5. There is no discriminative core with the coreness of 1, so cv(1) = 0. And
cv(2) = 2 since it has two discriminative cores H2 and H3 with the coreness of 2. Simi-
larly, cv(3) = 2 because H4, H5 are two discriminative cores with the coreness of 3. There
exists no discriminative cores with coreness greater than 3. Thus, the diversity vector of v is
C(v) = [0, 2, 2, 0, ..., 0]. And the diversity score is h(v) = 2 by definition.

In this paper, we study the problem of h-index based structural diversity search in a
graph. The problem formulation is defined as follows.

Problem formulation Given a graph G and an integer k, the goal of h-index based struc-
tural diversity search problem is to find an optimal answer S∗ consisted of k vertices with
the highest h-index based structural diversity scores, i.e.,

S∗ = arg max
S⊆V,|S|=k

{min
v∈S

h(v)}.

4 Baseline algorithm

In this section, we introduce a baseline approach for h-index based structural diversity
search over graph G. The high-level idea is to compute the diversity score for each ver-
tex in graph G one by one. After obtaining the scores of all vertices, it sorts vertices in
decreasing order of their scores and returns the first k vertices with the highest structural

403

World Wide Web (202) 2 : –397 4171 4

diversity scores. This method computes the top-k result from scratch, which is intuitive and
straightforward to obtain answers.

In the following, we first introduce an existing algorithm of core decomposition [3].
Then, we present an important and useful procedure to compute h-index based structural
diversity score h(v) for a given vertex v.

4.1 Core decomposition

The core decomposition of graph G computes the coreness of all vertices v ∈ V . Algo-
rithm 1 outlines the algorithm of core decomposition [3]. The algorithm starts with an
integer t = 1, and iteratively removes the nodes with degree less than t and their incident
edges. The number of t − 1 is assigned to be the coreness of the removed vertices. Then,
the degree of affected vertices needs to be updated, since the removal of a vertex decreases
the degree of its neighbors in the remaining graph. The number t is increased by one after
each iteration, until all vertices and edges are deleted from the input graph.

4.2 Computing h(v)

The computation of h(v) includes three major steps. First, we extract from graph G and
obtain an ego-network GN(v) for vertex v, which is the induced subgraph of G by the set
of v’s neighbors N(v). Next, we decompose the entire ego-network GN(v) into several dis-
criminative cores, and count their corenesses to derive structural diversity vector C(v). The
detailed procedure is outlined in Algorithm 2. Finally, based on the diversity vector of C(v),
we compute the diversity score h(v) by the Definition 5 using Algorithm 3.

Discriminative core decomposition Algorithm 2 outlines the detailed steps for discrim-
inative core decomposition and diversity vector computation. For an ego-network GN(v)

of vertex v, we firstly apply the core decomposition algorithm on it to calculate the core-
ness of each vertex (line 1). Then, we sort all vertices in GN(v) in ascending order of their
coreness (line 3). For each integer t from 1 to the maximum coreness of the vertices in
GN(v), we identify and count the number of discriminative cores with the coreness of t

by using a breadth first search approach (lines 5–19). By definition, a discriminative core

404

World Wide Web (202) 2 : –397 4171 4

with the coreness of t will be only formed by the vertices with the coreness of exactly t .
Thus, in each iteration, we traverse vertices with the same coreness of t to search all the
discriminative cores H s with ϕ(H) = t (lines 7–19 and lines 14–15). Edges connecting the
current visited vertex x to the vertices with coreness greater than t indicate that the cur-
rent found component can not be counted as a discriminative core and x does not belong to
any discriminative cores in GN(v) (lines 16–17). Then the t-th element cv(t) of the diversity
vector C(v) can be computed (lines 18–19). Finally, the diversity vector C(v) of v will be
returned.

405

World Wide Web (202) 2 : –397 4171 4

H-index score computation The details of computing the h-index based structural diver-
sity score are shown in Algorithm 3. After figuring out the diversity vector C(v) (lines 1–2),
the diversity score h(v) can then be calculated by Definition 5 (lines 3–6). We firstly ini-
tialize h(v) as 0 (line 3). Then, for each element cv(t) in the reverse order of the diversity
vector C(v), we keep accumulating it to h(v) until the first t appears such that h(v) ≥ t

(line 4–6). Such t is the diversity score h(v) of v.
Equipped with Algorithm 3, we are able to compute the h-index based structural diversity

for all the vertices in G. By sorting the diversity scores, we can obtain the top-k results for
a given k.

5 Efficient top-k search algorithm

The drawback of baseline method presented in the previous section is obviously ineffi-
cient and can be improved. Firstly, both the ego-network extraction and discriminative core
decomposition are costly in computation. Secondly, it iteratively computes the h-index
based structural diversity scores for all vertices on the entire graph G, which is expensive.
Thirdly, some vertices appear to be obviously unqualified for the top-k result. And the score
computations of them are reluctant and should be avoided.

In this section, we develop an efficient top-k search framework by exploiting useful prun-
ing techniques to reduce the search space, leading to a small number of candidate vertices
for score computations. Specifically, we design an upper bound ĥ(v) for diversity score
h(v), based on the analysis of the core structure.

5.1 An upper bound of h (v)

We starts with a structural property of t-core.

Lemma 1 Given a vertex v and any vertex u ∈ N(v), if u has ϕGN(v)
(u) = r in ego-network

GN(v), then u has the coreness ϕG(u) ≥ r + 1 in graph G.

Proof We omit the proof for brevity. The detailed proof can be referred to [21].

Example 3 Consider vertex x1 in Figure 1, x1 has coreness ϕG(x1) = 4. However, in the
ego-network GN(v), ϕGN(v)

(x1) = 3. Here ϕG(x1) ≥ ϕGN(v)
(x1) + 1 holds.

For a vertex v and some vertices u ∈ N(v), the global coreness ϕG(u) is sometimes
much larger than the coreness of u in the ego-network of v, i.e. ϕG(u) >> ϕGN(v)

(u). The
following lemma gives another upper bound for estimating the coreness ϕGN(v)

(u), w.r.t.
vertices v and u ∈ N(v).

Lemma 2 Given a vertex v and its coreness ϕG(v), ∀u ∈ N(v), ϕGN(v)
(u) < ϕG(v).

Proof We prove this by contradiction. For any u ∈ N(v), we assume ϕG(v) = r and
ϕGN(v)

(u) ≥ ϕG(v), which is ϕGN(v)
(u) ≥ r . By the definition of coreness, there exists a

subgraph H ⊆ GN(v) with coreness ϕ(H) ≥ r indicating that ∀v∗ ∈ V (H), dH (v∗) ≥ r .

406

World Wide Web (202) 2 : –397 4171 4

We add the vertex v and its incident edges to H to generate a new subgraph H ′ ⊆ G, where
V (H ′) = V (H) ∪ {v} and E(H ′) = E(H) ∪ {(v, u) : u ∈ V (H)}. It’s easy to verify that
for all v∗ in H ′, we have dH ′(v∗) ≥ r + 1. Since v is also contained in H ′, by definition,
ϕG(v) ≥ r + 1, which contradicts to the condition ϕG(v) = r .

Combining Lemmas 1 and 2, we have the following corollary.

Corollary 1 Given a vertex v in graph G, for any vertex u ∈ N(v), ϕ̂GN(v)
(u) =

min{ϕG(v), ϕG(u) − 1} and ϕ̂GN(v)
(u) ≥ ϕGN(v)

(u) hold.

Based on Corollary 1, we derive an upper bound ĥ(v) for the h-index based structural
diversity score h(v) as follows.

Lemma 3 Given a vertex v and its ego-network GN(v), we have an upper bound of diversity
score h(v), denoted by

ĥ(v) = max
x∈Z+

{x : |{u ∈ N(v) : ϕ̂GN(v)
(u) ≥ x}| ≥ x · (x + 1)}.

Proof Assume that h(v) = x∗, we prove ĥ(v) ≥ x∗. By h(v) = x∗, it indicates that there
exist x∗ discriminative cores g with ϕ(g) ≥ x∗ in the ego-network GN(v). For ϕ(g) ≥ x∗,
discriminative core g has at least x∗ + 1 nodes u with ϕGN(v)

(u) ≥ x∗. Thus, the whole
ego-network GN(v) has at least x∗ · (x∗ + 1) nodes u with ϕGN(v)

(u) ≥ x∗, i.e., h(v) =
x∗ ≤ maxx∈Z+{x : |{u ∈ N(v) : ϕGN(v)

(u) ≥ x}| ≥ x · (x + 1)}. By Corollary 1,
ϕ̂GN(v)

(u) ≥ ϕGN(v)
(u), hence we have ĥ(v) ≥ x∗ = h(v).

According to Lemma 3, once applying the core decomposition algorithm on graph G,
we can directly compute the upper bounds ĥ(v) for all vertices v.

5.2 Top-K structural diversity search framework

Equipped with the upper bound ĥ(v), we develop an efficient top-k search frame-
work for safely pruning the search space and avoiding the unnecessary computation
of h(v). The efficient top-k structural diversity search framework is presented in
Algorithm 4.

Algorithm 4 starts with the initialization of the upper bound of each vertex v (lines 1–
2). Then, it sorts all vertices in descending order according to their upper bounds (line
3). It maintains a list S to store the top-k result (line 4). In each iteration, the algorithm
pops out a vertex v∗ from the vertex list L with the largest upper bound ĥ(v∗) (line 6).
Next, it checks the early stop condition: if the answer set S has k results and the mini-
mum score in S is no less than the current upper bound, i.e. ĥ(v∗) ≤ minv∈Sh(v), the
current vertex v∗ is safely pruned and the searching process is terminated (lines 8-9). Oth-
erwise, the procedure of structural diversity score computation is invoked and check if v∗
can be added into the result set (lines 10-14). Finally, the top-k results stored in S are
returned.

407

World Wide Web (202) 2 : –397 4171 4

5.3 Complexity analysis

In this section, we analyze the time and space complexity of Algorithm 4.

Lemma 4 Algorithm 3 computes h(v) for each vertex v in O(
∑

u∈N(v) min{d(u), d(v)})
time and O(m) space.

Proof Extracting GN(v) of v takes O(
∑

u∈N(v) min{d(u), d(v)}), since all triangles
vuw

should be listed to enumerate each edge (u,w) ∈ E(GN(v)). According to [3], the core
decomposition performed in GN(v) takes O(|E(GN(v))| + d(v)) time. The sorting of the
vertices can be finished in O(d(v)) time using bin sort. And the breadth first search process
for identifying the discriminative cores needs O(|E(GN(v))|) time. In addition, the comput-
ing of the h-index based structural diversity score h(v) runs in O(δ(GN(v))) time, where
δ(GN(v)) = maxu∈N(v) ϕGN(v)

(u) is the degeneracy of GN(v). And δ(GN(v)) is bounded by
the degree of v, which is O(δ(GN(v))) ⊆ d(v). Overall, the time complexity of Algorithm 3
is O(

∑
u∈N(v) min{d(u), d(v)}).

We continue to analyze the space complexity of Algorithm 3. The storage of the ego-
network of v takes O(n + m) space since GN(v) ⊆ G. And both the sorted list of vertices
(line 4) and the structural diversity vector of v takes O(n) space. Thus, the space complexity
of Algorithm 3 is O(n + m) ⊆ O(m) due to our graph connectivity assumption.

Theorem 1 Algorithm 4 computes the top-k results in O(ρm) time and O(m) space, where
ρ is the arboricity of G. According to [9], ρ ≤ min{dmax,

√
m}.

Proof Firstly, the core decomposition algorithm performed on G takes O(m) time and
O(n + m) space. Secondly, the computation of upper bound ĥ(v) for all v’s takes O(m)

408

World Wide Web (202) 2 : –397 4171 4

time and O(n)space. In the worst case, Algorithm 4 needs to compute h(v) for every vertex
v. This takes O(

∑
v∈V {∑u∈N(v) min{d(u), d(v)}}) time in total by Lemma 4. According

to [9], we have

O

⎛

⎝
∑

v∈V

⎧
⎨

⎩

∑

u∈N(v)

min{d(u), d(v)}
⎫
⎬

⎭

⎞

⎠ ⊆ O

⎛

⎝
∑

(u,v)∈E

min{d(u), d(v)}
⎞

⎠ ⊆ O(ρm).

Here ρ is the arboricity of graph G, which is defined as the minimum number of disjoint
spanning forests that cover all the edges in G. In addition, the top-k results can be main-
tained in a list in O(n) time and O(n) space using bin sort. Overall, Algorithm 4 runs in
O(ρm) time and O(m) space.

6 Parallel top-k search algorithm

In this section, we present a parallel algorithm for top-k structural diversity search in a
multiprocessor shared memory machine.

6.1 Parallelization analysis

We first briefly give an overview of the new parallel top-k search algorithm.

Overview We analyze the diversity score computation in Algorithm 3. We observe that the
algorithm of computing score h(v) is conducted in its own ego-network GN(v). Thus, the
diversity score h(v) computation for different vertices v ∈ V can be treated independently
and operated using multiple threads in parallel. This observation allows us to apply parallel
computing for speeding up the top-k structural diversity search. An intuitive method is to
compute the diversity scores for all vertices in multi-threading parallelization. However,
this method straightforwardly enumerates all vertices without any pruning strategies, which
may be still inefficient for large-scale graphs. To further improve the efficiency, we focus
on developing a parallel algorithm based on the efficient top-k structural diversity search
framework in Algorithm 4.

In the following, we identify key steps in the top-k search framework in Algorithm 4 and
analyze their synchronicity/parallelization. Generally, the top-k search framework has four
key steps: upper bound estimation (lines 3–4 of Algorithm 4), score computation (line 10
of Algorithm 4), pruning condition validation (lines 8-9 of Algorithm 4), and top-k answer
update (lines 11–14 of Algorithm 4).

Parallel computation in estimating upper bounds and ranking vertices In Algorithm 4,
two important initialization steps are computing the upper bounds for all vertices and rank-
ing vertices in decreasing order of their upper bounds. We consider the parallelization of
computing upper bound and vertex ranking as follows. According to the definition of upper
bound in Lemma 3, the upper bound of ĥ(v) for a given vertex v is determined by its
ego-network GN(v). Hence, the upper bound computations for different vertices are inde-
pendent, which allow us to process them in parallel. On the other hand, Algorithm 4 ranks
vertices using the bin sort, which inserts a vertex v into a corresponding bin with the value
of its upper bound ĥ(v). However, this step needs to be operated synchronously. Because
the information loss may occur when two threads deal with the same bin simultaneously.
Thus, we compute the upper bounds asynchronously and rank vertices synchronously.

409

World Wide Web (202) 2 : –397 4171 4

Parallel search order and pruning strategy We develop a new search order and pruning
condition for parallel top-k search. Assume that we insist on randomly assigning vertices
for score computation in multiple threads and directly adopting the early stop condition
in Algorithm 4. This strategy leads to inaccurate answers. This is because that the whole
algorithm may directly terminate for an existing vertex v∗ with ĥ(v∗) ≤ minv∈Sh(v) in a
thread, thus it may dismiss the score computations of vertices in other threads, which should
be the answers.

To ensure the correctness of parallel algorithm, we define a parallel order of score com-
putations. Let B[i] be the set of vertices whose upper bounds are i, i.e., B[i] = {v ∈ V :
ĥ(v) = i}. The parallel algorithm computes the structural diversity score for vertices B[i]
in the decreasing order of upper bound i. If and only if the scores of all vertices in B[i]
have been calculated, we next consider the score computation of vertices in B[i − 1]. Thus,
no vertex with a smaller upper bound is computed in advanced in the multi-threads schema,
which sacrifices the efficiency but ensures the answer exactness.

Lemma 5 Given an integer i ≥ 0, all vertices v ∈ B[j] where 0 ≤ j ≤ i, can be safely
pruned if and only if the following conditions are fulfilled at the same time:

– The size of top-k answer S is k, i.e., |S| = k.
– For each vertex v ∈ B[l] where l > i, the score h(v) has been computed.
– The smallest score in the answer S is no less than i, i.e., i ≤ minv∈S h(v).

Proof We first separate the vertices into two independent sets X and Y , where X ∪Y = V

and X ∩Y = ∅. Let X = ⋃maxUB
l=i+1 B[l] be the set of vertices with upper bounds greater than

i, where maxUB is the maximum upper bound of all vertices. Let Y = ⋃i
j=minUB B[j]

be the set of vertices whose upper bounds are smaller or equal to i, where minUB is the
minimum upper bound of all vertices.

In the first place, we show that under the above conditions, S will be the exact top-k
results among all vertices whose upper bounds are greater than i, i.e., ∀v ∈ X . This is
quite straightforward. By the second condition, the diversity scores of vertices in sets B[l]’s
for all l > i are completely computed, which implies that the the score of each of them
is compared and updated in S . And S always keeps the largest values of scores of the
vertices in X . Moreover, combining with the first condition that the size of S is k, we can
conclude that in the current iteration, S is the top-k results among the vertices in X , i.e.,
∀v∗ ∈ X − S, h(v∗) ≤ minv∈S h(v) and |S| = k.

In the second place, we further show that S is the top-k results among all vertices. We
prove this by contradiction. Assume that under the above three conditions, the algorithm
stops with inaccurate results. Specifically, we assume that there exists a vertex u with struc-
tural diversity score h(u) larger than the smallest diversity score in the top-k list S , i.e.,
h(u) > minv∈S h(v). And u has upper bound smaller than or equal to i, i.e., u ∈ Y
and ĥ(u) ≤ i. By our assumption, we have i ≥ ĥ(u) ≥ h(u) > minv∈S h(v), which is
i > minv∈S h(v). This contradicts with the third condition that i ≤ minv∈S h(v). Thus, S is
the exact top-k results of all vertices. And the rest computations can be pruned safely.

Equipped with this new pruning strategy in Lemma 5, the parallel algorithm can compute
diversity scores for all vertices in a set of B[i] asynchronously, one by one in decreasing
order of i. However, the scores of all vertices in the same B[i] can be computed simulta-
neously in parallel. This strategy achieves the parallel efficiency and ensures the answer
correctness.

410

World Wide Web (202) 2 : –397 4171 4

Synchronous top-k answer update We update the top-k answer S synchronously. Specif-
ically, only one thread can handle the update of top-k answer S, deciding a vertex u whether
should be added into the answer set S. This step is not computed in parallel, due to the
possible conflicts may happen among different threads for updating S simultaneously.

6.2 Parallel top-k structural diversity search

Algorithm 5 presents the details of parallel top-k structural diversity search algorithm. The
algorithm firstly computes the upper bounds of all vertices in parallel (lines 3–4), and
applies the bin sort on vertices in decreasing order of their upper bounds synchronously
(lines 5–7). It computes the maximum and minimum values of upper bounds denoted as
maxUB and minUB (line 8). Next, it sequentially traverses the set B[i] one by one in
decreasing order of i where minUB ≤ i ≤ maxUB (line 9). In each iteration of traversing
B[i], it computes scores for all vertices in B[i] in parallel, and also synchronously checks
the early stop condition and update the answer (lines 9–20). Specifically, it checks an early
stop condition by Lemma 5: if |S| = k and the smallest diversity score in S is no less than i

where i represents the largest value of upper bounds of the remaining vertices in our parallel
setting (lines 11–12), the search process is early terminated. Otherwise, it computes score
for all vertices in B[i] in parallel (lines 13–14) and updates the top-k list S synchronously
to ensure the answer correctness (line 15–20).

Finally, it returns the top-k results (line 21).

411

World Wide Web (202) 2 : –397 4171 4

Table 1 Network statistics
Name |V | |E| dmax

Gowalla 196,591 950,327 14,730

Youtube 1,134,890 2,987,624 28,754

LiveJournal 3,997,962 34,681,189 14,815

Orkut 3,072,441 117,185,083 33,313

7 Experiments

We conduct extensive experiments on real-world datasets to evaluate the effectiveness and
efficiency of our proposed h-index based structural diversity model and algorithms.

Datasets We run our experiments on four real-world datasets downloaded on the SNAP
website [32]. All datasets are treated as undirected graphs. The statistics of the networks are
listed in Table 1. We report the node size |V |, edge size |E| and the maximum degree dmax

of each network.

Compared methods We evaluate all compared methods in terms of efficiency, effec-
tiveness and also sensitivity to parameter setting. Specifically, we show four compared
algorithms as follows.

• baseline: is the baseline method proposed in Section 4.
• h-core: is an improved top-k search algorithm for computing the top-k vertices with

highest h-index based structural diversity in Algorithm 4.
• t-core: is to compute the top-k vertices with highest t-core based structural diver-

sity [21]. Here, t is a parameter of coreness threshold.
• h-core-P: is a parallel algorithm for top-k structural diversity search using T threads in

Algorithm 5. Here, we set 1 ≤ T ≤ 64 in experiments.

Note that in the sensitivity evaluation, we test the state-of-the-art competitor t-core and
compare the top-k results for different parameter t . Our h-index based structural diversity
model has no input parameter, which is consistent on the top-k results.

7.1 Efficiency evaluation

In the first experiment, we compare the efficiency of baseline, h-core and t-core on four real-
world datasets. For the t-core method, we fix parameter t = 2. We compare the running time
and search space (i.e., the number of vertices whose structural diversity scores are computed
in the search process). Figure 2 shows the running time results of three methods varied by

 20

 25

 30

 35

 40

1 3 5 7 9 11 13 15

Ti
m

e
(s

)

k

baseline
h-core

t-core

(a) Gowalla

 50
 100
 150
 200
 250
 300
 350
 400

1 3 5 7 9 11 13 15

Ti
m

e
(s

)

k

baseline
h-core

t-core

(b) Youtube

0
1k
2k
3k
4k
5k
6k

1 3 5 7 9 11 13 15

Ti
m

e
(s

)

k

baseline
h-core

t-core

(c) LiveJournal

9k
10k
11k
12k
13k
14k
15k
16k

1 3 5 7 9 11 13 15

Ti
m

e
(s

)

k

baseline
h-core

t-core

(d) Orkut

Figure 2 Comparsion of baseline, h-core and t-core in terms of running time (in seconds) itemize

412

World Wide Web (202) 2 : –397 4171 4

103

104

105

106

1 3 5 7 9 11 13 15

Se
ar

ch
 S

pa
ce

k

baseline
h-core

t-core

(a) Gowalla

103

104

105

106

107

1 3 5 7 9 11 13 15

Se
ar

ch
 S

pa
ce

k

baseline
h-core

t-core

(b) Youtube

104

105

106

107

1 3 5 7 9 11 13 15

Se
ar

ch
 S

pa
ce

k

baseline
h-core

t-core

(c) LiveJournal

105

106

107

1 3 5 7 9 11 13 15

Se
ar

ch
 S

pa
ce

k

baseline
h-core

t-core

(d) Orkut

Figure 3 Comparsion of baseline, h-core and t-core in terms of search space

k. It clearly shows that top-k search algorithm h-core runs much faster than baseline on all
the reported datasets. Specifically, in Figure 2c, h-core is 5 times faster than baseline on
Youtube in term of running time. Moreover, Figure 3 further shows the search space of three
methods varied on all datasets. We can observe that leveraging on the upper bound ĥ(v),
a large number of disqualified vertices is pruned during the search process by h-core. The
search space significantly shrinks into less than 1

10 of vertex size in graphs. It verifies the
tightness of our upper bound and the superiority of h-core against baseline in efficiency.
According to Figures 2 and 3, our h-core is very comparative to the state-of-art method
t-core in terms of running time and search space.

In the second experiment, we compare the efficiency of h-core and h-core-P on four large
real-world graph datasets. To enable multi-thread programming with Intel CPU, we use
the well-known C++ parallelization computing library OpenMP.1 We vary the number of
threads T in {1, 2, 4, 8, 16, 32, 64} and report the running time in seconds. Figure 4 shows
the running time results of two methods by varing different thread numbers. As we can see,
as the thread numbers increased, the efficiency of h-core-P is significantly improved by
the parallelization scheme in h-core-P. Especially, on the largest dataset of Orkut, h-core-P
using 64 threads achieves 13X speedup compared with the running time of h-core.

7.2 Sensitivity evaluation

This experiment evaluates the sensitivity of t-core model. Given two different values of t ,
t-core model may generate two different lists of top-k ranking results. We use the Kendall
rank tau distance to counts the number of pairwise disagreements between two top-k lists.
The larger the distance, the more dissimilar the two lists, and also more sensitive the t-core
model. We adopt the Kendall distance with penalty, denoted by,

K(p)(τ1, τ2) =
∑

{i,j}∈P
K

(p)

i,j (τ1, τ2)

where P is the set of all unordered pairs of distinct elements in two top-k list τ1, τ2 and p is
the penalty parameter. In our setting, we set p = 1 and normalize the Kendall distance by
the number of permutation |P |. The values of normalized Kendall distance range from 0 to
1.

We test the sensitivity of t-core model by varying parameter t in {2, 4, 6, 8, 10}. We
compute the Kendall distance of two top-100 lists by t-core model with two different t . The
results of sensitivity heat matrix on four datasets are shown in Figure 5. The darker colors
reveal larger Kendall distances between two top-k lists and also more sensitive of t-core

1https://www.openmp.org/

413

https://www.openmp.org/

World Wide Web (202) 2 : –397 4171 4

 0
 5

 10
 15
 20
 25
 30
 35

1 2 4 8 16 32 64

Ti
m

e
(s

)

Threads

h-core h-core-P

(a) Gowalla

 0

 20

 40

 60

 80

 100

1 2 4 8 16 32 64

Ti
m

e
(s

)

Threads

h-core h-core-P

(b) Youtube

0

0.5k

1k

1.5k

2k

2.5k

1 2 4 8 16 32 64

Ti
m

e
(s

)

Threads

h-core h-core-P

(c) LiveJournal

0
2k
4k
6k
8k

10k
12k
14k

1 2 4 8 16 32 64

Ti
m

e
(s

)

Threads

h-core h-core-P

(d) Orkut

Figure 4 Comparsion of h-core and h-core-P in terms of running time (in seconds)

models on this pair of parameters t . Overall, sensitivity heat matrices are depicted in dark
for most parameter settings on all datasets. This reflects that the top-k results computed by
t-core are very sensitive to the setting of parameter t , which has a bad robustness. It strongly
indicates the necessity and importance of our parameter-free structural diversity model.

7.3 Effectiveness evaluation

In this experiment, we evaluate the effectiveness of our proposed h-index based struc-
tural diversity. We compare our method h-core with state-of-the-art t-core [21] in the task
of social contagion. Specifically, we adopt the independent cascade model to simulate
the influence propagation process in graphs [17]. Influential probability of each edge is
set to 0.01. Then, we select 50 vertices as activated seeds by an influence maximization
algorithm [46]. We perform 1000 times of Monte Carlos sampling for propagation. For com-
parison, we count the number of activated vertices in the top-k results by t-core and h-core
methods. The method that achieves the largest number of activated vertices is regarded as
the winner.

First, we report the average activated rate by h-core and t-core method on all four datasets
in Figure 6a. Let D ={“Gowalla”,“Youtube”, “LiveJournal”,“Orkut”}. Given a dataset d ∈
D, the activated rate is defined as fk(d) = ActNumk

k
, where ActNumk is the number of

activated vertices in the top-k result. The average activated rate is defined as ActRatek =∑
d∈D fk(d)

|D| . Figure 6a shows that our method h-core achieves the highest activated rates,
which significantly outperforms t-core method for all different t . It indicates that the top-k
results found by h-core tend to have higher probability to be affected in social contagion.

In addition, we also report the winning cases of h-core and t-core with different parame-
ter t on all dataset. We vary t = {2, 3, 4} and set k = 100 for all methods. The winner of a
dataset is the method that achieves the highest number of activated vertices in this dataset.
Figure 6b shows the winning cases of t-core and h-core. As we can see, h-core wins on
three datasets, which achieves the best performance. It further shows the superiority of our

2
4
6
8

10

2 4 6 8 10

t

t

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9
 1

(a) Gowalla

2
4
6
8

10

2 4 6 8 10

t

t

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9
 1

(b) Youtube

2
4
6
8

10

2 4 6 8 10

t

t

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9
 1

(c) LiveJournal

2
4
6
8

10

2 4 6 8 10

t

t

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9
 1

(d) Orkut

Figure 5 Sensitivity heat matrices of t-core model on all datasets. Each matrix element represents the
Kendall’s Tau distance between two top-100 ranking lists by t-core model with different t

414

World Wide Web (202) 2 : –397 4171 4

 0.4

 0.5

 0.6

 0.7

 0.8

50 60 70 80 90 100

Ac
tiv

at
ed

 R
at

io

k

3-core
4-core

5-core
h-core

(a) Average Activated Rate

 0
 1
 2
 3
 4
 5

h-core 3-core 4-core 5-core

W
in

 C
as

es

Models
(b) Winning Cases Distribution

Figure 6 Comparison of t-core and h-core in terms of the average activated ratio and winning cases on four
datasets

h-index structural diversity model. Besides, 3-core wins once, 4-core and 5-core win none,
indicating that t-core performs sensitively to parameter t .

8 Conclusion and future work

In this paper, we propose a parameter-free structural diversity model based on h-index
and study the top-k structural diversity search problem. To solve the top-k structural diver-
sity search problem, an upper bound for the diversity score and a top-k search framework
for efficiently reducing the search space are proposed. To accelerate the computation, we
design a novel parallelization scheme for efficient top-k structural diversity search. Exten-
sive experiments on real-wold datasets verify the efficiency of our pruning techniques and
the effectiveness of our proposed h-index based structural diversity model.

In the future work, we would like to improve the current online top-k search approach.
We can adopt a graph indexing method to keep important structural information to acceler-
ate the top-k query processing. Next, we only deal with undirected static graphs instead of
other types of graphs such as dynamic graphs, directed graphs, attributed graphs, and so on.
Defining social contexts and finding parameter-free structural diversity over other kinds of
social networks (e.g., public-private social networks [28]) are also wide open.

Acknowledgments This work is supported by the NSFC Nos. 61702435, 61972291, RGC Nos. 12200917,
12200817, CRF C6030-18GF, and the National Science Foundation of Hubei Province No. 2018CFB519.

References

1. Aridhi, S., Brugnara, M., Montresor, A., Velegrakis, Y.: Distributed k-core decomposition and mainte-
nance in large dynamic graphs. In: DEBS, pp. 161–168. ACM (2016)

2. Arifuzzaman, S., Khan, M., Marathe, M.: Fast parallel algorithms for counting and listing triangles in
big graphs. TKDD 14(1), 1–34 (2019)

3. Batagelj, V., Zaversnik, M.: An o (m) algorithm for cores decomposition of networks arXiv preprint
cs/0310049 (2003)

4. Bonchi, F., Gullo, F., Kaltenbrunner, A., Volkovich, Y.: Core decomposition of uncertain graphs. In:
KDD, pp. 1316–1325. ACM (2014)

5. Chang, L., Qin, L.: Cohesive subgraph computation over large sparse graphs: algorithms, data structures,
and programming techniques. Springer, Berlin (2018)

6. Chang, L., Zhang, C., Lin, X., Qin, L.: Scalable top-k structural diversity search. In: ICDE, pp. 95–98
(2017)

415

World Wide Web (202) 2 : –397 4171 4

7. Cheng, H., Zhong, M., Wang, J., Qian, T.: Keyword search based mashup construction with guaranteed
diversity. In: DEXA, pp. 423–433 (2019)

8. Cheng, J., Ke, Y., Chu, S., Özsu, M.T.: Efficient core decomposition in massive networks. In: ICDE,
pp. 51–62 (2011)

9. Chiba, N., Nishizeki, T.: Arboricity and subgraph listing algorithms. SIAM J. Comput. 14(1), 210–223
(1985)

10. Ding, F., Zhuang, Y.: Ego-network probabilistic graphical model for discovering on-line communities.
Appl Intell. 48(9), 3038–3052 (2018)

11. Esfandiari, H., Lattanzi, S., Mirrokni, V.: Parallel and streaming algorithms for k-core decomposition.
In: ICML, pp. 1397–1406 (2018)

12. Fang, Y., Cheng, R., Luo, S., Hu, J.: Effective community search for large attributed graphs. Proc. VLDB
Endow. 9(12), 1233–1244 (2016)

13. Fang, Y., Wang, Z., Cheng, R., Wang, H., Hu, J.: Effective and efficient community search over large
directed graphs. IEEE Trans. Knowl. Data Eng. 31(11), 2093–2107 (2018)

14. Fang, Y., Huang, X., Qin, L., Zhang, Y., Zhang, W., Cheng, R., Lin, X.: A survey of community search
over big graphs 1–40. VLDB J 29(1), 353–392 (2020)

15. Fang, Y., Yang, Y., Zhang, W., Lin, X., Cao, X.: Effective and efficient community search over large
heterogeneous information networks . Proc VLDB Endow 13(6), 854–867 (2020)

16. Galimberti, E., Bonchi, F., Gullo, F.: Core decomposition and densest subgraph in multilayer networks.
In: CIKM, pp. 1807–1816. ACM (2017)

17. Goyal, A., Lu, W., Lakshmanan, L.V.S.: CELF++: optimizing the greedy algorithm for influence
maximization in social networks. In: WWW, pp. 47–48 (2011)

18. Hirsch, J.E.: An index to quantify an individual’s scientific research output. Proc. Natl. Acad. Sci.
102(46), 16569–16572 (2005)

19. Hou, J., Wang, S., Wu, G., Fu, G., Jia, S., Wang, Y., Li, B., Zhang, L.: Parallel strongly connected
components detection with multi-partition on gpus. In: ICCS, pp. 16–30. Springer (2019)

20. Huang, X., Cheng, H., Li, R.-H., Qin, L., Yu, J.X.: Top-k structural diversity search in large networks.
PVLDB 6(13), 1618–1629 (2013)

21. Huang, X., Cheng, H., Li, R., Qin, L., Yu, J.X.: Top-k structural diversity search in large networks.
VLDB J. 24(3), 319–343 (2015)

22. Huang, X., Cheng, H., Yu, J.X.: Attributed community analysis: global and ego-centric views. IEEE
Data Eng. Bull. 39(3), 29–40 (2016)

23. Huang, J., Huang, X., Zhu, Y., Xu, J.: Parameter-free structural diversity search. In: WISE, pp. 677–693
(2019)

24. Huang, X., Lakshmanan, L.V., Xu, J.: Community search over big graphs. Morgan & Claypool
Publishers, San Rafael (2019)

25. Huang, J., Huang, X., Xu, J.: Truss-based structural diversity search in large graphs. arXiv preprint
arXiv:2007.05437 (2020)

26. Huckfeldt, R.R., Sprague, J.: Citizens, Politics and Social Communication: Information and Influence in
an Election Campaign. Cambridge University Press, Cambridge (1995)

27. Jakma, P., Orczyk, M., Perkins, C.S., Fayed, M.: Distributed k-core decomposition of dynamic graphs.
In: StudentWorkshop@CoNEXT, pp. 39–40. ACM (2012)

28. Jiang, J., Huang, X., Choi, B., Xu, J., Bhowmick, S.S., ppkws, L.X.u.: An efficient framework for
keyword search on public-private networks. In: ICDE, pp. 457–468 (2020)

29. Jin, J., Luo, J., Khemmarat, S., Dong, F., Gao, L.: Gstar: an efficient framework for answering top-k star
queries on billion-node knowledge graphs. World Wide Web 22(4), 1611–1638 (2019)

30. Kempe, D., Kleinberg, J.M., Tardos, É.: Maximizing the spread of influence through a social network.
In: KDD, pp. 137–146 (2003)

31. Kim, M.-S., Lee, S., Han, W.-S., Park, H., Lee, J.-H.: Dsp-cc-: I/o efficient parallel computation of
connected components in billion-scale networks. ICDE 27(10), 2658–2671 (2015)

32. Leskovec, J., Krevl, A.: SNAP Datasets: Stanford large network dataset collection http://snap.stanford.
edu/data (2014)

33. Levorato, V.: Core decomposition in directed networks: Kernelization and strong connectivity. In:
CompleNet, vol. 549, pp. 129–140 (2014)

34. Li, R., Yu, J.X., Mao, R.: Efficient core maintenance in large dynamic graphs. TKDE 26(10), 2453–2465
(2014)

35. Liu, G., Shi, Q., Zheng, K., Li, Z., Liu, A., Xu, J.: Context-aware graph pattern based top-k designated
nodes finding in social graphs. World Wide Web 22(2), 751–770 (2019)

36. Liu, Q., Zhu, Y., Zhao, M., Huang, X., Xu, J., Gao, Y.: Vac: vertex-centric attributed community search.
In: ICDE, pp. 937–948 (2020)

416

http://arxiv.org/abs/2007.05437
http://snap.stanford.edu/data
http://snap.stanford.edu/data

World Wide Web (202) 2 : –397 4171 4

37. Mcauley, J., Leskovec, J.: Discovering social circles in ego networks. TKDD 8(1), 4 (2014)
38. Montresor, A., Pellegrini, F.D., Miorandi, D.: Distributed k-core decomposition. TPDS 24(2), 288–300

(2013)
39. Nguyen, D., Lenharth, A., Pingali, K.: A lightweight infrastructure for graph analytics. In: SOSP,

pp. 456–471 (2013)
40. Sanz-Cruzado, J., Pepa, S.M., Castells, P.: Structural novelty and diversity in link prediction. In:

Companion Proceedings of the The Web Conference, vol. 2018, pp. 1347–1351 (2018)
41. Sarıyüce, A.E., Gedik, B., Jacques-Silva, G., Wu, K.-L., Çatalyürek, Ü.V.: Streaming algorithms for

k-core decomposition. PVLDB 6(6), 433–444 (2013)
42. Shang, Z.J., Yu, X., Zhang, Z.: Tufast: a lightweight parallelization library for graph analytics. In: ICDE,

pp. 710–721. IEEE (2019)
43. Shun, J., Blelloch, G.E.: Ligra: a lightweight graph processing framework for shared memory. In: Pro-

ceedings of the 18th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming,
pp. 135–146 (2013)

44. Smith, S., Liu, X., Ahmed, N.K., Tom, A.S., Petrini, F., Karypis, G.: Truss decomposition on shared-
memory parallel systems. In: HPEC, pp. 1–6. IEEE (2017)

45. Su, J., Kamath, K., Sharma, A., Ugander, J., Goel, S.: An experimental study of structural diversity in
social networks. arXiv preprint arXiv:1909.03543 (2019)

46. Tang, Y., Shi, Y., Xiao, X.: Influence maximization in near-linear time: a martingale approach. In:
SIGMOD Conference, pp. 1539–1554. ACM (2015)

47. Ugander, J., Backstrom, L., Marlow, C., Kleinberg, J.: Structural diversity in social contagion. PNAS
109(16), 5962–5966 (2012)

48. Wang, W., Gu, Y., Wang, Z., Yu, G.: Parallel triangle counting over large graphs. In: DASFAA, pp. 301–
308. Springer (2013)

49. Wang, R., Wang, S., Zhou, X.: Parallelizing approximate single-source personalized pagerank queries
on shared memory. VLDBJ 28(6), 923–940 (2019)

50. Wen, D., Qin, L., Zhang, Y., Lin, X., Yu, J.X.: I/O efficient core graph decomposition Application to
degeneracy ordering. TKDE 31(1), 75–90 (2019)

51. Wu, H., Cheng, J., Lu, Y., Ke, Y., Huang, Y., Yan, D., Wu, H.: Core decomposition in large temporal
graphs. In: BigData, pp. 649–658 (2015)

52. Zhang, Y., Yu, J.X., Zhang, Y., Qin, L.: A fast order-based approach for core maintenance. In: ICDE,
pp. 337–348 (2017)

53. Zhang, Y., Wang, L., Zhu, J.J., Wang, X., Pentland, A.: The strength of structural diversity in online
social networks. arXiv preprint arXiv:1906.00756 (2019)

54. Zhang, Q., Li, R., Yang, Q., Wang, G., Qin, L.: Efficient top-k edge structural diversity search. In: ICDE,
pp. 205–216 (2020)

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

417

http://arxiv.org/abs/1909.03543
http://arxiv.org/abs/1906.00756

	Parallel algorithms for parameter-free structural diversity search on graphs
	Abstract
	Introduction
	Related work
	Structural diversity search
	K-core mining
	Parallel and distributed graph analytic

	Problem statement
	Preliminaries
	Problem formulation

	Baseline algorithm
	Core decomposition
	Computing h(v)
	Discriminative core decomposition
	H-index score computation

	Efficient top-k search algorithm
	An upper bound of h(v)
	Top-K structural diversity search framework
	Complexity analysis

	Parallel top-k search algorithm
	Parallelization analysis
	Overview
	Parallel computation in estimating upper bounds and ranking vertices
	Parallel search order and pruning strategy
	Synchronous top-k answer update

	Parallel top-k structural diversity search

	Experiments
	Datasets
	Compared methods

	Efficiency evaluation
	Sensitivity evaluation
	Effectiveness evaluation

	Conclusion and future work
	References

