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Abstract
Clustering has been extensively explored in pattern recognition and data mining in order
to facilitate various applications. Due to the presence of data noise, traditional clustering
approaches may become vulnerable and unreliable, thereby degrading clustering perfor-
mance. In this paper, we propose a robust spectral clustering approach, termed Non-negative
Low-rank Self-reconstruction (NLS), which simultaneously a) explores the nonnegative
low-rank properties of data correlation as well as b) adaptively models the structural spar-
sity of data noise. Specifically, in order to discover the intrinsic correlation among data,
we devise a self-reconstruction approach to jointly consider the nonnegativity and low-rank
property of data correlation matrix. Meanwhile, we propose to model data noise via a struc-
tural norm, i.e., �p,2-norm, which not only naturally conforms to genuine patterns of data
noise in real-world situations, but also provides more adaptivity and flexibility to different
noise levels. Extensive experiments on various real-world datasets illustrate the advantage of
the proposed robust spectral clustering approach compared to existing clustering methods.

Keywords Non-negative · Low-rank · Structural sparsity

1 Introduction

In the field of machine learning and data mining, massive research is devoted to clustering
technology [21] and its application, such as image segmentation [13, 35] gene expression
analysis [23, 28], document analysis [17], content based image retrieval [15, 46], image
annotation [22, 24, 37], similarity searches [20, 25, 45, 47, 48].

k-means is one of the most classical clustering models, which has been applied in reality
due to its effectiveness and simplicity. The typical process of traditional k-means (TKM)
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clustering algorithm iteratively assigns each data point to the nearest cluster and computes
a new clustering center. However, the “curse of dimensionality” may significantly reduce
the performance of TKM [11]. In order to solve this problem, some research works have
been done to find low-dimensional projections by reducing dimensions, e.g., PCA, and then
performing TKM. In order to further improve the clustering performance, discriminative
analysis [9, 11, 49, 50] has been injected into TKM. The work [9, 11], which employed
TKM and LDA to obtain cluster labels and learn the most discriminative subspace in an
alternating way, has shown the strength of integrating TKM and LDA into a joint frame-
work. Ye et al. [50] proposed a joint framework, namely discriminative k-means (DKM)
algorithm, which formalizes the clustering problem into the tracking maximization problem.

In recent years, spectral analysis [5, 8] has been proven to be effective in many applica-
tions, especially spectral clustering (SC) [14]. The spectral clustering pays more attention
on mining the intrinsic data geometric structures [3, 4, 26, 27, 32, 33, 40, 42–44], which
makes it become one of the most successful clustering methods and show more capabil-
ity in partitioning data with more complicated structures compared to traditional clustering
approaches. Therefore, the spectral clustering has been widely applied and shown their
effectiveness in various real-world applications, such as image segmentation [35, 51]. The
basic idea of spectral clustering is to use different similarity graphs of data points to predict
clustering labels. Besides NCut and k-way NCut, a new SC algorithm, i.e., local learning
based clustering (LLC) [40], was developed according to the assumption that the cluster
label of a data point can be determined by its neighbors, and a kernel regression model was
used for label prediction. In [44], discriminative information is used to improve clustering
performance by injecting into the construction of the similarity matrix. Most of the existing
methods heavily rely on such parametric similarity (or correlation) estimation.

Recently an explosion of emerging Web data, caused by mass storage, fast networks and
the widespread availability of media-sharing websites, has been posing more challenges on
traditional clustering techniques. On the one hand, as a result of the rapid development of
Web data, traditional approaches may require expensive cost of parameter tuning process for
calculating a proper data similarity matrix, so they become inapplicable in the face of dif-
ferent data types, different data distributions and so on. Moreover, existing methods mostly
focus on using local structure rather than global feature, and data correlation is usually cal-
culated independently. The intrinsic nature of data correlation matrix and global structure of
data have not been well explored to facilitate the subsequent spectral clustering process. On
the other hand, in real-world scenarios, data may be usually contaminated by unpredictable
noise and outliers, which can easily make existing method vulnerable.

In this work, in order to jointly address the aforementioned issues, a novel approach,
termed Non-negative Low-rank Self-reconstruction (NLS), is proposed for robust spectral
clustering. Specifically, the goal of NLS is to collectively (self-)reconstruct a set of data by
linearly combining all the data points in the dataset itself. Linear model is possibly the most
commonly chosen one due to its ease for use and effectiveness in practice. We first propose
to enforce the reconstruction coefficient matrix (i.e., data correlation matrix) to exhibit low-
rank property, which not only provides data with a more interpretable representation but also
integrates valuable global structural information to identify data correlation. Different from
our previous work [39], we have expanded on experiments and analysis, and the competent
experiments and analysis show the effectiveness of our method.

In addition, a nonnegative constraint is added purposely on the correlation matrix in order
to promote the interpretability (i.e., zero presents no relevance and positive value connotes
the degree of relevance). The original motivation of posing the nonnegative constraint on
data correlation matrix is to meet the nonnegative property of data similarity, such as the

World Wide Web (2020) 23:2107–21272108



ones based on Euclidean distance and cosine similarity. By this means, the nonnegative
would probably help to characterize the data correlation in a more accurate and interpretable
manner, thereby further boosting the clustering performance. Unlike our previous work [44],
which posed nonnegative constraint on cluster labels, in this work we utilize nonnegative
constraint to describe the inherent and actual correlation among data.

Moreover, on account of that only a (small) part of data in a dataset may be corrupted
and different sources of data may have different noise levels, we design a novel noise model
by utilizing an effective �p,2-norm over noise matrix to characterize noise in a more precise
way. The �p,2-norm is able to produce sample-wise sparsity over noise matrix, thereby
leading to automatic identification and modelling of noisy samples. At the same time, by
changing the value of p, �p,2-norm can provide greater flexibility on controlling levels of
noise and also expand the scope of our method.

The contributions of this paper are summarized as follows:

– We propose a novel approach, named as Non-negative Low-rank Self-reconstruction
(NLS), to facilitate robust spectral clustering. NLS jointly reconstructs data samples in
a dataset from themselves, i.e., self-reconstruction, by exploring the intrinsic low-rank
nature and nonnegativity of data correlation matrix and precisely modelling sample-
wise data noise.

– We devise a nonnegative low-rank approach, which provides data with a more inter-
pretable representation as well as incorporates precious global structural information
for identifying data correlation.

– We incorporate an effective �p,2-norm for characterizing data noise in a more precise
way. The �p,2-norm injects more flexibility to our approach for adapting to different
levels of noise and expands applicable range.

– Extensive experiments on multiple real-world datasets illustrate that our proposal
outperforms the existing clustering algorithms.

2 Related work

2.1 Data clustering

Data clustering has been a fundamental research topic in the machine learning and data min-
ing communities. k-means based clustering is the most widely used technology because of
its simplicity and mathematical tractability, and various methods [9, 11, 18, 19, 49, 50, 53]
based on k-means have been proposed successively to improve the severely unaffordable
computing time and storage requirements. However, these methods cannot completely over-
come the limitations of high complexity and cumbersome memory load. Recently, spectral
clustering (SC) [14] raises to prominence and becomes the most successful method avail-
able, which uses different similarity graphs of data points to predict clustering labels. Wu
et al. [40] proposed a new SC algorithm, termed local learning based clustering (LLC),
according to the hypothesis that the cluster label of a data point can be determined by its
neighbors. Yang et al. [44] injected discriminative information into the construction of the
similarity matrix to improve clustering performance. Deng et al. [10] proposed a novel dis-
tributed Policy Decision Point (PDP) model based on SC, called XPDP, to improve the PDP
evaluation performance, which combine two-stage clustering and reordering to eliminate
the limitation of computational performance of a single PDP.
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2.2 A revisit of spectral clustering

We preliminarily review details of spectral clustering. Suppose we are given n data points
X = [x1, x2, . . . , xn] ∈ R

d×n where d is the dimensionality of data space. The objective
of clustering is to partition X into c groups {Cj }cj=1 such that data points within the same
group are close while those in different groups are far from each other. Let us define Y =
[y1, y2, . . . , yn]T ∈ {0, 1}n×c, where yi ∈ {0, 1}c (i = 1, 2, . . . , n) is the xi’s cluster
indicator vector with the j th entry yij = 1 if xi ∈ Cj and yij = 0 otherwise. By following
[50], we further define the scaled cluster indicator matrix F as below:

F = [F1, F2, . . . , Fn]T = Y (Y T Y )−1/2

where Fi is the scaled cluster indicator of xi . Note that the j th column of F indicates which
data points belong to the j th cluster Cj , and it is in the following form:

fj = [0, . . . , 0
︸ ︷︷ ︸

∑j−1
k=1nk

, 1/
√

nj , . . . , 1/
√

nj
︸ ︷︷ ︸

nj

, 0, . . . , 0
︸ ︷︷ ︸

∑c
k=j+1nk

]

where nj is the number of data points in the j th cluster.
Below is a general objective function of spectral clustering:

min
F

T r(F T LF)

s.t. F = Y (Y T Y )−1/2 (1)

where T r(·) is the trace operator and L denotes a graph Laplacian matrix computed
according to the data local structure using different strategies. Given the dataset X =
[x1, x2, . . . , xn], we can construct an undirected graph which can be represented by the
weighted adjacency matrix S = (sij )i,j=1,2,...,n. Here sij > 0 indicates that xi and xj are
connected, and sij = 0 means they are not connected.

A common way to compute the edge weight is defined as follows:

sij =
⎧

⎨

⎩

exp

(

−‖xi−xj‖2

σ 2

)

, if xi ∈ Nk(xj ) or xj ∈ Nk(xi)

0 , otherwise.

whereNk(·) is the function for searching for the k nearest neighbors and σ is the bandwidth
parameter. Denote D as a diagonal matrix with its diagonal dii = ∑

j Dij , then the graph
Laplacian can be calculated as

L = D − S

If we instead use the normalized graph Laplacian in (1),

Ln = D−1/2LD−1/2 = In − D−1/2SD−1/2

then the objective function turns out to be the well-known spectral clustering algorithm,
namely normalized cut [35]. Similarly, if we replace L with Ll which is the graph Laplacian
matrix obtained by the local learning [40], then the objective function in (1) becomes the
local learning clustering (LLC).

Note that the discretization constraint on F makes (1) difficult to solve. A practical way
to handle this problem is to make a relaxation to allow F to be of continuous values, and
then use eigenvalue decomposition on the corresponding graph Laplacian matrix.
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3 The proposed approach

In this section, we elaborate the details of the proposed robust spectral clustering approach,
including a nonnegative low-rank self-reconstruction process for learning data correlation
matrix and a structural noise modelling component for handling noisy data.

Given a set of data points X = [x1, x2, . . . , xn] ∈ R
d×n, where each column vector

xi ∈ R
d represents a datum and d is the dimensionality of feature space. Ideally, the data

in X should not contain any noise. Nonetheless, in real-world scenarios, data would be
inevitably contaminated by various unpredictable factors, such as distortion, transmission
error, malicious tempering, etc. Intuitively, a reasonable assumption is that only a (small)
proportion of data are influenced by noise, i.e., the noise should be sparse. Furthermore, the
noise levels in different sources of data may vary significantly, which poses great challenges
for precise noise control using a unified model. In this case, the major objective of this work
is to devise an effective spectral clustering approach, which is able to capture the genuine
correlation among data, identify noisy samples as well as suppress influence of different
levels of noise effectively.

3.1 Nonnegative low-rank self-reconstruction

As aforementioned in Section 1, we employ linear model for reconstructing data due to its
ease for use and effectiveness in practice. Given the data matrix X = [x1, x2, . . . , xn] ∈
R

d×n, the i-th datum xi can be represented as a linear combination of m basis vectors in a
dictionary B = [b1, b2, . . . , bm] ∈ R

d×m:

xi = Bwi + εi,

where wi ∈ R
m is the reconstruction coefficient of xi and εi ∈ R

d is the noise on xi . By
denoting the linear model in concise matrix form, we have:

X = BW + E, (2)

where W = [w1, w2, . . . , wn] ∈ R
m×n is the reconstruction coefficient matrix, which can

be regarded as either the new representation of data or the correlation of data in X and the
basis in B. E = [ε1, ε2, . . . , εn] ∈ R

d×n indicates the noise matrix of all data in X.
In order to infer the data correlation within X, a reasonable way is to exploit X itself as

the dictionary to perform (self-)reconstruction as follows:

X = XW + E . (3)

In this way, we can regard W as the new representation of X or correlation between data
in X and themselves. The i-th column of W , i.e., wi = [w1i , w2i , . . . , wni]T ∈ R

n, is
the reconstruction coefficient vector of the i-th datum xi . The coefficient wji measures the
contribution of the j -th datum xj on the reconstruction of xi .

In order to model data correlation, one may use sparse constraint (e.g., ‖W‖1) [12] for
obtain an optimized W . Indeed, it may uncover the local structure of X and achieve the
denoising purpose to some extent; nevertheless, such sparse constraint may easily cause
the data correlation W ignoring the precious global structural information. Based on this
analysis, we propose to employ low-rank constraint, which has been proven to be more
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proper for characterize the data correlation as well as explore the global information. The
general optimization problem is stated as below:

min
W,E

rank (W) + λΩ(E),

s.t. X = XW + E, (4)

where the first term calculates the rank ofW , the second termΩ(E) enables certain forms of
sparsity for modelling data noise, and λ is a balance parameter determining the contribution
of these two terms.

It is known that optimizing the rank function is difficult due to its discreteness. To
handle this problem, a common way is to relax the rank optimization to a nuclear norm
optimization, which is convex. Thus, the problem in (4) is transformed to

min
W,E

‖W‖∗ + λΩ(E),

s.t. X = XW + E . (5)

where ‖ · ‖∗ denotes the nuclear norm of a matrix, i.e., the sum of the matrix’s singular
values.

If we solve the problem in (5), the optimized W ∗ would probably be mixing-signed,
which makes it difficult to describe data correlation in an interpretable way. Intuitively,
given two data points, if they are relevant, in order to quantify the degree of their correlation,
we may use a positive value as measurement; otherwise, we use value zero to indicate the
fact that they are not relevant. In other words, this intuition implies us that W ∗ should be
nonnegative. It has been shown that nonnegative analysis would probably boost performance
[41]. Accordingly, we impose an explicit nonnegative constraint over data correlation matrix
W , and the problem is reformulated as

min
W,E

‖W‖∗ + λΩ(E),

s.t. X = XW + E ∧ W ≥ 0. (6)

In the next part, we will introduce how to precisely characterize data noise E , i.e., specify
Ω(E) to further reinforce the establishment of data correlation.

3.2 Modelling data noise

In real-world cases, data would be inevitably contaminated by various types of noise, such
as distortion, transmission error, etc. Normally, it is reasonable to assume that only a (small)
proportion of data are actually corrupted and the rest are clean. Suppose we use �1-norm to
model data noise as below:

‖E‖1 =
d

∑

j=1

n
∑

i=1

∣

∣εji

∣

∣, (7)

where εji indicates the j -th element of εi . Such modelling would probably cause that
the identified noise propagated to all the data, thereby negatively influencing other clean
samples and further degrading the performance. In order to avoid such noise propagation
problem, a more effective way is to intentionally shape noise according to certain reason-

World Wide Web (2020) 23:2107–21272112



able assumption. As aforementioned, noise may only occur in a (small) proportion of data,
which inspires us to exploit structural modelling approach, such as �1,2-norm:

‖E‖1,2 =
n

∑

i=1

‖εi‖ . (8)

As we can see from the definition, �1,2-norm of E actually accounts to the �1-norm of the
vector [‖ε1‖, ‖ε2‖, . . . , ‖εn‖], which implies that it helps to induce sample-wise sparsity.
In other words, some columns of E shrink to zero. For better understand, we use a visual
example to illustrate difference of �1,2-norm and �1-norm in Figure 1. As we can see, �1,2-
norm enforces sample-wise sparsity on E to achieve accurate identification of noisy samples
(i.e., {x2, x4, x6, x10} in red), while the uncontrolled �1-norm tends to propagate data noise
to the whole dataset, thereby contaminating more samples (i.e., {x1, x3, x5, x7, x8, x11} in
blue).

In order to further increase the flexibility for handling different corrupt levels of data, we
propose to generalize of �1,2-norm to �p,2-norm:

‖E‖p,2 =
n

∑

i=1

‖εi‖p , (9)

where 0 < p < 2. Note that when p is set to 1, (9) is identically equivalent to (8). As p

varies, the �p,2 norm may help to induce different levels of sparsity, which corresponds to
different levels of noise intended to be recognized. For instance, when p → 2, the �p,2 norm
tends to become �2 norm, which will not induce any sparsity, thereby disabling the ability
of NLS identifying noisy samples. In contrast, small p would probably induce too much
unnecessary sample-wise sparsity, which may force NLS to “over-identify” noisy samples,
thereby degrading clustering performance.

Thus, by substituting (9) into (6), we have

min
W,E

‖W‖∗ + λ‖E‖p,2,

s.t. X = XW + E ∧ W ≥ 0. (10)

In the next part, we will introduce the optimization details of (10).

Figure 1 Illustration of difference between �1,2-norm and �1-norm
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3.3 Optimization

In this subsection, we present an alternating algorithm for optimizing the problem in
(10). We first transform the original problem (10) by adding an additional variable V for
facilitating the optimization:

min
W,E,V

‖V ‖∗ + λ‖E‖p,2,

s.t.

⎧

⎨

⎩

X = XW + E,

W ≥ 0,
V = W .

(11)

By utilizing Augmented Lagrange Multiplier (ALM), the above constrained problem can
be further changed to the following form:

min
W,E,V ,P,Q

‖V ‖∗ + λ‖E‖p,2

+T r
(

P T (X − XW − E)
)

+ T r
(

QT (W − V )
)

+α

2

(

‖X − XW − E‖2F + ‖W − V ‖2F ,
)

s.t. W ≥ 0, (12)

where T r(·) is the trace of a matrix. P ∈ R
d×n and Q ∈ R

n×n are Lagrange multipliers
for the two equality constraints, and α > 0 is a trade-off parameter. In order to solve the
problem (12), we alternatingly update W, E, V , P, Q.

Update V By fixing W, E, P , Q, we have the following sub-problem:

min
V

‖V ‖∗ − T r
(

QT V
)

+ α

2
‖W − V ‖2F , (13)

which is equivalent to

min
V

1

2

∥

∥

∥

∥
V −

(

W + Q

α

)∥

∥

∥

∥

2

F

+ 1

α
‖V ‖∗. (14)

The above optimization problem with nuclear norm regularization can be efficiently
solved by singular value thresholding [6].

Update W By fixing E, V , P, Q, the problem (12) is reduced to

min
W

T r
(

−P T XW + QT W
)

+α

2

(

‖X − XW − E‖2F + ‖W − V ‖2F
)

,

s.t. W ≥ 0, (15)

which can be solved by applying the following multiplicative update rule:

wij ← wij × Hij

(UW̃)ij
, (16)

where W̃ is the outcome in the previous iteration. U = XT X + I and I is identity matrix of
size n × n. H = (XT X − XT E + V + 1

α
(XT P − Q)).
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Update E Now let us fix W,V, P,Q, then the problem can be transformed to

min
E

α

2
‖X − XW − E‖2F − T r

(

P T E
)

+ λ ‖E‖p,2 ,

⇔ min
E

1

2

∥

∥

∥

∥
E −

(

X − XW + P

α

)∥

∥

∥

∥

2

F

+ λ

α
‖E‖p,2. (17)

In order to solve the sub-problem in (17), we first consider the following alternative
problem:

min
E

1

2

∥

∥

∥

∥
E −

(

X − XW + P

α

)∥

∥

∥

∥

2

F

+ λ

α
T r(ET ZE), (18)

where Z is a diagonal matrix, whose i-th diagonal element is computed as

Zii = p

2 ‖εi‖2−p
(19)

Note that Z is derived from E which makes it difficult to directly optimize (18). Hence, we
devise an iterative algorithm to handle the problem. To be more specific, in each iteration
we alternatingly update Z and E . We first calculate Z with the obtained E in the previous
iteration, then E is updated via a close-form solution. By fixing Z and setting the derivative
of (18) w.r.t. E to zero, we arrive at

E =
(

I + 2λ

α
Z

)−1 (

X − XW + 1

α
P

)

. (20)

We can show that by iteratively solving the problem (18), the optimal solution can be
obtained for the problem (17). To this end, we present the following lemmas and theorem.

Lemma 1 Let εi be the ith column of the updated E in previous iteration and ε̃i be the ith

column of the variable Ẽ in current iteration, then the following inequality holds:

‖ε̃i‖p − p ‖ε̃i‖2
2 ‖εi‖2−p

≤ ‖εi‖p − p ‖εi‖2
2 ‖εi‖2−p

(21)

Proof Please refer to Appendices A and B for more details.

Lemma 2 Given E = [ε1, ε2 . . . , εn], where εi is the ith column of E , then we have the
following conclusion:

n
∑

i=1

‖ε̃i‖p −
n

∑

i=1

p‖ε̃i‖2
2 ‖εi‖2−p

≤
n

∑

i=1

‖εi‖p −
n

∑

i=1

p ‖εi‖p

2 ‖εi‖2−p
(22)

Proof It can be easily seen that by summing up the inequalities over all the columns in E in
Lemma 1 we are able to obtain the conclusion of Lemma 2.

Theorem 1 At each iteration (line 3-4) of Algorithm 1, the value of the objective function
in (17) monotonically decreases.

Proof Please refer to Appendices A and B for more details.
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Theorem 1 guarantees the convergence of Algorithm 1.
The algorithm is shown Algorithm 1.

Update P and Q Given W, E, V , we may update the Lagrange multipliers P and Q as
follows:

{

P ← P + α(X − XW − E)

Q ← Q + α(W − V )
(23)

We summarize the optimization for the problem (12) in Algorithm 2.

Next, we briefly analyze the computational complexity of Algorithm 2. The computation
of V is dominated by the SVD operation in the optimization of the problem (13), which
requires the cost of O(n3). The update of W mainly relies on the update rule in (16), which
costs O(n3). As to the calculation of E in Algorithm 1, the time cost of (20) is O(n3). Con-
sidering that the numbers of iterations is far smaller than n, the total time cost of Algorithm 2
is O(n3).

3.4 Overall spectral clustering

Given the optimized data correlation matrix W ∗, where the element w∗
ji indicates the

directed relation from the j -th datum to the i-th datum, i.e., the contribution of the j -th
datum in the reconstruction process of the i-th datum. Intuitively, it is reasonable to assume
that a given datum is only related to a few samples. To this end, we choose to reserve k

nearest neighbors in terms of the data correlation and construct the sparse data correlation
matrix Ŵ ∗, where k is an empirical parameter.

World Wide Web (2020) 23:2107–21272116



Note that NLS model does not guarantee that Ŵ ∗ is symmetric, which implies that
in most cases ŵ∗

ij �= ŵ∗
ji . In general, most spectral clustering algorithms use symmet-

ric affinity matrix to partition data. Following this convention, we practically add Ŵ ∗ and
its transpose to guarantee the constructed graph is undirected and the affinity matrix is
symmetric, which will facilitate the subsequent typical spectral clustering procedure:

A = Ŵ ∗ + (Ŵ ∗)T

2
. (24)

Finally, we perform spectral clustering by applying eigen-value decomposition on the
Laplacian matrix of A and discretizing clustering labels (e.g., spectral rotation or k-means).
We summarize the overall clustering procedure in Algorithm 3.

4 Experiments

In this section, we evaluate the effectiveness of the proposed NLS spectral clustering
algorithm by comparing it to the existing approaches on various datasets.

4.1 Datasets

In the following experiments, we evaluate on five datasets, including Jaffe, Umist, Yale,
Lenses and Auto.

Jaffe [31] The database contains 213 images of 7 facial expressions (6 basic facial expres-
sions + 1 neutral) posed by 10 Japanese female models. Each image has been rated on 6
emotion adjectives by 60 Japanese subjects. Images are 256×256 gray level, in .tiff format,
with no compression.

Umist [16] (now: The Sheffield Face Database). It consists of 564 images of 20 people.
Each covering a range of poses from profile to frontal views. Subjects cover a range of
race/sex/appearance. The files are all in PGM format, approximately 220 × 220 pixels in
256 shades of grey.
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Yale [2] The Yale Face Database contains 165 grayscale images in GIf format of 15
individuals. There are 11 images per subject, one per different facial expression or con-
figuration: center-light, w/glasses, happy, left-light, w/no glasses, normal, right-light, sad,
sleepy, surprised, and wink.

Lenses [7] The lenses data set is a data set that tries to predict whether people will need
soft contact lenses, hard contact lenses or no contacts.

Auto [1] Auto data set is from the machine learning repositor of UCI, donated by Jeffrey
C. Schlimmer. It contains 205 instances of 1985 model import car and truck specifications,
3 types of entities, 26 number of attributes.

4.2 Experimental settings

We compare our algorithm to six existing clustering approaches, including k-means clus-
tering (TKM), discriminative k-means (DKM) clustering [50], Spectral Clustering (SC),
Normalized Cuts (NCuts) [51], Local Learning Clustering (LLC) [40], CLGR [38] and LRR
[29, 30]. Besides, we also evaluate three variants of our approach, i.e., LS, LS 1 and NLS 1.
LS is the version of our approach NLS without nonnegative constraint. LS 1 and NLS 1 are
the corresponding versions of LS and NLS using �1-norm instead of �1,2-norm.

For spectral clustering algorithms which need to specify the number of neighbors, we
always set it to k = 5. We perform the self-tuning algorithm [52] to determine an adaptive
bandwidth. For fair comparison, the trade-off parameters in all the comparison algorithms
are consistently tuned from the range of {10−6, 10−4, 10−2, 100, 102, 104, 106}; for the
parameter p in our approach, we set it in the range of {0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75};
and the best results are reported. To reduce statistical variation, each clustering algorithm is
run repeatedly for 10 times and the average results are reported.

4.3 Evaluationmetrics

Following conventional clustering study, we use Accuracy (ACC) and Normalized Mutual
Information (NMI) as our evaluation metrics in the subsequent parts.

Denote qi as the clustering label result from a clustering algorithm and pi as the
corresponding ground truth label of xi , then we define ACC as

ACC =
∑

i δ(pi,map(qi))

n
, (25)

where δ(x, y) = 1 if x = y; δ(x, y) = 0 otherwise, and map(qi) is the best mapping
function that permutes clustering labels to match the ground truth labels using the Kuhn-
Munkres algorithms. A larger ACC indicates a better clustering performance.

For any two arbitrary variable P and Q, NMI is defined as follows [36]:

NMI = I (P,Q)√
H(P )H(Q)

(26)

where I (P,Q) computes the mutual information between P and Q, and H(P ) and H(Q)

are the entropies of P and Q. Denote tl as the number of data in the cluster Cl (1 ≤ l ≤ c)
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Table 1 Overall ACC performance (%) comparison to the existing algorithms

Jaffe Umist Yale Lenses Auto

TKM 73.1 ± 4.6 38.8 ± 1.0 38.4 ± 1.1 54.6 ± 3.6 35.1 ± 1.6

DKM 84.5 ± 0.6 44.2 ± 0.2 42.4 ± 0.7 66.7 ± 2.0 39.1 ± 0.1

SC 78.5 ± 6.8 53.3 ± 2.0 48.9 ± 2.3 54.4 ± 5.7 31.7 ± 1.1

NCuts 84.1 ± 2.0 51.9 ± 1.3 47.4 ± 1.8 55.8 ± 7.1 31.6 ± 0.8

LLC 83.6 ± 5.5 43.1 ± 0.7 51.9 ± 2.4 55.0 ± 6.7 37.0 ± 1.1

CLGR 82.6 ± 3.8 55.0 ± 1.4 48.3 ± 2.0 48.6 ± 7.4 39.7 ± 0.4

LRR 91.2 ± 3.9 68.8 ± 0.5 46.1 ± 1.4 56.0 ± 2.4 37.7 ± 0.5

NLS �1 97.5 ± 0.3 76.6 ± 0.3 50.2 ± 0.3 60.8 ± 1.9 38.5 ± 0.2

NLS 99.2±0.8 77.8±0.5 53.0±0.7 68.3±2.9 41.5±0.4

generated by a clustering algorithm and t̃h(1 ≤ l ≤ c) as the number of data points from
the hth ground truth class. NMI metric is then defined as below [36]:

NMI =
∑c

l=1
∑c

h=1tl,h log
(

n×tl,h
tl t̃h

)

√

(∑c
l=1tl log

tl
n

)
(
∑c

h=1 t̃h log
t̃h
n

)
(27)

where tl,h is the number of data samples that lie in the intersection between Cl and hth

ground truth class. Likewise, a larger NMI indicates a better clustering performance.

4.4 Comparison

In this subsection, we conduct empirical studies on five datasets to show the performance
comparison of existing algorithms and our proposed method. The comparison results of
ACC and NMI are listed in Tables 1 and 2, respectively. From these results, we can derive
the following observations and analysis.

Table 2 Overall NMI performance (%) comparison to the existing algorithms

Jaffe Umist Yale Lenses Auto

TKM 81.3 ± 2.2 58.3 ± 0.6 46.7 ± 0.9 26.2 ± 8.9 15.9 ± 0.6

DKM 90.1 ± 0.6 61.8 ± 0.5 47.7 ± 0.5 4.7 ± 0.7 16.8 ± 0.5

SC 84.1 ± 2.7 74.4 ± 0.8 54.8 ± 1.2 22.1 ± 7.5 13.5 ± 1.1

NCuts 93.9 ± 1.6 73.3 ± 0.8 55.2 ± 1.3 32.1 ± 8.0 13.2 ± 1.2

LLC 89.5 ± 2.5 65.8 ± 0.7 54.9 ± 1.9 20.9 ± 7.7 15.0 ± 0.4

CLGR 92.1 ± 1.1 76.6 ± 0.8 53.2 ± 1.4 23.1 ± 7.7 16.9 ± 0.9

LRR 94.6 ± 2.3 82.5 ± 0.4 53.3 ± 1.1 29.9 ± 3.1 15.7 ± 0.4

NLS �1 96.9 ± 0.1 87.6 ± 0.4 55.4 ± 0.2 35.1 ± 3.9 15.8 ± 0.3

NLS 98.7±0.7 88.5±0.4 57.7±0.5 53.0±3.7 17.0±0.2
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– In most cases, NLS 1 achieves better performances than TKM, DKM, SC and NCuts.
This phenomenon indicates that jointly exploring nonnegativity and low rank properties
of data correlation as well as suppressing data noise can be of benefit for achieving
satifactory clustering performance.

– NLS consistently outperforms NLS 1. This observation implies that the structural mod-
elling using �p,2-norm is able to better capture the genuine distribution of data noise
than �1-norm. NLS exploits �p,2-norm to “actively” enforce sample-wise sparsity on
data noise, thereby accurately identifying and quantifying noisy samples; nonetheless,
NLS 1 models data noise using �1-norm, which tends to “accidentally” propagate noise
across all data samples and cause inventible contamination of clean samples.

– NLS always achieves the best performance comparing to other comparison algorithms
on all five datasets. Both LLC and CLGR exploit additional knowledge, e.g., discrimi-
native information, to enhance the exploration of data correlation; hence, in most cases
they achieve better performance than TKM, DKM, SC, NCuts and LRR. However,
compared to our method, they do not fully take any consideration into intrinsic prop-
erties of data correlation, namely nonnegativity and low rankness, as well as structural
modelling of data noise, which together guarantees a reliable and robust process for
data self-reconstruction and the subsequent spectral clustering.

4.5 Nonnegativity and noise modelling

In this part, we evaluate efficacy of the nonnegative constraint and �p,2-norm for modelling
data noise. Specifically, we compare NLS with its variant that uses �1-norm, denoted as
NLS 1. To the end of illustrating the effect of the nonnegative consideration, we also com-
pare NLS and NLS 1 to their counterparts (i.e., LS and LS 1, respectively) that do not pose
nonnegative constraint.

The experimental results are reported in Figure 2. Figures 2a and b illustrate, respectively,
ACC performance and NMI performance of the four comparison algorithms on five datasets.
We can attain the following observations and conclusions:
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Figure 2 Effects of nonnegative constraint and data noise modelling on five datasets. a and b gives ACC
performance and NMI performance, respectively
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– NLS and NLS 1 consistently outperform their counterparts, i.e., LS and LS 1, respec-
tively. This fact clearly indicates that the nonnegativity consideration helps to achieve
performance improvement in terms of both ACC and NMI metrics. As analyzed before,
by explicitly pose nonnegative constraint on data correlation matrix W , we can formu-
late a better process for jointly reconstructing all data samples, thereby characterizing
correlation among data in a more interpretable manner (i.e., value 0 indicates that two
data points are not related, and a positive value measures the degree of relationship of
two data samples.)

– NLS and LS always gain better performance than NLS 1 and LS 1, respectively. Sim-
ilar to the analysis in Section 4.4, such observation reveals the superior efficacy of
�p,2-norm for structurally modelling data noise. Compared to �1-norm, �p,2-norm not
only captures the genuine noise distribution but also provides sufficient flexible control
on different noise levels.

– By comparing LS and NLS 1, we can see that in some cases, the former performs
better than the latter one; while in other cases, we observe that LS achieves slightly
worse results that NLS 1 or they gain comparable performance. Although �p,2-norm
may contribute more than nonnegative constraint in more cases, it is not easy to draw
any conclusion that which component is more important in our approach. In practice,
we should suggest integrating both of them to achieve better performance.

4.6 Sensitivity analysis

In this subsection, we analyze the sensitivity of parameters in our approaches
on five datasets. Specifically, we evaluate the joint effects of λ and p on
NLS as well as the effects of λ on NLS 1. As aforementioned, we set λ

in the range of {10−6, 10−4, 10−2, 100, 102, 104, 106} and p in the range of
{0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75}.

While Figure 3a–e report ACC performance of NLS w.r.t. to λ and p on the five eval-
uated datasets, respectively; Figure 3f–j illustrate NMI performance of NLS. For different
datasets, the distributional patterns of parameter combinations vary. In most cases, both λ

and p are neither too large nor too small when NLS achieves the best performance. If λ is
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Figure 4 Effects of λ on NLS 1. a–e corresponds to five evaluated datasets, respectively

too large, the contribution of the noise modelling term �1-norm will be weakened, thereby
leading the self-reconstruction and clustering into failure. If p is close to 2, then the �p,2-
norm tends to be closer to �2-norm, which implies the ability of NLS identifying noisy
samples may significantly shrink; in contrast, small p tends to force NLS to “over-identify”
noisy samples, which may lead to uncontrolled contamination of clean samples, thereby
degrading clustering performance.

We also test the effects of λ on NLS 1. The experimental results corresponding to five
datasets are listed in Figure 4a–e, from which we can see that as λ becomes larger, both
ACC and NMI performance tends to be stable or slightly decreases. This fact implies that
λ should be not be set either too large or too small. Similar to the explanation of NLS, λ

greatly affects the noise modelling term �1-norm, thus it should be carefully chosen.
We summarize the optimal parameter settings for different variants of our approaches in

Table 3.
According to our observation, in most cases, the optimal parameters are neither too

large nor too small, which suggests that it is possible to narrow down the search space of
parameters. In practical task, one possible way of choosing these parameters is to combine
cross-validation and shrinking the search space.

4.7 Robustness

In this subsection, we test the robustness of the proposed approaches NLS and NLS 1. To
this end, we randomly add Gaussian noise to {5%, 10%, . . . , 50%} of data samples and use

Table 3 Optimal Parameters for NLS and NLS 1 on five datasets

Method Dataset ACC NMI

λ p λ p

NLS Jaffe 102 0.75 102 1.75

Umist 100 1.75 10−2 0.5

Yale 10−4 0.5 10−4 1

Lenses 100 1.5 100 1.5

Auto 102 0.5 104 0.5

NLS 1 Jaffe 104 − 100 −
Umist 104 − 106 −
Yale 10−6 − 10−6 −
Lenses 104 − 102 −
Auto 100 − 100 −
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Figure 5 Robustness of NLS and NLS 1 w.r.t. different ratios of noisy data samples in five datasets

the optimal parameter settings obtained in Section 4.6 for each algorithm. The experimental
results on five datasets are listed in Figure 5. As we can see, in general, as the ratio increases
from 5 to 50%, the performance (ACC and NMI) of NLS slightly decreases, which implies
that NLS can be tolerant to noise and provide robust clustering ability. Nonetheless, com-
pared to NLS, the stability of NLS 1 resisting the added noise tends to become worse as
the proportion of noise goes up. For example, in Figure 5a, the ACC performance of NLS 1
drops significantly when the noise ratio is larger than 30%. The possible reason is that as
the ratio increases, it becomes easier for �1-norm to propagate noise to all data samples and
cause the whole self-reconstruction process more vulnerable. In contrast, �p,2-norm is able
to capture the global data structure and accurately identify noisy samples, which makes the
final clustering stable and robust.
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Figure 6 Convergence curves of two algorithms on Yale [2] dataset

World Wide Web (2020) 23:2107–2127 2123



4.8 Convergence study

As shown in Algorithms 1 and 2, the alternative updates of different variables make the
objective function value decrease monotonously. An empirical study on convergence prop-
erty is conducted (see Figure 6). it can be shown that the objective function value of our
NLS descends dramatically within only 5 iterations and then converges.

5 Conclusion

In this work, we proposed a new spectral clustering method, termed Non-negative Low-rank
Self-reconstruction (NLS), which jointly explores the nonnegative low-rank properties of
data correlation and adaptively models the structural sparsity of data noise. We developed
a self-reconstruction method by taking the nonnegativity and low-rank property of the data
correlation matrix into consideration. Furthermore, we employed �p,2-norm to model data
noise, which conforms to the nature of data noise in real-world situation, as well as provides
more adaptivity to different noise levels. We reported extensive experiments on various real-
world datasets to show the superiority of the proposal. In the future, we intend to explore
more reasonable properties of data to better characterize data correlation and enhance the
performance of the current proposal.

Appendix A: Proof of Lemma 1

Proof Inspired by [34], we consider the following function

f (a) = pa2 − 2ap + (2 − p), (28)

where p ∈ (0, 2). We expect to show that when a > 0, f (a) ≥ 0. The first and second order
derivatives of the function in (28) are f ′(a) = 2pa − 2pap−1 and f ′′(a) = 2p − 2p(p −
1)ap−2, respectively. We can see that a = 1 is the only point that satisfies f ′(a) = 0.
Also, when 0 < a < 1, f ′(a) < 0 and when a > 1, f ′(a) > 0. This means that f (a)

is monotonically decreasing when 0 < a < 1 and monotonically increasing when a > 1.
Moreover, we have f ′′(1) = 2p(2 − p) > 0. Therefore, for ∀a > 0, f (a) ≥ f (1) = 0.

Then, by substituting a = ‖ε̃i‖‖εi‖ into (28), we obtain the conclusion

p
‖ε̃i‖2
‖εi‖2 − 2

‖ε̃i‖p

‖εi‖p
+ (2 − p) ≥ 0,

⇔ p‖ε̃i‖2 − 2‖ε̃i‖p‖εi‖2−p + (2 − p)‖εi‖2 ≥ 0,

⇔ p‖ε̃i‖2‖εi‖p−2 − 2‖ε̃i‖p + (2 − p)‖εi‖p ≥ 0,

⇔ 2‖ε̃i‖p − p‖ε̃i‖2‖εi‖p−2 ≤ (2 − p)‖εi‖p,

⇔ ‖ε̃i‖p − p‖ε̃i‖2
2‖εi‖2−p

≤ ‖εi‖p − p‖εi‖p

2‖εi‖2−p
.
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Appendix B: Proof of Theorem 1

Proof Denote L(E) = 1
2

∥

∥E − (

X − XW + P
α

)∥

∥

2
F

and λ′ = λ/α. Suppose Ẽ is the
optimized solution of the alternative problem (18), then we obtain the following conclusion:

L(Ẽ) + λ′T r(ẼT ZẼ) ≤ L(E) + λ′T r(ET ZE)

⇒ L(Ẽ) + λ′
n

∑

i=1

p‖ε̃i‖2
2‖εi‖2−p

≤ L(E) + λ′
n

∑

i=1

p‖εi‖2
2‖εi‖2−p

⇒ L(Ẽ) + λ′
n

∑

i=1

‖ε̃i‖2p − λ′
(

n
∑

i=1

‖ε̃i‖2p −
n

∑

i=1

p‖ε̃i‖2
2‖εi‖2−p

)

≤ L(E) + λ′
n

∑

i=1

‖εi‖2p − λ′
(

n
∑

i=1

‖εi‖2p −
n

∑

i=1

p‖εi‖2
2‖εi‖2−p

)

.

Given the conclusion of Lemma 2, we finally arrive at

L(Ẽ) + λ′
n

∑

i=1

‖ε̃i‖2p ≤ L(E) + λ′
n

∑

i=1

‖εi‖2p.

Hence, the value of the objective function in (17) monotonically decreases in each iteration.
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