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Abstract
How to accurately predict the future medical treatment behaviors of patients from the
historical health insurance data has become an important research issue in healthcare. In
this paper, an Attention-based Bidirectional Gated Recurrent Unit (AB-GRU) medical
treatment migration prediction model is proposed to predict which hospital patients will
go to in the future. The model considers the impact of medical visit on the future medical
behavior, on the basis of Bidirectional Gated Recurrent Unit (B-GRU) framework, we
introduce an attention mechanism to determine the strength of hidden state at different
moments, which can improve the predictive performance of the model. Due to medical
treatment in different places has an important impact on the distribution of health
insurance funds, the individual patient would be expected to the appropriate hospital
and get the appropriate medical treatment. Therefore, when medical treatment prediction
has been completed, this paper proposes a Similarity and Double-layer CNN-based
(SD_CNN) medical treatment migration recommendation model. The model introduces
a CNN framework to achieve patient similarity learning, and compares similarities to
recommend whether patients need medical treatment migration. Finally, the experiment
demonstrates that the model proposed in this paper is more accurate than other models.

Keywords health insurance data . medical treatmentmigration prediction . medical treatment
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1 Introduction

Medical treatment migration generally can be simply defined as the behavior of seeking
medical treatment outside the insured areas by insured persons. In the process of
medical treatment, a large number of data will be generated, such as the choice of
medical hospitals, the number of medical treatments, and medical expenses information.
These data constitute health insurance data. Through the health insurance data, we can
fully understand the patients’ medical treatment. It includes medical visit sequences
over time, where each medical visit includes a medical code, diagnosis, medical
hospital, medical items, expenses, and so on. It has a wide range of applications in
the field of health insurance research, such as risk prediction [6, 14, 16, 22], disease
prediction [5, 17, 27]. In recent years, with the rapid expansion of the number of
floating populations in China, the number of people who migrates to different hospitals
to seek medical treatment has also increased. Due to the differences in medical levels
between hospitals, more patients are willing to go to hospitals with higher medical
level, resulting in the waste of hospital resources and unreasonable distribution of
health insurance funds. How to accurately predict the future medical treatment behavior
of patients has become an important research issue in healthcare of China.

A traditional method of prediction in the field of health insurance is to treat each patient’s
visit as a feature vector and to use that vector as an input to construct a predictive function.
Given the features, training data are used to fit the predictive function to minimize an
appropriate cost function. Currently, in order to construct predictive models using medical
visit sequences, Recurrent Neural Networks (RNNs) are widely used [10, 11]. However,
RNNs cannot effectively address long-term dependencies. When the patient’s visit sequence
is too large, the predictive performance of the RNNs model will decrease. Moreover, RNNs
also ignore the effects of time intervals on medical treatment behavior.

At present, the recommendation methods in healthcare mainly take two steps: (1) Calculate
the similarity between patients. (2) Generate a recommendation list for the patient based on the
similarity and patient history of medical treatment. Based on health insurance data, many deep
learning methods have been widely adopted and rapidly developed in patient similar learning
[15, 28, 32, 33], such as automatic encoders, Recurrent Neural Networks (RNNs) and
Convolutional Neural Networks (CNN). In [40], CNN has proven its superior ability to
measure patient similarity. However, one drawback of the traditional CNN framework is that
it does not make full use of time and context information in health insurance data for similarity
learning. Therefore, how to use the health insurance data with high-dimensional time charac-
teristics for similarity learning has great challenges.

In response to the above issues and challenges, in this paper, we aim to solve the
following key problems: how to consider the impact of time information on medical
behavior to improve prediction performance; how to recommend whether the patient has
a medical migration. To tackle these problems, in the process of medical migration
prediction, an Attention-based Bidirectional Gated Recurrent Unit (AB-GRU) medical
treatment migration prediction model is proposed. Under the condition that the medical
migration prediction has been completed, this paper proposes a CNN-based medical
treatment migration recommendation model. On the basis of CNN framework, a
matching matrix is introduced to achieve similarity learning among patients, and com-
pares the similarity to recommend whether patients need medical treatment migration. In
summary, our contributions are as follows:
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– Considering the impact of time information within the visit sequences, we propose a
medical treatment migration prediction model in a bidirectional GRU framework to
predict which hospital patients will go to in the future.

– In order to quantify the impact of each medical visit on the future hospitalization behavior,
on the basis of bidirectional GRU framework, we introduce an attention mechanism. The
attention score is used to determine the strength of the hidden stateat different moments,
which can improve the prediction performance of the model.

– In order to realize medical treatment migration recommendation, on the basis of CNN
framework, this paper introduces a matching matrix for similarity learning, and realizes
the medical migration recommendation through the similarity comparison, thatis, whether
the patient needs medical treatment migration.

The rest of this paper is organized as follows: In section 2, we introduce relevant works on
medical treatment behavior and similarity learning. Section 3 presents the details of the
medical treatment migration prediction and recommendation model. The experimental results
are presented in section 4. Section 5 is a summary of the work in this paper.

2 Related work

In this section, we mainly introduce the research related to medical treatment behavior and
similarity learning.

2.1 Medical treatment behavior

As far as the current research on medical treatment behaviors of is concerned [35], it mainly
focuses on two aspects. Firstly, the research on the types and characteristics of medical
treatment behaviors [31, 37], mainly concentrated on method and the choice of hospitalization
behavior. Secondly, the research on the influencing factors of medical treatment behavior [1,
4], mainly from the aspects of personal attributes, economic factors, social factors, etc., and
obtained rich research results.

Bei et al. used a statistical survey to study the behavior of medical treatment, and
predicted patients’ medical behavior by Multivariable Logistic Regression algorithm [3].
Wang et al. provided a computational framework for studying health disparities among
cohorts based on individual level features, such as age, gender, income, etc. This
framework to find health disparities among subpopulations in an influenza epidemic
and evaluate vaccination prioritization strategies to achieve specific objectives [29]. Lu
et al. studied the influencing factors of the choice of hospitalization behaviors among
agricultural transfer [20]. That is, they analyzed the influencing factors of the choice
behavior of medical treatment, and predicted the choice of hospitalization behaviors after
illness by regression algorithms. In addition, Duan et al. proposed combining the gray
correlation analysis method with the multi-class selection model to realize the research
and prediction of the community residents’ medical treatment behavior [13]. Zheng et al.
used social action theory and an analytical model to examine the main influencing
factors of rural residents’ medical treatment, and constructed a model to study the
behavior of rural residents [39]. However, these research methods ignored the time
information inside the medical treatment sequence.
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Currently, using medical visit sequences, recurrent neural networks are widely used. Baytas
et al. proposed a novel Time-Aware LSTM to handle irregular time intervals in longitudinal
visit records [2], Che et al. developed novel deep learning models for multivariate time series
with missing values [7]. But, these methods did not achieve the interpretability of models.

2.2 Similarity learning

Suo et al. proposed a deep similarity learning framework based on the CNN, and
simultaneously implements patient feature learning and similarity metrics [27]. In [36],
for the high-dimensional, heterogeneous and complex characteristics of medical insur-
ance data, Zhan et al. proposed a new similarity learning method, namely the generalized
Mahalanobis similarity function with pairwise constraints. At the same time, considering
that there are always some non-discriminatory features and contain redundant informa-
tion, the author encoded the low rank structure as the similarity function to perform
feature selection. To address the data sparsity issue, He et al. developed a novel
similarity metric to measure the similarity between two set of trajectories so as to
validate whether the reconstructed trajectory set can well represent the original traces
[15]. In [25], in order to realize the construction of the standard bibliographic topic
model, a standard bibliographic recommendation method based on the fusion multi-
feature theme model was proposed by Shao et al. However, these similarity learning
methods not only ignored the influence of time attributes and context information in test
data on similarity learning, but also did not consider the data imbalance problem.

Compared with the above mentioned methods, the model proposed in this paper not only
considers the impact of historical medical visit sequences on future medical treatment behav-
ior, but also considers the influence of temporal attributes and context information on
similarity learning.

3 Methods

3.1 Basic symbols

We denote all the unique medical visit codes from the health insurance data as c1, c2,..., c|C| ∈C,
where |C| is the number of unique medical visit codes. Assuming there are N patients, the nth

patient has T(n) visit records in the health insurance data. The patient can be represented by a
sequence of visits X1, X2,…,XT nð Þ . Each visit Xi contains a set of feature vectors x∈ℝ|C|.
Therefore, each patient’s visit can be viewed as a matrix, where the horizontal dimension
corresponds to medical events and the vertical dimension corresponds to visits. The (i, j)th

entry of a matrix is 1 if code cj is observed at time stamp Vi for the corresponding patient. Since
the number of visits of different patients varies, we pad zero to the visit dimension, making

each patient have a fixed length of visits t = max Vif gTn
i¼1, for the sake of CNN operations.

3.2 Overall process

The main goal of this paper is to predict which hospitals will be moved to the hospital in the
future and whether medical treatment migration is needed.



Fig. 1 The overall process
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Figure 1 depicts the entire process of the model. In terms of medical migration
prediction, the model firstly uses the Grey Relational Analysis (GRA) method to
analyze the influencing factors. In order to quantify the impact of each medical visit
sequence on future medical treatment behavior, we propose AB-GRU. AB-GRU
employs bidirectional gated recurrent unit to remember all the information of both
the past visits and the future visits, and it introduces an attention mechanism to
measure the relationships of different visits for prediction. When medical treatment
prediction has been completed, in order to judge whether the patient is worthy of
medical treatment migration, on the basis of CNN, this paper constructs a similarity
learning framework to respectively calculate patient similarity from the migrated and
non-migrated patients, and obtain Group A and Group B according to the similarity.
Then, we can obtain the output result y by the Multiple Logistic Regression (MLR)
function. By comparing y, it is recommended whether the patient is worthy of medical
treatment migration.

3.3 Medical treatment migration prediction

3.3.1 Feature selection

In healthcare, there are many factors of affecting medical treatment migration as
shown in Table 1. A great number of features are collected before building the
predictive model but not all the variables are informative and useful. It is imperative
to eliminate the redundancy of the features and select more informative variables for
increasing the accuracy and efficiency of the predictive model. In our model, we use
the Grey Relational Analysis (GRA) method to analyze the influencing factors. GRA
aims to determine whether they can better distinguish target instances than other
features by calculating the degree of association [13, 38]. Then, the process of feature
selection is as follows:

1) Normalize the original health insurance data X by the min-max standardization
method, and the calculation is as follows:



x
0 ¼ x−xmin

xmax−xmin
ð1Þ

2) Suppose that the system reference sequence after the mean value change of each feature in
the original sample is X0 = (x0(1), x0(2),⋯, x0(n)), whether medical treatment is a com-
parative sequence Xk = (xk(1), xk(2),⋯, xk(n)), k = 1, 2, ⋯, m. Then, the correlation
coefficient between X0 and Xk is calculated by eq. (2):

δi kð Þ ¼ minimink x0 kð Þ−xi kð Þj j þ ρmaximaxk x0 kð Þ−xi kð Þj j
x0 kð Þ−xi kð Þj j þ ρmaximaxk x0 kð Þ−xi kð Þj j ð2Þ

where δi(k) represents the correlation coefficient of xi to x0 in the kth data. ρ represents the
resolution coefficient (ρ=0.5).

3) The relationship θ between each factor X0 and whether or not to migrate Xk:

θi ¼ 1

n
∑
n

k¼1
δi kð Þ ð3Þ

Finally, we can sort the relevance degree θ and select the main feature set that affects the
medical migration according to the sorting size, which lays a foundation for the construction of
the medical migration prediction model.

Table 1 Factors about medical treatment in our dataset

Categories Factors Description

Patients Age The insured person’s age
Gender Male = 1, Female = 2
Income The patient’s income
Insured Category Staff = A, Resident = B
Insured place Insured place of patients
Disease category 21 categories
Distance Distance between the insured and the

hospital
Industry category Insured person’s industry (9 categories)

Hospital Hospital Name Name of medical hospital
Hospital level Hospital level: 1/2/3
Average Hospitalization
Days

The complexity of hospital treatment
of certain diseases

Average Cost The complexity of hospital treatment
of certain diseases

Maximum number The maximum number of hospital
in a period of time
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3.3.2 Migration prediction

In this section, we propose an Attention-based Bidirectional GRU medical treatment migration
prediction model (AB-GRU) to achieve the migration prediction of the patients.

The goal of the proposed model is to predict the (t + 1)th visit’s hospital. As shown in Fig. 2,
given the visit information from time 1 to t, the ith visit xi can be embedding into a vector vi.
The vector vi is fed into the Bidirectional GRU, which outputs a hidden state Hi. Along with
the set of hidden state Hi, we can compute the degree of correlation ai between the hidden state
and medical treatment behavior at each moment by attention operation. Finally, from the visit
sequence vi and hidden state Hi at all time, we can get the final prediction through the softmax
function.

Embedding layer Given a visit sequences Xi(i = 1,2,…,|C|). We can get its vector represen-
tation v ∈ℝK, as follows:

v ¼ ATx ð4Þ
where K represents the dimension of the embedding layer, A ∈ℝ|C| ·K is the weight matrix.

Bidirectional GRU As a variant of the standard recurrent neural network (RNN), the gated
recurrent unit (GRU) was originally proposed [18]. For each position t, GRU computes ht with
input xt and previous state ht − 1, as:

rt ¼ β Wrxt þ Urht−1ð Þ ð5Þ

πt ¼ β Wπxt þ Uπht−1ð Þ ð6Þ

eht ¼ tanh Wcxt þ U rt⊙ht−1ð Þð Þ ð7Þ

ht ¼ 1−πtð Þ⊙ht−1 þ πt⊙eht ð8Þ

where ht, rt and πt are d-dimensional hidden state, reset gate, and update gate, respectively.Wr,
Wπ,Wc andUr, Uπ, U are the parameters of the GRU. β is the sigmoid function, and⊙ denotes
element-wise production.

A bidirectional GRU consists of a forward and backward GRU. The forward GRU h
→

T

reads the input visit sequence from x1 to xT and calculates a sequence of forward hidden states

h
→

1; h
→

2;⋯; h
→

T

� �
. The backward GRU h

←
T reads the visit sequence in the reverse order from

xT to x1, resulting in a sequence of backward hidden states h
←

1; h
←

2;⋯; h
←

T

� �
. We can obtain

the final hidden state Ht, as follows:

Ht ¼ h
!

T ; h
←

T

h i
ð9Þ
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Attention mechanism The core idea of the attention mechanism is to assign more attention to
important content and less attention to other parts [8, 12, 19, 21, 23]. In the process of medical
treatment migration prediction, the traditional neural networkmodel ignores the impact of the
length of the time interval within the visit sequences on the modeling, since the contribution of
each visit to the current moment is not necessarily the same. Therefore, considering that not all
features contribute to the prediction, we add the attention layer to the bidirectional GRU
framework. The attention score is used to determine the strength of the hidden state during the

Fig. 2 The process of AB-GRU
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modeling process of the medical treatment sequence, thereby significantly improving the
modeling ability of the prediction model.

Implemented in the Attention mechanism as follows:

ut ¼ tanh WHt þ bð Þ ð10Þ

at ¼
exp uTt u

� �
∑T

t¼1exp uTt u
� � ð11Þ

γ ¼ ∑
T

t¼1
atHt ð12Þ

where W ∈ℝL × |C| and b ∈ℝL are corresponding weights and bias vectors, ut is the importance
vector. at represents the normalized weight by eq. (11). γ is the weighted sum of each Ht with
at.

The output of the attention layer eH is:

eH ¼ ∑
N

n¼1
γ ð13Þ

Finally, eH is fed through the softmax layer to produce the (t + 1)th choice of the medical
treatment behaviors defined as:

y ¼ softmax Wc eH þ bc
� �

ð14Þ

where Wc ∈ℝ2L and bc ∈ℝL are the parameters to be learned.

Interpretation In healthcare, we need to understand the clinical meaning of each dimension of
visits, and analyze which visit are crucial to the medical treatment migration prediction.

In our proposed AB-GRU model, the attention can be used to assign weights to the hidden
state of each visit. It is easy to find the importance of each medical visit by analyzing the
weight of each medical visit. We sort the weight of each dimension in the hidden state in
reverse order, and then select the top K weights, as shown below:

argsort at :; n½ �ð Þ 1 : K½ � ð15Þ
where at[:, n] represents the attention weight of each dimension in the tth visit. By analyzing the
top K visits, we can obtain which visits have an important impact on the migration prediction.
Detailed examples and analysis are given in Section 4.2.4

3.4 Medical treatment migration recommendation

In this section, under the premise that the medical prediction has been completed (completed in
Section 3.3), we propose a CNN-based medical treatment migration recommendation model to
judge whether patients need medical treatment migration.
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3.4.1 Similarity learning

In this section, we mainly use the CNN framework to achieve patients similarity learning [27].
Figure 3 depicts a CNN-based patient similarity learning framework. The framework firstly
maps the one-hot feature matrix of patient A through the Embedding layer to a low-
dimensional sparse matrix. Convolution and maximum pooling are applied to each matrix.
The eigenvectors of the matrices are then aggregated to form a composite vector. Patient B
shares the same embedding and CNN parameters. The composite vector of patient A and
patient B obtains the similarity feature vector through the matching matrix and the conversion
layer. Finally, the similarity feature vector is used to obtain the similarity probability of patient
A and patient B through the softmax layer.

Embedding layer The original health insurance data is high-dimensional and sparse. To
reduce feature dimensions and learning relationships among medical sequences, we use a
ReLU function to embed feature matrices into a vector space. Each medical visit xi is mapped
to a vector vi ∈ℝd with the following equation:

vi ¼ ReLU Wvxi þ bvð Þ ð16Þ
where d represents the embedding dimension, Wv and bv are weight matrix and bias vector to
be learned. After the embedding operation, we were able to obtain the embedding matrix V ∈
ℝt × d for each patient.

Convolution layer The convolutional layer has p different filter sizes and the number of filters
per size is q, so that the total number of filters is m = pq. Each filter is defined as We ∈ℝh × d,
where h is a window size of visit length, meaning that the convolution operation is applied
over h sequential timestamps. Suppose a filter is applied over a concatenation from visit vector
vi to vi + h − 1, a feature representation Di is generated using Di = ReLU(We · vi + h − 1 + be). This
filter is applied to each window of timestamps {v1 : h, v2 : h + 1,⋯, vt − h + 1 : t} with a stride equal
to 1, to produce a feature map D = {D1,D2,⋯,Dt − h + 1}, where D ∈ℝt − h + 1. Since we have
totally m filters, we can obtain m feature maps. The outputs from the convolutional layer are

then passed into the pooling layer. A max pooling is applied over c as eD ¼ max Df g, where eD
is the maximum value corresponding to a particular filter. The key idea here is to capture the
most important feature for each feature map. It can naturally deal with variable visit lengths,

Fig. 3 Patient similarity learning framework based on CNN
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since the padded visits have no contribution to the pooled outputs. The pooled outputs from all
the filters are concatenated to form a vector representation z ∈ℝm. z is the vector representation
of the original embedding matrix V.

Similarity learning In order to realize the similarity learning of patient A and patient B, a
matching matrix M is introduced. The matching matrix M ∈ℝm ×m is a symmetric matrix with
m rows and m columns, which is used to convert the similarity vector of patient A and patient
B. So, the similarity between patient A and patient B can be measured by eq. (17):

S ¼ zAMzB ð17Þ
where zA represents the vector representation of patient A; zB represents the vector represen-
tation of patient B.

To ensure the symmetric constraint of M, it is decomposed as M = LTL, where L ∈ℝg ×m,
with g <m to ensure a low rank characteristic. we consider the symmetric constraint and
convert patient vectors to get a similarity vector, as to ensure that the order of patients has no
effect on the similarity score. We first convert zA and zB into a single vector with their
dimension holds using the eq. (18):

Z ¼ WhzA⊕WhzB ð18Þ
where Wh ∈ℝm ×m and ⊕ is a bitwise addition.

After that, Z and S are concatenated and then fed into a fully connected softmax layer, to get
an output probability y’, indicating the similarity degree between two patients.

y
0 ¼ softmax W f Z; S½ � þ bf

� � ð19Þ

3.4.2 Medical migration recommendation

In order to judge whether the patient needs medical treatment migration, that is, to
seek medical treatment outside the insured areas. We calculate patient similarity from
the migrated and non-migrated patients according to the method in Section 3.4.1, and
find the top K patients with the highest similarity from the migrated and non-migrated
people respectively to obtain Similarity Group A and Similarity Group B. According
to the Historical medical treatment behaviors of Group A and Group B, we respec-
tively obtain the vector representations Wid of Group A and Group B through the
embedding layer and convolution layer operations described in Section 3.4.1, and then
we obtain the output yi through the Multiple Logistic Regression (MLR) function,
which represents the ability of Group A and Group B to treat certain diseases in their
hospitals.

yi ¼ MLR Widxð Þ þ bd i ¼ A;B ð20Þ

Y ¼ max yif g i ¼ A;B ð21Þ
By comparing yi, it is recommended whether the patient is worthy of medical treatment
migration.
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4 Experiments

In this section, we evaluate our proposed model on real dataset, which is more accurate than
other methods. Note that in order to protect the privacy and safety of patients and hospitals, we
anonymize the corresponding experimental data. Among them, we use Hospital-A, Hospital-B
and other forms to represent the name of the hospital.

4.1 Data description

In this section, we evaluate our proposed model on real data. The dataset comes from a certain
area of China from 2012 to 2017. We picked out 498,080 medical records, which contain
31,130 patients who have migrated, 44 hospitals, and 21 diseases (classified according to ICD-
10 standard). Table 2 describes the statistics about the dataset.

4.2 Medical treatment migration prediction

4.2.1 Experimental setup

To evaluate the accuracy of predicting the hospital for the next visit, we used a measure for
prediction task: (1) Accuracy, which is the ratio of the predicted results equal to the actual
results. (2) Weighted F1-score, which calculates F1-score for eachclass and reports their
weighted mean.

In this paper, we implemented all the prediction methods with the Python language. We
used Adadella [34] optimizer the batch size of 500 patients. We randomly divided the dataset
into training, validation and test set in a 0.75, 0.1, 0.15 ratio. We set the dimension of
embedding m as 100, and the dimensionality of hidden state of GRU as 100. We used 100
iterations for each method and report the best performance.

4.2.2 Feature selection

The consequences of discriminative feature selection according Grey Relational Analysis
method are presented below. Table 3 displays the weight value of all features calculated by
GRA algorithm, and are ordered by weight from high to low. We setup the threshold (=0.5) to
exclude some uninformative feature. In our experiments, the top 11 features obtained by GRA
are considered as informative features. In addition, we can also conclude that the complexity of
disease treatment in hospitals (Average Hospitalization Days and Average Cost) are more
likely to affect the patient’s medical treatment migration.

Table 2 Statistics of medical treatment datasets

Category Migration situation Total Density

Patients 31,130 520,954 5.98%
Hospitals 44 204 21.6%
The number of disease 1295 6497 19.9%
Medical records 498,080 7,718,863 6.45%
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4.2.3 Migration prediction

In this subsection, we compare it to several prediction methods in order to evaluate the
predictive performance of our proposed model in migration prediction. The methods are
described as follows:

MLR: This is the traditional Multiple Logistic Regression model.
Navie Bayes: This is a Classification Method Based on Bayes’ Theorem and Characteristic

Condition Independent Hypothesis.
SVM: This is a supervised learning algorithm used to solve classification problems.
RNN: This is the traditional unidirectional Recurrent Neural Network.
BGRU: This model uses only bidirectional GRU to predict future medical information

without using any attention mechanisms.
AB-GRU (our prior work) [9]: An attention-based bidirectional GRU prediction model.
Table 4 shows the accuracy and weighted F1-score of methods in migration prediction. It

can be concluded from Table 4 that the prediction performance of AB-GRU proposed in this
paper is better than other prediction methods. It is because that the AB-GRU considers the
impact of historical medical visits and time information on future medical migration.

Figure 4 describes the ROC of several models. From Fig.4, we can conclude that the area of
ROC of AB-GRU proposed in this paper is the largest, that is, the AUC value is the largest. So
AB-GRU in this paper has better predictive performance.

Table 3 Factors and correlation

Factors Correlation

Average Cost 0.9498
Average Hospitalization Days 0.9084
Hospital Level 0.8877
Income 0.8273
Age 0.7909
Treatment Rate 0.6599
Disease Category 0.6133
Gender 0.5945
Insured Category 0.5510
Maximum number 0.5133
Distance 0.5087
Industry Category 0.4766
Insured Place 0.4587

Table 4 The accuracy and weighted F1-score of methods in migration prediction

Methods Accuracy F1-score

MLR 0.6855 0.6118
Naive Bayes 0.6783 0.6074
SVM 0.7096 0.6285
RNNs 0.7445 0.7049
BGRU 0.7678 0.7194
AB-GRU 0.8068 0.7423
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4.2.4 Model interpretation

In this subsection, we discuss interpretability of the predictive results. For each visit we are
able to calculate the attention weight associated with it using eq. (11). We first select two
patients with tumor disease, and we illustrate how our model utilizes the information in the
patient visits for prediction. For each patient, we show each visit, the time stamp of each visit,
medical hospital during each visit, and the weight assigned by AB-GRU to each visit.

From Table 5, we can observe that the weight assigned to most of the visits of patient 1 is
close to 0, such as visit 1, visit 4 and visit 5, which means that they are ignored during
prediction. However, for visit 2 and visit 3, although the two visits occurred in long days ago,
they are assigned a larger weight, indicating that they have a long-term impact on the
prediction of future medical institutions. Therefore, the predictive result is Hospital-B, which
is mainly affected by visit 2 and visit 3.

Fig. 4 The compassion of ROC

Table 5 Patient 1-visit records

Medical visit records Average weight of hidden state Target hospital

Visit1 (305 days ago) 0.0068 Hospital-A
Visit2 (195 days ago) 0.2348 Hospital-B
Visit3 (111 days ago) 0.7509 Hospital-B
Visit4 (41 days ago) 0.0018 Hospital-A
Visit5 (14 days ago) 0.0057 Hospital-A
Prediction Hospital-B (Actual) Hospital-B(0.8034)
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Table 6 Patient 2-visit records

Medical visit records Average weight of hidden state Target hospital

Visit1 (175 days ago) 0.0016 Hospital-B
Visit2 (124 days ago) 0.0047 Hospital-B
Visit3 (74 days ago) 0.0277 Hospital-B
Visit4 (50 days ago) 0.3932 Hospital-B
Visit5 (28 days ago) 0.5728 Hospital-B
Prediction Hospital-B (Actual) Hospital-B(0.8849)

World Wide Web (2020) 23:2023–2042 2037

From Table 6, we can see that for patient 2, this weight is very useful for interpretation since
our model focuses on visits with nonzero weights. For visit 4–5, which occurred within the last
two months, AB-GRU gives large weights to the hidden of state of last two visits, indicating
that the last two visits have a larger impact on choice of the hospitalization behavior of patient
2. So, the predictive result is Hospital-B, which is mainly affected by visit 4 and visit 5.

4.3 Medical migration recommendation

4.3.1 Experimental setup

To verify the performance of the patient similarity approach presented in this paper, we will
compare the following methods.

Euclidean and Cosine: The similarity between samples is measured by calculating the
Euclidean and cosine distances. These two methods directly measure the similarity of the
original data space without learning any mapping parameters.

LMNN [30] is a classic metric learning method that brings the k nearest neighbors of the
same class closer together and can separate the examples of different categories on a large
scale.

GMML [24] represents the learning process as an unconstrained smooth and convex
optimization problem.

K-means is a traditional clustering algorithm.
We evaluated the results of similarity learning by using three widely used criteria, the Rand

Index (RI), Purity and Normalized Mutual Information (NMI) [26].
RI represents the percentage of the correct decision, calculated as follows:

RI ¼ aþ b
n
2

� � ð22Þ

where a is the number of pairs belonging to the same group, b is the number of pairs from
different groups, and n is the total number of patients. Generally, the higher the RI, the better
the similarity learning effect.

The equation for calculating purity is as follows:

Purity Cluster;Cohortð Þ ¼ 1

n
Σimax j pi∩qj

�� �� ð23Þ

where Cluster = {p1, p2,⋯, pi} is a collection of clusters, Cohort = {q1, q2,⋯, qj} is a set of



Table 7 Comparison of similarity learning methods

Methods RI Purity NMI

Euclidean 0.4743 0.4633 0.0593
Cosine 0.4862 0.4654 0.0582
GMML 0.5024 0.4822 0.0698
LMNN 0.5778 0.5374 0.1148
K-means 0.6347 0.6659 0.2316
CNN_triple 0.7351 0.7561 0.3599
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classes or queues. The upper limit of purity is 1, indicating a perfect match between the
partitions.

NMI measures the shared information of two groups, and the equation is as follows:

NMI Cluster;Cohortð Þ ¼ I Cluster;Cohortð Þ
Q Clusterð Þ þ Q Cohortð Þ½ �=2 ð24Þ

where I represents the mutual information of two random variables and Q is the information
entropy of a given random variable. The value of NMI varies between 0 and 1. When the
similarity grouping is the same, I reaches the maximum value of 1.

We firstly train the similarity model described in Section 3.4 to obtain optimized CNN
parameters and matching matrices. Then use the similarity framework to calculate and rank the
similarity of the training data. Finally, we validate the model by performing a medical behavior
recommendation. The data set was randomly divided into training set, validation set, and test
set (0.75:0.1:0.15) for similarity training.

In the training process, the similarity learning framework is implemented using TensorFlow.
Adadella [34] is used to optimize model parameters. Unlike the normal CNN model entered as
a small batch of patients, the similarity framework is trained on a batch of patient pairs to
ensure that each patient pair can be measured.

4.3.2 Similarity comparison

In Table 7, we use the RI, Purity and NMI to measure the performance of the similarity
learning algorithm. A higher value means more consistency between the grouping and the real
label, more similar samples are grouped together, indicating better similarity learning perfor-
mance. From Table 7 we can conclude that the performance of the method proposed in this
paper is significantly better than other methods. We denote the proposed framework in
Section 3.4 as CNN_triple.

4.3.3 Performance comparison

In this subsection, we compare it to several methods in order to evaluate the performance of
our proposed model. The methods are described as follows:

MLR: This is the traditional Multiple Logistic Regression model.
Navie Bayes: This is a Classification Method Based on Bayes’ Theorem and Characteristic

Condition Independent Hypothesis.
SVM: This is a supervised learning algorithm used to solve classification problems.



CNN_ves: It means that the vector representation is obtained through CNN, and then the
result is obtained by the softmax function.

SD_CNN_ves (our model): This model firstly uses CNN to achieve similarity grouping,
then uses CNN to obtain vector representation, and finally obtains the result through softmax
function.

Table 8 shows the accuracy of methods in migration recommendation task. It can be
concluded from Table 8 that the performance of the model proposed in this paper is better
than other methods. It is because that it not only achieves similarity learning, but also considers
the impact of historical medical visits and time information on future medical migration.

Figure 5 describes the ROC of several models. From Fig. 5, we can conclude that the area
of ROC of the model proposed in this paper is the largest, that is, the AUC value is the largest.
So the model in this paper has better performance.

Table 8 The accuracy of methods in recommendation task

Methods Accuracy

MLR 0.7086
Naive Bayes 0.7004
SVM 0.7238
CNN_ves 0.7857
SD_CNN_ves 0.8242

Fig. 5 The compassion of ROC
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5 Conclusion
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How to accurately predict the future medical treatment behaviors of patients from the historical
health insurance data has become an important research issue in healthcare. In this paper, an
Attention-based Bidirectional Gated Recurrent Unit (AB-GRU) medical treatment migration
prediction model is proposed to predict which hospital patients will go to in the future. Due to
medical treatment in different places has an important impact on the distribution of health
insurance funds, when medical treatment prediction has been completed, this paper proposes a
medical treatment migration recommendation model to recommend whether patients need
medical treatment migration.
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