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Abstract
Under the overwhelming trend in Cloud Computing, Cloud Databases possessing high scal-
ability / high availability / high parallel performance have become a prevalent paradigm
of data outsourcing. In consideration of security and privacy, both individuals and enter-
prises prefer to outsource service data in encrypted form. Unfortunately, most encrypted
databases cannot support such complicated queries as wildcard-based fuzzy searching,
which, to some extent, limits the practicability in real applications. To explore more business
logic in encrypted databases, an enhanced wildcard-based fuzzy searching scheme (enWFS)
is proposed in this paper, which integrates specialized Adjacent Character Matrix/Tensor
into proxy middleware, appends two types of ancillary columns into data tables, as well
as designs an advanced adaptive overwriting method to revise query expressions with
wildcards (‘%’ and ‘ ’). Meanwhile, some security enhancements and TupleRank are
added to enWFS scheme so as to achieve superior fuzzy searching experiences. Extensive
experiments based on real datasets demonstrate effectiveness, feasibility of our proposal.

Keywords Encrypted database · Fuzzy searching · Wildcards

1 Introduction

Cloud computing, moving rapidly from a hazy prototype to an established technology, is
likely to be another milestone in IT history. For even more individuals and enterprises, gone
are the days when struggling with complicated servers and sophisticated local data man-
agement systems, which will provide them with great flexibility, reliability and economic
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savings. As we have noticed, several tech giants and startups are taking the potential of this
market, giving rise to some typical platform like Microsoft Azure, Amazon Web Services
and Google Cloud Platform.

From a remote shared cluster of configurable computing resources, cloud customers can
enjoy the on-demand high-quality applications and services based on their stored data in the
cloud server [9]. Meanwhile, due to privacy concerns, data owners tend to encrypt sensitive
data (e.g. personal health conditions, incomes, addresses, etc.) prior to outsourcing, which
in turn obsoletes the data utilization.

To explore more business logic over encrypted data, many researchers and scholars in
academia and industry have been devoting much effort to the enhancement of practica-
bility and feasibility in encrypted databases. CryptDB [20] is a distinguished encrypted
database which supports normal queries being executed over ciphertext. It designs a proxy
middleware between clients and servers, where initial SQL statements are transparently
overwritten. With extra help of several extended ancillary columns, original semantics are
preserved in ciphertext-based queries.

Additionally, some encryption algorithms are developed to enrich basic functions in
encrypted databases. Searchable symmetric encryption (SSE) is proposed for keyword
searching with encrypted inverted indexes [4, 13, 21, 24]. Then, dynamic searchable sym-
metric encryption (DSSE) achieves alterations on various centralized indexes to enhance
applicability [2, 11, 12, 14]. Furthermore, research work about similarity searching among
documents or words via locality sensitive hashing (LSH) algorithm is widely discussed [1, 7,
8, 10, 15, 17, 18, 23, 25–27]. Unfortunately, these existing schemes are not applicable to out-
sourced databases due to the design of centralized index, but even more damaging was the
lack of support for wildcard-based fuzzy searching. Our previous work [5], for the first time,
fulfills wildcard-based fuzzy searching (i.e. SQL statements with ‘like’ clauses including
wildcards ‘%’ and ‘ ’) directly over encrypted data (on the foundation of CryptDB). Never-
theless, query accuracy can hardly satisfy cloud customers when one or more underscores
included in ‘like’ clauses.

In this paper, we study further in this field, and put forward some exciting improvements
in accuracy of fuzzy searching. As is shown in Figure 1, the proxy middleware between
clients and outsourced cloud databases in the CPD framework achieves transparency and
semantic preserving by overwriting SQL statements properly. Thanks to the new statistical
language models CFA/ACM/ACT, the newly-designed component character filling has man-
aged to upgrade the accuracy of searching result. The major contributions of our proposed
schemes are summarized as follows:

• An enhanced wildcard-based fuzzy searching scheme (enWFS) is proposed, which
expands extra functionality and practicability for the client-proxy-database framework
like CryptDB.

• Two types of ancillary columns: c-LSH and c-BF, are well-designed. The former type
works for similarity searching via locality sensitive hashing algorithm, while the latter
works for maximum substring matching via specific BloomFilter vectors.

• With additional boost of new Adjacent Character Matrix/Tensor based on the corpus of
attribute values, we put forward the idea of character filling, and present an advanced
adaptive overwriting method (AAOM, for short) to handle queries of different wildcard
cases with better accuracy.

• On account of the accuracy loss resulting from the ciphertext-based queries, TupleR-
ank over searching results is proposed to serve cloud customers with better searching
experience.
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Figure 1 Client-Proxy-Database(CPD) framework synthesizes various types of encryption together
at proxy middleware, where deterministic encryption (DET) preserves symmetric character
for en/decryption, order-preserving encryption (OPE) preserves order among numeric values,
homomorphic encryption (HOM) achieves aggregation computing, and wildcard-based fuzzy
searching (enWFS) handles queries with ‘like’ clauses. During data outsourcing, apart from the
encryption of plaintext data, statistics over the plaintext data will also be conducted, resulting in
specialized statistical language models (CFA/ACM/ACT). During query processing, the advanced
adaptive overwriting method (AAOM), together with character filling will revise the original
query statement, so that the revised statement can be executed directly over encrypted databases.
Finally, TupleRank over results can improve the searching experience. The proxy middleware is
reliable and secure, while cloud DB may attract adversaries’ attacks

• With extensive experiments on three real datasets, we evaluate the time consump-
tion, memory cost, storage overhead and matching performance of ancillary columns
by adjusting the parameters. Result accuracy and efficiency of enWFS, which are
examined subsequently, indicate the effectiveness and feasibility of our proposal.

This paper is an extension of our previous conference paper[5]. Compared with the con-
ference version, this journal version proposes new statistical language models (Section 3.2),
newly-designed component character filling (Section 4.2) and an Advanced Adaptive Over-
writing Method (Section 4.2), so that the accuracy and validity of fuzzy searching results
are significantly improved (especially in the case of queries with underscores ‘ ’, see
Section 5.2.4). TupleRank (Section 4.3) is introduced additionally to improve users’ search-
ing experiences. Last but not least, we provide more intelligible illustrations and examples
for readers to comprehend our ideas readily.

The rest of this paper is organized as follows. We review the related work in Section 2.
Section 3 introduces some basic concepts, statistical language models and the adversary
model for our proposal. enWFS scheme including details about ancillary columns, charac-
ter filling, advanced adaptive overwriting method (AAOM) is demonstrated in Section 4,
together with TupleRank, extra security-enhancing improvements and the security analysis.
Section 5 reports performance evaluation. The paper is summarized in Section 6.
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2 Related work

With the popularity of cloud computing, security issues in data outsourcing have drawn
much public concern, which stimulates much research effort in this field. We will review
several security schemes of outsourced database and searchable encryption schemes as
follows.

2.1 Security schemes of outsourced database

The innovative proposal of CryptDB [20] by Popa et al. provides a practical proxy-
based middleware to combine various attribute-based encryption algorithms over encrypted
database, attracting world-wide attention to security schemes of outsourced database.
Then much subsequent work [16, 19, 22] further studied its security definitions, feasible
frameworks, extensible functions and performed some optimization.

Tetali et al. introduced Paillier cryptosystem, ElGamal encryption, DET (deterministic),
OPE (order-preserving encryption), random function into MyCrypt [22], which is designed
to be integrated with parallel computing framework like MapReduce. However, the only
support of massive data computation scenario limits its expansibility.

Li et al. proposed an lightweight framework L-EncDB [16] for outsourced database. L-
EncDB employs format-preserving encryption, fuzzy query encryption, order-preserving
encryption to process different types of query respectively. Nevertheless, this proposal
weakens the role of middleware and relies too much on those encryption algorithms,
resulting in some defects in functionality, expansibility and security.

2.2 Searchable encryption schemes

Searchable symmetric encryption (SSE) is designed to enhance querying over ciphertext.
Much early proposals [4, 13, 21, 24] are based on inverted index. Then, some other work
[2, 11, 12, 14] employs dynamic searchable symmetric encryption (DSSE) that optimizes
updating strategy in inverted index. Besides, the studies about searching with Boolean
expressions are explored to increase accuracy [3].

In recent years, many proposed schemes have been attempting to achieve fuzzy search-
ing with the help of similarity matching [1, 8, 10, 15, 23, 25–27]. Most of those proposals
introduce locality sensitive hashing (LSH) to map similar items together, and Bloom Filter
to change measuring methods. Tetali et al. [23] by Wang et al. is one of the earliest schemes
to propose fuzzy searching, where every word in each file is encoded, resulting in a Bloom-
Filter vector. Then, it evaluates similarity by computing the inner products among vectors
for top-k results. Kuzu et al. [15] generated feature vectors by embedding keyword strings
into the Euclidean space which approximately preserves the relative Levenshtein distance.
Fu et al. [8] proposed an efficient multi-keyword fuzzy ranked searching scheme which can
tolerate common spelling mistakes. Wang et al. [26] byWang et al. stores encrypted inverted
indexes while mapping similar objects into the same or neighbor keyword buckets by LSH
algorithm according to Euclidean distance, which eliminates sparse vectors from bi-gram
mapping and promotes the correctness. Consequently, their proposal can support similarity
searching over large-scale feature-rich encrypted multimedia data with the help of a high-
dimensional feature vector. Unfortunately, wildcard-based fuzzy searching is not supported
in those existing schemes. Other drawbacks, such as coarse-grained metric of similarity
comparison and immoderate dependence on ancillary programs, restrict the practicability in
real applications as well.
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3 Preliminaries

In this section, some basic concepts for our schemes are demonstrated first, then the spe-
cialized Adjacent Character Matrix / Tensor, function model and the adversary model are
presented.

3.1 Basic concepts

3.1.1 N-gram

The n-gram model is a typical probabilistic language model for predicting the next item in
a sequence based on the (n − 1)-order Markov model, which is now extensively applied in
communication theory, statistical natural language processing, biological sequence analysis
and data compression. With the co-occurrence probability of a contiguous sequence of n

items from a given sample of text, it can infer the structure or other information of the
sample, where the ‘item’ (or named ‘unit’) can be syllables, characters, words or base pairs
according to various applications.

In general, bi-gram is the most commonly used method to partition a sequence, where
each change of single character will double the influence on bi-gram results. Tri-gram pro-
vides better judgment on the next item, but it is a more strict method which only suits some
specific scenes like existing judgment. Counting uni-gram preserves repetitions, which
brings benefits to letter-confused comparison cases such as letter misspelling, letter miss-
ing, and reverse order of two letters in a word. However, it reduces the degree of constraint
while increases false positives. Table 1 shows a few character-based n-gram methods for
preserving different implicit relations within original strings1.

In order to compress storage space in encrypted databases while achieving fuzzy search-
ing, we partition attribute values into several fragments with character-based n-gram
method, so the connotative relations among characters are preserved. We will adopt some
of these n-gram methods and evaluate their performances in our experiments. Afterwards,
these n-gram fragments will be further vectorized by different algorithms.

3.1.2 Bloom Filter

Judging whether a specific element exists in prepared sets remains critical in numerous
applications, but traditional solutions based on Hash Table may expose its low storage effi-
ciency if sets are of large scale. Consequently, a compact data structure named Bloom Filter
came into being, which can reflect existence of specific elements in the prepared set, as is
shown in the following example (Figure 2).

In our wildcard-based fuzzy searching scheme, given fragments of the original string
S = {e1, e2, e3, · · · }, the Bloom Filter maps each element ei into a sparse array by several
independent hash functions (i.e. converts the fragments into a sparse vector), so that a newly
coming substring e′ can be judged whether it is in the original string (i.e. Positive answer
will be returned iff all bits in matched positions are true).

1For the sake of simplicity, among illustrations of this paper, the beginning and the end of a string will be
uniformly represented as ‘#’ (as you can see in Table 1). But these two cases will be treated respectively
during the implementation.
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Table 1 Various N-gram Forms in our scheme

N-gram methods Value Description

(original string) apple /

counting uni-gram [8] a1, p1, p2, l1, e1 preserve repetitions

bi-gram ap, pp, pl, le preserve adjacent letters

tri-gram app, ppl, ple preserve triple adjacent letters

prefix and suffix #a, e# the beginning/end of a string

3.1.3 Locality sensitive hashing

One of the typical applications of Locality-Sensitive Hashing (LSH) in high-dimensional
data is to provide an efficient method for approximate nearest neighbor searching, where
p1 > p2 and d1 < d2 are needed in Definition 1.

Definition 1 (Locality-Sensitive Hashing) Given a distance metric function d(·, ·), a hash
function familyH is (d1, d2, p1, p2) − sensitive if each function h ∈ H satisfies:

if d(x, y) ≤ d1, Pr[hi(x) = hi(y)] ≥ p1;
if d(x, y) ≥ d2, Pr[hi(x) = hi(y)] ≤ p2.

The specific manifestation of LSH is different under various measurements, but there is
no available method for levenshtein distance among text. Hence, character-based n-gram
will convert a string to several fragments first, and then the Bloom Filter and MinHash-
ing algorithm will return a short integer ‘signature’. Eventually, LSH can achieve nearest
neighbor searching.

3.2 The specialized adjacent character matrix / tensor

In encrypted databases, ciphertext-based queries, combined with wildcards, may lead to
accuracy loss in the query results, which often shows up as including many redundant
tuples in the answers. To explore a better trade off between data security and accuracy of

Figure 2 A simple Bloom Filter Structure: Each element in the set will be hashed into different positions
in an array by several hash functions. When the existence of a coming element e′ needs confirming, e′ will
also be hashed by the same group of functions. Then, e′ will be reckoned to be “in the set” iff all hashed
positions have value ‘1’
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query results, we design specialized statistical language models (named Adjacent Charac-
ter Matrix & Adjacent Character Tensor, or ACM & ACT for short) to depict connotative
features of attribute values in the database.

Before data owners encrypt and outsource their data to the cloud database, they should
conduct some analyses over attribute values of the whole table or some specific columns2.
To be specific, data owners should follow the steps below to obtain Adjacent Character
Matrix and Tensor:

(1) Assuming that all the values in databases only contain printable ASCII characters, we
build a matrix M[100][100] and a tensor T [100][100][100];

(2) All the plaintext strings in those specific columns will be partitioned into bi-gram and
tri-gram fragments;

(3) We run some statistical analyses over the bi-gram and tri-gram fragments by counting
the frequency of each unique fragment;

(4) Update the relevant grids (items) in ACM and ACT.

Let’s see an illustrative example to understand the process better. The left side of Figure 3
gives the statement of the example, where we suppose there are only two words in the
corpus of attribute values, and six characters exist in the domain accordingly. After strings
are partitioned and fragments are counted, Adjacent Character Matrix (ACM) and Adjacent
Character Tensor (ACT) will be obtained.

Apart from ACM and ACT, an array recording the character frequency in the same corpus
is also necessary. We name it Character Frequency Array, or CFA for short.

3.3 Functionmodel

Let D = {D1, D2,D3, · · · } denotes the set of sensitive columns in a data table,
Di = {d1

i , d2
i , d3

i , · · · } denotes different attribute values d
j
i in column Di , and d

j
i =

{w1
i,j , w

2
i,j , w

3
i,j , · · · } denotes the set of words (substrings) wk

i,j contained in d
j
i . Then, two

types of ancillary columns based on different indexing methods are proposed.
The former type of columns is named c-LSH, in which the ciphertext values result from

Locality Sensitive Hashing:

v − LSH
j
i = L(m,n)(

∣
∣
∣d

j
i

∣
∣
∣

⋃

k=1

Gss(w
k
i,j )) (1)

where L(m,n) denotes the LSH converting operator with LSH dimension3 m and matching
parameter n, and Gss(·) denotes n-gram methods for similarity searching.

The latter type of columns is named c-BF whose values result from Bloom Filter:

v − BF
j
i = B(h,l)(

∣
∣
∣d

j
i

∣
∣
∣

⋃

k=1

Gmsm(wk
i,j )) (2)

2In many real applications, sensitive information may only contained in some of the columns in data tables,
so data owners just need to focus on those specific columns. i.e. attribute values in those specific columns
are regarded as the corpus.
3LSH dimension means the number of features returned from LSH corresponding to a word in attribute
values. Details will be introduced in the next section.
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Figure 3 An example to illustrate construction of ACM & ACT

where B(h,l) denotes the Bloom Filter converting operator with the length of vector space l
and the number of hashing functions h, and Gmsm(·) denotes n-gram methods for maximum
substring matching.

On the basis of aforementioned concepts and modules, we present the formalized def-
inition of enWFS scheme, which mainly illustrates the processes of function generation,
feature extraction, ciphertext conversion and expression overwriting.

Definition 2 (Formalized definition of enWFS) A proxy-based encrypted database supports
wildcard-based fuzzy searching with the following polynomial-time algorithms (steps):

• (Kdet , L(m,n),B(h,l)) ← KeyGen(λ, m, n, h, l): Given security parameter λ, LSH
dimension m, matching parameter n, length of vector in Bloom Filter l, and the number
of hashing functions h, KeyGen(·) returns a primary key Kdet for symmetric encryp-
tion, LSH converting operator L(m,n),and Bloom Filter converting operator B(h,l).
Security parameter λ helps initialize the hash functions and randomization processes.

• (CFA, ACM , ACT ) ← Stati,j,k(G(wk
i,j )): N-gram method G(·) first partitions given

words (substrings) contained in attribute values, then Stat (·) conducts some statistical
analyses (frequency counting)4 over the characters and n-gram fragments, so CFA,
ACM and ACT are acquired.

• (v −DET
j
i , v −LSH

j
i , v −BF

j
i ) ← Index(dj

i , L(m,n), B(h,l)): Given LSH converting
operator L(m,n) and Bloom Filter converting operator B(h,l), plaintext attribute values

d
j
i = ⋃

∣
∣
∣d

j
i

∣
∣
∣

k=1{wk
i,j } are encrypted into deterministic (DET) ciphertext v − DET

j
i , LSH

4This is an offline process conducted by data owners regularly. After updates of CFA, ACM and ACT are
completed locally, both will be outsourced to the cloud.
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ciphertext v − LSH
j
i , and BloomFilter ciphertext v − BF

j
i (which will be stored in

ancillary columns).
• (v − DET

j
i ||v − LSH

j
i ||v − BF

j
i ) ← Query(OW(queries with ′like′ clauses)):

Given query expressions with ‘like’ clauses, the advanced adaptive overwriting method
OW(·) revises the expressions with regard to different wildcard cases. After the results
(DET ciphertext) are returned from the cloud database, they will be decrypted with
Kdet .

There also exist other functions such as updating and deleting that achieve dynamics
of our schemes, and our proposed overwriting method can be extended to scenarios where
statements include ‘create’ and ‘insert’.

3.4 Adversary model

In consideration of data confidentiality, most cloud users will encrypt sensitive columns
before outsourcing the data to cloud DB, whereas they aren’t willing to compromise the
practicality due to the encryption. So these users may use fuzzy searching schemes like
our previously-proposed FSE and new enWFS to expand functionality. On the other hand,
adversaries may attempt to invade data privacy via additional components brought about by
fuzzy searching schemes.

As for our enWFS scheme, the security threats can be summarized into four parts:
indexes, statistical language models, trapdoor queries, and confidentiality of results. Indexes
refer to the functional ciphertext (LSH & BloomFilter ciphertext in ancillary c-LSH and
c-BF columns) that helps to find tuples in fuzzy searching over encrypted columns. Three
statistical language models include Character Frequency Array, Adjacent Character Matrix,
and Adjacent Character Tensor. The trapdoor queries mean the revised SQL statements (by
our overwriting method) that can be executed directly in encrypted databases.

Focusing on those threats, adversaries may hack into cloud DB servers (as shown in
Figure 1), crack the functional ciphertext, and monitor cloud users’ queries, trying to extract
private data in sensitive (encrypted) columns.

4 Our proposed enWFS scheme

We first introduce how two types of ancillary columns come into being in this section.
Subsequently, the advance adaptive overwriting method, TupleRank and some security-
enhancing improvements are described.

4.1 Two types of ancillary columns

On the basis of CPD framework, the design of attribution splitting in cloud databases syn-
thesizes diverse types of encryption that can handle different query semantics. An instance
in Table 2 shows two types of ancillary columns (c-LSH and c-BF) appended into a
data table in the cloud database, along with a column of symmetric deterministic (DET)
ciphertext (c-DET) that is encrypted with reversible encryption5.

5After several tuples are matched via ancillary columns, corresponding DET ciphertext will be returned for
decryption. i.e. Ancillary columns are used for fuzzy searching, and all matched results are achieved by
decrypting DET ciphertext.
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Table 2 Ancillary columns stored in encrypted databases

c − DET c − LSH (m=4,wid=2) c − BF1 ... c − BF�l/32�

En(“I love apple”) 19030024,01000409,00020412 1077036627 ... 1957741388

En(“lave banana”) 01000409,00020303 1079642851 ... 625017556

En(“I love coconut”) 19030024,01000409,06000700 1626500087 ... 1687169793

4.1.1 c-LSH

The c-LSH column stores ciphertext of attribute values generated by Locality Sensitive
Hashing, which will be used for similarity searching. LSH maps similar items together with
certain probability that equals to the jaccard distance between their Inverted Position Arrays
(IPA for short).

To be specific, our scheme follows the steps below to generate LSH ciphertext (see the
example in Figure 4):

1. Split the attribute value d
j
i into words wk

i,j (e.g. wk
i,j = ‘lave’ ∈ d

j
i in the instance);

2. Partition each word wk
i,j into several fragments using bi-gram or tri-gram methods (bi-

gram method is used in the instance);
3. Map each fragment into a sparse vector by Bloom Filter. Then record the positions in

the vector where bit ‘1’ stands, resulting in an Inverted Position Array;

Figure 4 A sample with bi-gram method to illustrate how LSH ciphertext of an attribute value is generated
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Figure 5 An instance to illustrate the process of Bloom Filter conversion

4. Execute dimension reduction with LSH (MinHash), we can obtain an m-dimensional
feature (signature)6 (LSH dimension m = 4 in the instance);

5. If an attribute value consists of several words, combine signatures of each word with
commas. So far, we have got LSH ciphertext of d

j
i : v − LSH

j
i .

Such a converting process shifts measurement from levenshtein distance on text to
jaccard similarity on IPAs, so that the particular MinHash algorithm could reduce the dimen-
sion of numeric features for each item. Eventually, each attribute value is converted into a
linked sequence as LSH ciphertext that will be stored in the c-LSH column.

4.1.2 c-BF

As a supplement to the c-LSH column above, the other type of ancillary columns, c-BF,
consists of multiple columns that store ciphertext of attribute values generated by Bloom
Filter. Since the design of c-BF is aimed at maximum substring matching, connotative rela-
tions among characters should be preserved as much as possible. Consequently, we adopt
several n-gram methods7 in Bloom Filter converting. The following steps, together with the
example in Figure 5, help to illustrate this process better.

(1) Suppose that an attribute value d
j
i is to be converted into BloomFilter ciphertext, the

entire string will be input into several n-gram methods;
(2) N-gram fragments from disparate methods (e.g. counting uni-gram, bi-gram, tri-gram,

prefix and suffix are used in the instance) are grouped together into an array, then
Bloom Filter maps the fragment array into a fixed-length sparse vector;

(3) Due to the limitation of field length in databases, Bloom Filter vector will be split
to a series of segments. These segements are stored in columns c − BF1, c −
BF2, · · · , c − BF�l/32� respectively (supposing length limitation being 32 bits).

6A word’s signature on each dimension is assured of an equal width by padding zero.
7We use popular n-gram methods described in Section 3.1.1 .
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After BloomFilter ciphertext is generated, maximum substring matching will be executed
via bit matching between the bit vector of the keyword in the ‘like’ clause and that stored
in separate columns (c − BF1 ∼ c − BF�l/32�), which can be implemented through native
logical operator AND (‘&’) over bits in databases. Accordingly, original SQL statements
should be overwritten like this: select c-DET from T where c − BF0 & 1=1 and c − BF1 &
3=3.

To achieve better effectiveness of Bloom Filter, we will test the accuracy of maximum
substring matching under different lengths of BloomFilter vectors in Section 5.2.2.

4.2 The Advanced Adaptive OverwritingMethod (AAOM)
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As is known to us, wildcard characters are used in ‘like’ clauses within SQL statements.
The underscore symbol ‘ ’ represents an arbitrary single character in the string, while the
percentage symbol ‘%’, a coarse-grained wildcard, matches zero or more characters.

In our previously proposed overwriting method[5], the c-LSH column is suitable for
processing ‘like’ clauses where unbroken words without underscore ‘ ’ are included8, and
achieves ideal performance in accuracy. Unfortunately, the performance will decline gradu-
ally when one or more underscores are contained in the clause (The multiple columns c-BF
are used in this case). Thus, we make every effort to explore some reformation over the
previous method.

Based on aforementioned two types of ancillary columns, together with Character Fre-
quency Array and the specialized Adjacent Character Matrix & Adjacent Character Tensor,
we introduce the newly-designed component character filling into the correspondingly-
improved advanced adaptive overwriting method (AAOM) in this section. Algorithm 1-2
describe our proposal. We will also provide the following instance to better illustrate our
idea.

Suppose that a cloud user is going to execute a wildcard-based fuzzy searching Q, he
should also submit a flag array of ‘like’ clauses F = {f1 = ‘w’, f2 = ‘f’} to declare
whether an unbroken word(‘w’) or a fragment of words(‘f’) is contained in each ‘like’
clause9.

Q = select pname cDET, paddress cDET from T

where pname like ′a le%′ and paddress like ′h%l nd ′;
Our proposed method takes the following steps to overwrite the SQL statement that can

be executed in encrypted databases:

(1) (Line 1, Alg. 1) Preprocess the query Q: split a clause s into some if ‘%’ contained
within s (not on both sides). Then we can obtain
Q = select pname cDET, paddress cDET from T

where pname like ′a le%′
and paddress like ′h%′ and paddress like ′%l nd ′ ;

(2) (Line 2, Alg. 1) According to the clause splitting in the previous step, F is revised as
F = {f1 = ‘w’, f2 = ‘f’, f3 = ‘f’};

(3) (Line 3, Alg. 1) The clause set S = {s1 =′ a le%′, s2 =′ h%′, s3 =′ %l nd ′} is
obtained;

(4) For each si in S, AAOM will convert it to different types of ciphertext (with regard to
different cases as follows);

(5) (Lines 7-9, Alg. 1) A certain clause without any wildcard will be directly converted
to DET ciphertext for equality judgment;

(6) (Lines 11-12, Alg. 1) If some wildcards are included in the clause, percentage sym-
bols ‘%’ at the beginning/end of si will be temporarily stripped, then s′

i will be handed
over to Sub-AAOM (run Alg. 2)
(In our instance, s′

1 =′ a le′, s′
2 =′ h′, s′

3 =′ l nd ′);

8Remark: In the clause ‘a le%’, ‘a le’ may refer to ‘apple’, ‘ankle’, etc, so ‘a le’ can be treated as an
unbroken word in the clause ‘a le%’; On the contrary, ‘app%’ may refer to ‘applaud’, ‘applicant’, etc, so
‘app’ in the clause ‘app%’ is reckoned to be a fragment of words.
9This flag array provides a reference for our algorithm, and it will be revised in the process.
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(7) (Line 1, Alg. 2) Sub-AAOM first examine s′
i , and acquire maximum consecutive

underscores mcu in it10, so mcu = 2, 0, 1 with respect to s′
1, s

′
2, s

′
3;

(8) (For s′
2: Lines 4-11, Alg. 2) Since f2 = ‘f’, ‘h’ will be partitioned by counting-

unigram, bi-gram and tri-gram. Then, the array a with fragments from disparate
n-gram methods is mapped by Bloom Filter. Finally, the obtained BloomFilter Vec-
tor is split to a series of segments (with the same length LEN) that are stores in
v12, v

2
2, · · · ∈ V2 (In our instance, V2 = {v12 = 112, v22 = 630, v32 = 577, v42 = 400}

is the BloomFilter ciphertext of s′
2) (details about BloomFilter ciphertext are in

Section 4.1.2);
(9) (For s′

3: Lines 12-14, Alg. 2) CFA and ACM help the algorithm to carry out char-
acter filling: Following the Markov Assumption and bi-gram method, we form the
formula P(λ1) = P(λ1|l) · P(n|λ1) · P(d|n);

(10) (For s′
3: Lines 21-25, Alg. 2) Assume that character ‘a’ and ‘u’ are possible to

be filled within s′
3 (according to the corpus of encrypted columns), �1 = (λ1 =′

a′), �2 = (λ1 =′ u′) are obtained (item frequency of ‘land’: P�1 = 0.0052; item
frequency of ‘lund’: P�2 = 0.000021);

(11) (For s′
3: Lines 32-36, Alg. 2) s′

3 will firstly be filled with �1 and �2 respectively.
Since f3 = ‘f’, after these two fragments of words (‘lund’ and ‘land’) partitioned by
several n-gram methods, BloomFilter ciphertext of them will be appended to V3 in
descending order of probabilities
(e.g. BloomFilter ciphertext of ‘lund’ is {101,165,717,536}, BloomFilter ciphertext
of ‘land’ is {202,686,873,411}, so V3 = {{v13 = 202, v23 = 686, v33 = 873, v43 =
411}, {v53 = 101, v63 = 165, v73 = 717, v83 = 536}} according to P�1 and P�2 );

(12) (For s′
1: Lines 15-16, Alg. 2) ACM and ACT help to conduct character fill-

ing: Following the Markov Assumption and tri-gram model, we form the formula
P(λ1, λ2) = P(λ2|a, λ1) · P(l|λ1, λ2) · P(e|λ2, l);

(13) (For s′
1: Lines 21-25, Alg. 2) Assume that characters ‘nk’ and ‘pp’ are possible to

be filled within s′
1 (according to the corpus of encrypted columns), �1 = (λ1 =′

n′, λ2 =′ k′), �2 = (λ1 =′ p′, λ2 =′ p′) are obtained (item frequency of ‘ankle’:
P�1 = 0.000172; item frequency of ‘apple’: P�2 = 0.00371);

(14) (For s′
1: Lines 26-31, Alg. 2) s′

1 will firstly be filled with �1 and �2 respectively.
Now that f1 = ‘w’, we partition ‘ankle’ and ‘apple’ by bi-gram method respectively.
Then, LSH ciphertext of these two unbroken words is inserted into V1 in descending
order of probabilities (e.g. LSH ciphertext of ‘ankle’ is {05020304}, LSH ciphertext
of ‘apple’ is {05010104}, so V1 = {{v11 = 05010104}, {v21 = 05020304}} according
to P�1 and P�2 );

(15) (Lines 13-14, Alg. 1) We temporarily strip ‘%’ at the beginning/end of s1, s2, s3
in Step 6. So here, ‘%’ will be restored if Vi is LSH ciphertext and ‘%’
exists on either side of original si (In our instance, elements in V are revised
to V1 = {{05010104%}, {05020304%}}, V2 = {112, 630, 577, 400}, V3 =
{{202, 686, 873, 411}, {101, 165, 717, 536}});

(16) (Lines 15-22, Alg. 1) Since several elements exist in V1, V2 and V3, clauses s1, s2 and
s3 are split into several clauses. Then, clauses between s11 and s21 will be joined by ‘or’
(because v11 and v21 are related to different cases of character filling); clauses among
s12−s42 will be joined by ‘and’ (because v12−v42 are BloomFilter ciphertext segments);

10We don’t consider the number of total underscores. e.g. mcu = 2 for ‘a l ’.
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clauses among s13 − s43 will be joined by ‘and’ (BloomFilter ciphertext segments);
clauses among s53 − s83 will be joined by ‘and’ (BloomFilter ciphertext segments);
two groups of clauses s13 − s43 and s53 − s83 will be joined by ‘or’ (because v13 − v43 and
v53 −v83 are BloomFilter ciphertext that related to different cases of character filling);

(17) After original column names changed to names of corresponding ancillary columns,
we can obtain finalQ:

Q = select pname cDET, paddress cDET from T where
(pname cLSH like ′05010104%′ or pname cLSH like ′05020304%′)
and
(paddress cBF1 & 112 = 112 and paddress cBF2 & 630 = 630
and paddress cBF3 & 577 = 577 and paddress cBF4 & 400 = 400)
and
((paddress cBF1 & 202 = 202 and paddress cBF2 & 686 = 686
and paddress cBF3 & 873 = 873 and paddress cBF4 & 411 = 411)
or
(paddress cBF1 & 101 = 101 and paddress cBF2 & 165 = 165
and paddress cBF3 & 717 = 717 and paddress cBF4 & 536 = 536))

By far, AAOM algorithm has converted an ordinary SQL statement into that which can
fulfill wildcard-based fuzzy searching in encrypted databases. Additionally, one more thing
should be noted. The specialized ACM and ACT described in this paper can carry out
character filling in cases where the number of maximum consecutive underscores is no
more than 2 in a clause. If more than 2 consecutive underscores are included in the ‘like’
clause, the user may deliver much higher uncertainty about the string with wildcards. So we
use Bloom Filter to handle this case.

Besides, ACT can be generalized to higher-dimensional structures: a x-dimensional
adjacent character tensor can fulfill cases where the number of maximum consecutive
underscores is no more than x − 1. However, in truth, clauses with maximum consecu-
tive underscores no more than 2 are believed to cover most cases (the number of total
underscores in a clause won’t influence character filling).

4.3 TupleRank over searching results

TupleRank is designed to improve searching experience in wildcard-based fuzzy searching
over encrypted columns in encrypted databases (not all the columns are actually encrypted),
where redundant tuples are often involved in results (i.e. false positive). Just as a common
practice indicated by contemporary web searching engines (e.g. Google and Baidu), we
arrange the result tuples in the order of item frequency in the corpus of encrypted columns
(i.e. Tuples with high item frequency in encrypted columns will be ranked forward). Intu-
itively, the item frequency is easy to be computed with the assistance of CFA, ACM and ACT
(according to the Markov Assumption).

The TupleRank mechanism will take effect in the following two ways with regard to
different wildcard cases in ‘like’ clauses.

• (No wildcards / no underscores / not less than three
consecutive underscores in ‘like’ clauses) In this case, CFA,
ACM and ACT won’t be involved in the overwriting process, and no item frequency is
computed. So we postprocess the query results via computing item frequency of each
distinct value (using CFA, ACM or ACT), and rearranging tuples in the result.
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For example, if a user launched a query Q:

Q = select pid, pname cDET from T where pname like ′a le%′;
And the decrypted tuples are:

(129,′ aisle carpet ′), (002,′ apple juice′),
(007,′ apple juice′), (108,′ ankle boot ′)

Suppose that the item frequency of ‘aisle carpet’ is 0.00218, that of ‘apple juice’ is
0.0103, that of ‘ankle boot’ is 0.0023. Tuples after rearragnement will be:

(002,′ apple juice′), (007,′ apple juice′),
(108,′ ankle boot ′), (129,′ aisle carpet ′)

• (No more than two maximum consecutive underscores) In the other
case, CFA, ACM or ACT will take part in the overwriting process. Following the oper-
ations in Lines 12-16 & 30, Alg. 2 (corresponding to step 14 in the instance), we can
break the original query into several sub-queries and schedule them according to item
frequency.

Following the same query Q in the previous example, we first obtain the overwritten
query statement from AAOM:

Q = select pid, pname cDET from T

where pname cLSH like ′05010104%′ or pname cLSH like ′05020304%′;
Suppose that LSH ciphertext of ‘ankle’ is ‘05020304’ (item frequency of ‘ankle’ is
0.000172), LSH ciphertext of ‘apple’ is ‘05010104’ (item frequency of ‘apple’ is
0.00371). Sub-queries ofQ are scheduled in the order:

Q1 = select pid, pname cDET from T

where pname cLSH like ′05010104%′;
Q2 = select pid, pname cDET from T

where pname cLSH like ′05020304%′;
After these two sub-queries are successively executed, the ranked result is also achieved
after easy combination.

4.4 LSH-based security improvements

In our scheme, ciphertext on ancillary columns determines the security issues. However,
values in c-LSH column might leak some extra information, such as sequences of plaintext,
to malicious adversaries. To maximize the preservation of data privacy, some improvements
are further proposed in this section. We name the enWFS scheme equipped with these
security-enhancing improvements enWFS-SE.

4.4.1 Modifying sequences of LSH ciphertext

The c-LSH column in each tuple stores a set of LSH ciphertext for the whole string, and
the ciphertext of each word in the string is arranged in the original order (see Figure 4).
Consequently, the sequences of ciphertext can reflect the relevancy among words. To over-
come this potential loophole, we revise the sequences of ciphertext randomly by hashing
permutation functions H : y = ax + b mod c, where a is relatively-prime to c. Since
the matching process only relies on existence of LSH ciphertext rather than order, sequence
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revision, which blurs the correlation between plaintext words in the string and specific LSH
ciphertext, may have limited impact on the results.

4.4.2 Appending confusing LSH ciphertext

Another feasible way to enhance the security of c-LSH column is to append redundant
ciphertext, but what kind of ciphertext content should be added is the target of our discus-
sion. The first solution is appending repeated ciphertext within the set of LSH ciphertext for
the whole string (e.g. If original LSH ciphertext of ‘lave apple’ is ‘03050802,05010104’,
revised ciphertext will be ‘05010104,03050802,05010104’). Although it’s simple and effec-
tive, this solution only improves limited security. Another better solution is to append some
random ciphertext that doesn’t result from actual plaintext attribute values (e.g. The revised
ciphertext of ‘lave apple’ is ‘06190214,03050802,05010104’, where ‘06190214’ is not
ciphertext resulting from an actual attribute value). Because of the same fact that the match-
ing process only relies on existence of LSH ciphertext, extra ciphertext may not influence
the correct tuples that should be in the matching results. Nevertheless, this improvement
will lead to the decline in result accuracy (increasing the proportion of false positive tuples).

4.5 Security analysis

In this paper, we expand extra functionality (enhanced wildcard-based fuzzy searching) for
CPD-framework-based CryptDB, so the security of basic architecture (CPD framework)
can be guaranteed with solutions in CryptDB [20]. In addition, we also follow the widely-
accepted security frameworks in the field of searchable symmetric encryption (SSE) [6, 12,
15, 21], so the discussions about security issues in those papers are beyond the scope of this
paper. In this section, we will focus on analyzing whether our scheme is resistant to security
threats defined in Section 3.4.

• Security of indexes (ancillary columns) Suppose there are 4 columns
{I, A1, A2, C} in a data table T , where C is a sensitive column containing privacy.
Apart from the deterministic ciphertext column (c-DET) for C, our scheme will append
ancillary c-LSH column (c-LSH) and c-BF columns (c-BF1, c-BF2, · · · , c-BFL), result-
ing in encrypted data table: {I, A1, A2, c −DET, c −LSH, c −BF1, c −BF2, · · · c −
BFL}. As is introduced in Section 4.1, ancillary c-LSH and c-BF columns con-
tain ciphertext resulting from minHash and BloomFilter mapping process on n-gram
fragments of attribute values in columnC. Due to the irreversibility of the Hashing algo-
rithms, adversaries are incapable of extracting sensitive data from ancillary columns,
even though they hack into database systems. Moreover, security improvements in
Section 4.4 may further promote privacy level of LSH ciphertext.

• Security of statistical language models Three statistical language models, CFA /
ACM / ACT, which describe connotative features of attribute values, are vital com-
ponents that contribute to the significant promotion in result accuracy. In our scheme,
these language models are generated by counting the frequency of each unique n-gram
fragment of private attribute values (see Section 3.2), and this process is conducted by
data owners in local environment before outsourcing to the proxy middleware.

For adversaries, when they are monitoring users’ queries at cloud DB servers,
they cannot see any trails of statistical language models in the revised SQL statements
(although these language models do get involved in the overwriting process). Even if
adversaries managed to intercept and achieve the models from clients, values inM[i][j ]
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or T [i][j ][k] only stand for the frequency of characters and n-gram fragments, which
causes very limited contributions to their attacks.

• Security of trapdoor queries The revised SQL statements serve as trapdoor queries
in our scheme. During the overwriting process, AAOM will check each keyword in
‘like’ clauses that is related to encrypted columns first. If possible, character fillingwill
utilize statistical language models to fill in the missing characters in unbroken words.
According to our former security analysis, this step won’t raise security issues.

Then, AAOM will convert those keywords into LSH ciphertext or BloomFilter
ciphertext according to different cases. No matter which kind of ciphertext is involved
in the revised SQL statements, the trapdoor queries won’t leak data privacy, in view of
the security analysis of indexes (ancillary columns).

• Security of result confidentiality After the fuzzy searching being executed in
encrypted databases, query results including plaintext of non-sensitive columns and
symmetric deterministic ciphertext of sensitive columns will be returned. Except
for statistical information leakage about the user’s searching pattern11, deterministic
encryption still guarantees confidentiality of results.

Additionally, another new component, TupleRank, which rearranges the order of tuples,
doesn’t violate data confidentiality as well. That’s because TupleRank depends on statis-
tical language model-based item frequency to postprocess results at proxy middleware or
schedule several sub-queries at cloud DB. Therefore, enWFS scheme is resistant to security
threats defined in Section 3.4.

5 Performance evaluation

In this section, we will introduce our experiment setup first, and evaluate the performance
of all additional components in enWFS scheme.

Sections 5.2.1 and 5.2.2 evaluate the time/memory/storage overheads and matching
accuracy under different parameters in c-LSH/c-BF columns. Section 5.2.3 demon-
strates time/storage overheads during the construction of new statistic language models
CFA/ACM/ACT. Section 5.2.4 assesses the accuracy of fuzzy searching results with our
new component character filling and the improved algorithm AAOM. Section 5.2.5 shows
the performance of another new component TupleRank. Section 5.2.6 depicts the time
efficiency of different schemes.

5.1 Experiment setup

Three datasets will be used in our experiments, and the details of each set can be viewed in
Table 3.

All the experiments are run on a computer with Intel� Core i5 CPU and 16GB RAM.
The database platform is MySQL 8.0, and Java JDK version is 11. We will compare
our proposed enWFS scheme (coded with Java) with enWFS-SE (enWFS equipped with
security-enhancing improvements), FSE (our previously proposed method[5]), and JDBC
(plaintext queries/operations over unencrypted database) from different aspects.

11This is a limitation of Searchable Symmetric Encryption constructions [6, 12, 15, 20, 21], which is out of
the scope of our scheme.
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Figure 6 Time and Memory Overheads of LSH Encryption

5.2 Result evaluation

5.2.1 Performance of c-LSH column

In this part, we use TOEFL dataset to evaluate the time/memory/storage overheads in con-
struction process and matching accuracy of the c-LSH column under different parameter
values of LSH dimension m. As we have discussed above, LSH ciphertext results from n-
gram fragments, so we introduce the counting uni-gram method and a combined method
(with both counting uni-gram and bi-gram methods) as comparisons apart from the popular
bi-gram method.

Figures 6a and b show the time consumption and memory cost during the construction
of LSH ciphertext. Figure 7a depicts the storage cost of the ancillary c-LSH column. We
can see that the higher LSH dimension is, the more time, memory, and storage space will
be occupied. This is because more random permutation arrays are needed to generate more
features of attribute values. Besides, the combined method also consume more resources, as
more n-gram fragments are to be processed.

Figure 7 Storage Overhead and Performance of c-LSH
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Figure 8 Time and Memory Overhead of BloomFilter Encryption

Figure 7b illustrates the matching accuracy of c-LSH column. From the tendency of
matched rows, we can conclude that the proportion of false positive reduces graduallywhile
the correct items remain unchanged, and a better matching effect will be achieved when
LSH dimension m ≥ 6. To sum up, m = 6 is an ideal parameter value which achieves the
balance between time/memory/storage overheads and accuracy.

5.2.2 Performance of c-BF columns

The multiple ancillary columns c-BF are designed for maximum substring matching. In the
second experiment, we use CSDN dataset to test the c-BF columns under different numbers
of hash functions and BloomFilter vector length. We also attempt to find out an appropriate
setting (# of hash functions and BloomFilter vector length) in c-BF columns according to
the time/memory/storage overheads and matching accuracy.

Figure 8a and b depict the time consumption and memory cost during the construction
of BloomFilter ciphertext. Figure 9a shows the storage cost of the ancillary c-BF columns
under different length of BloomFilter vector. Intuitively, encryption will take more time
when more hash functions are used, but the memory cost varies slightly among different
numbers of hash functions. Storage cost of c-BF columns grows linearly with the length
of BloomFilter vector. Moreover, compared with c-LSH column, the construction of c-
BF columns took less average time12 because MinHash algorithm won’t be involved in
BloomFilter ciphertext converting.

Figure 9b demonstrates the matching accuracy of c-BF columns. With regard to the
amount of matched rows, we can conclude that false positive rate drops rapidly at first, and
then gets stable when sparsity is close to one-sixth (i.e. About 9 ancillary c-BF columns
(nearly 300 bits) are needed to store BloomFilter vectors for 50 plaintext characters). There-
fore, BloomFilter vector length = 300 and one hash function reach the balance between
matching accuracy and time/memory/storage overheads.

12About 5000 rows of data are processed in the c-LSH experiment while nearly 50000 rows of data are
processed here.
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Figure 9 Storage Overhead and Performance of c-BF

Table 4 Construction of CFA

Time (ms) Storage (KB)

TOEFL (5000 rows) 15672 0.39

CSDN (50000 rows) 121743 0.39

Table 5 Construction of ACM

Time Storage

TOEFL 13432 39.06

CSDN 107576 39.06

Table 6 Construction of ACT

Time Storage

TOEFL 10383 3906.25

CSDN 82593 3906.25

Figure 10 Accuracy of Results (Without ‘ ’ in clauses)
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Figure 11 Accuracy of Results (With one ‘ ’ in clauses)

Remark By far, reaching a balance between time/memory/storage overheads and matching
accuracy, appropriate parameters for c-LSH and c-BF columns have been determined: LSH
dimensionm = 6, BloomFilter vector length = 300, the amount of hash functions = 1. These
settings will be applied in the following experiments.

5.2.3 Construction of CFA/ACM/ACT

CFA, ACM and ACT are vital components in our proposed enWFS scheme. We evaluate
the efficiency of respective construction processes13 and storage cost of each structure on
TOEFL and CSDN datasets in this (see Tables 4, 5 and 6) part.

In general, we can see that CFA needs the most time to be constructed, as more items
should be traversed when counting frequency.

As to the storage overhead, there is no doubt that ACT occupies the most space.

5.2.4 Performance of Advanced Adaptive Overwriting Method (AAOM)

Effectiveness of the overwriting method has direct impact on the query results. We spare
no effort in this paper to improve the overwriting method, so that better accuracy of query
results may be acquired. In this set of experiments, we use Reuter news dataset to mea-
sure the fuzzy searching accuracy among plaintext queries, enWFS, enWFS-SE, and FSE. It
should be noted that which type of ancillary columns (c-LSH or c-BF) to use in the overwrit-
ing method is determined manually in FSE14, while this decision is made by the algorithm
itself in enWFS according to the flag array of ‘like’ clauses (see Section 4.2).

Here we will redefine two performance metrics for our experiment. On the premise that
correct tuples remain in the results (i.e. no false negative), we can reckon a method to be
better if matched rows resulting from this method are closer to matched rows from the
plaintext queries (i.e. less false positive).

13We construct these three structures separately in the experiment. In fact, the construction can be conducted
simultaneously in real applications.
14So we evaluate the FSE (LSH) and FSE (BF) respectively with regard to c-LSH and c-BF.
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Figure 12 Accuracy of Results (With two ‘ ’ in clauses)

• False Negative: On the basis of the result set K from “Query over plaintext”, the num-
ber of false negative in another result set X means the number of missing tuples that
should be in X. (i.e. | {t |t ∈ K, t /∈ X} |)

• False Positive:On the basis of the result setK from “Query over plaintext”, the number
of false positive in another result set X means the number of redundant tuples that
shouldn’t be in X. (i.e. | {t |t /∈ K, t ∈ X} |)

We evaluate these methods in different cases of clauses (with regard to the number of
underscores) using different keywords (e.g. ‘america’, ‘estate’, ‘manage’, etc).

When no underscores included in the clause, all the schemes don’t miss any correct tuples
(see Figure 10a, i.e. no false negative), but FSE (BF) may include many redundant tuples
in the results (see Figure 10b, i.e. false positive). Both enWFS and FSE (LSH) achieve the
best accuracy.

However, when it comes to the case where one underscore is included in the clause,
enWFS outperforms FSE (BF) (see Figure 11b, 62%-70% better). Since c-LSH column
is suitable for similarity searching over unbroken words without underscores, FSE (LSH)
can hardly match any tuples (i.e. false negative) when underscores are involved in ‘like’
clauses15. This phenomenon can also be observed in the following experiments. Besides,
enWFS-SE sacrifices much accuracy for better data privacy.

The performance gap can be owed to the character filling via statistical language model:
CFA, ACM and ACT . Character filling fills ‘ ’ in unbroken words, so that c-LSH column
may help to achieve accurate results. More obvious advantage (86%-93% better) can be
noticed in the two-underscore case (see Figure 12).

Figure 13 depicts the performance in the three-underscore case. If three separated under-
scores or consecutive two underscores are included in ‘like’ clauses (in the first two groups
of bar charts), enWFS achieves similar outstanding accuracy (since CFA, ACM and ACT

can be used to fill separated three underscores and consecutive two underscores). How-
ever, no schemes perform well (introducing massive false positive) when consecutive three
underscores exist in the clause. As what has been discussed at the end of Section 4.2, only
higher-dimensional ACT may bring about a complete turnabout to the performance of our
method.

15Following the standard of good accuracy stated above the accuracy metrics, if the result set from a scheme
has false negative phenomenon, we won’t evaluate its # of false positive tuples anymore.
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Figure 13 Accuracy of Results (With three ‘ ’ in clauses)

Figure 14 Accuracy of Results (With four ‘ ’ in clauses)

Figure 15 Cumulative Frequency of Tuples at different quantiles
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Figure 16 Efficiency of Inserting Statements

Analogously, the aforementioned conclusion can also account for the similar phe-
nomenon (in the consecutive-three-underscore case and consecutive-four-underscore case)
in Figure 14.

Furthermore, the second group of bar charts in Figure. 13b and the first group in Figure 14b
confirm that with the same maximum consecutive underscores, the number of total
underscores has limited influence on character filling and result accuracy of enWFS scheme.

5.2.5 Performance of TupleRank

In this part, we evaluate the effectiveness of TupleRank, which is put forward to improve
searching experience in wildcard-based fuzzy searching. For attribute values whose corre-
sponding column name appears in the ‘like’ clause, we calculate the cumulative normalized
frequency at different tuple quantiles in results16.

For example, eight tuples in results are arranged as follows:

(129,′ aisle carpet ′), (132,′ aisle carpet ′), (002,′ apple juice′), (007,′ apple juice′),
(011,′ apple juice′), (015,′ apple juice′), (108,′ ankle boot ′), (111,′ ankle boot ′)
Item frequency of the second element in each tuple: ‘aisle carpet’: 0.00218; ‘apple juice’:

0.0103; ‘ankle boot’: 0.0023. So cumulative normalized frequency ξ = 0.04346 at 10%
quantile, ξ = 0.08692 at 25% quantile, ξ = 0.4976 at 50% quantile, and ξ = 0.90828 at
75% quantile.

Figure 15 shows the performance of TupleRank in different wildcard cases. With TupleR-
ank, tuples with high item frequency are likely to be gathered at the front part of results,
which is just like how searching engines and top-k ranking work.

5.2.6 Efficiency

We evaluate the efficiency of JDBC, enWFS and FSE in inserting and selecting operations
in the last experiment.

16Results from experiments in Section 5.2.4 are used here.
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Figure 17 Efficiency of Selecting Statements

As is shown in Figure 16a, since enWFS follows the same idea of encryption (LSH and
BloomFilter ciphertext) as FSE, inserting performance of these two schemes is alike. Total
encrypting time of both schemes increases linearly with the amount of inserting statements
while the average time of a single inserting operation keeps steady. JDBC has the best
efficiency because no ciphertext needs to be computed and inserted.

Efficiency in selecting operations is presented in Figure 17. When no wildcards or no
underscores involved in a ‘like’ clause (the first & second group of bar charts in Figure 17a),
enWFS spends almost the same time as FSE on 100 selecting statements because character
filling isn’t invoked.

On the other hand, if one or more underscores are involved in the ‘like’ clause (the third
& forth group in Figure 17a), enWFS needs more time to accomplish the queries because
more cases of clauses after character filling17 should be dealt with. However, in the light
of great improvement in accuracy, a bit more time is worth consuming as an acceptable
compromise.

6 Conclusion

In this paper, we have a further research on the problem of wildcard-based fuzzy searching
in proxy-based encrypted databases. With the boost of Adjacent Character Matrix / Tensor,
character filling, advanced adaptive overwriting method (AAOM) effectively reduces the
uncertainty within ‘like’ clauses and achieves satisfying accuracy of query results. Besides,
TupleRank rearranges the order of tuples according to the item frequency, which makes
the searching experience more user-friendly. In the future, more state-of-the-art techniques,
such as serialization and compression of ancillary columns, will be studied to reduce storage
overhead in encrypted databases.

Acknowledgments Supported by the National Key Research and Development Program of China (No.
2016YFB1000905), NSFC (Nos. 61772327, 61532021, U1501252, U1401256 and 61402180).

17e.g. If the original clause is ‘a le%’, attribute values satisfying ‘apple%’, ‘ankle%’, etc, should all be
retrieved.
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