
https://doi.org/10.1007/s11280-019-00755-0

Amultiview learningmethod for malware threat
hunting: windows, IoT and android as case studies

Hamid Darabian1 ·Ali Dehghantanha2 · Sattar Hashemi1 ·Mohammad Taheri1 ·
Amin Azmoodeh2 · Sajad Homayoun3 ·Kim-Kwang Raymond Choo4 ·
Reza M. Parizi5

Received: 17 December 2018 / Revised: 10 October 2019 / Accepted: 28 October 2019 /

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
Malware remains a threat to our cyberspace and increasingly digitalized society. Current
malware hunting techniques employ a variety of features, such as OpCodes, ByteCodes,
and API calls, to distinguish malware from goodware. However, existing malware hunting
approaches generally focus on a single particular view, such as using dynamic information
or opcodes only. While single-view malware hunting systems may provide lean and opti-
mized basis for detecting a specific type of malware, their performance can be significantly
limited when dealing with other types of malware; thus, making it trivial for an advanced
attacker to develop malware that simply obfuscates features monitored by a single-view
malware detection system. To address these limitations, we propose a multi-view learn-
ing method that uses multiple views including OpCodes, ByteCodes, header information,
permission, attacker’s intent and API call to hunt malicious programs. Our system auto-
matically assigns weights to different views to optimize detection in different environment.
Using experiments conducted on various Windows, Android and Internet of Things (IoT)
platforms, we demonstrate that our method offers high accuracy with a low false positive
rate on these case study platforms. Moreover, we also investigate the robustness of detec-
tion against weak views (features with low power of discrimination). The proposed method
is the first malware threat hunting method that can be applied to different platforms, at the
time of this research, and it is considerably difficult for attackers to evade detection (since
it requires attackers to obfuscate multiple different views).

Keywords Malware · Threat hunting · Malware detection · Multi-view learning ·
Maximum margin · View weighting

This article belongs to the Topical Collection: Special Issue on Smart Computing and Cyber
Technology for Cyberization
Guest Editors: Xiaokang Zhou, Flavia C. Delicato, Kevin Wang, and Runhe Huang

� Sattar Hashemi
s hashemi@shirazu.ac.ir

Extended author information available on the last page of the article.

Published online: 17 January 2020

World Wide Web (2020) 23: –1241 1260

http://crossmark.crossref.org/dialog/?doi=10.1007/s11280-019-00755-0&domain=pdf
http://orcid.org/0000-0001-9208-5336
mailto: s_hashemi@shirazu.ac.ir

1 Introduction

As cyber attacks become more frequent and common place, the research community has
presented a number of different approaches (e.g. heuristic methods) to detect and analyze
malicious programs (also referred to as malware) [20, 35, 39]. However, designing effective
and efficient malware detection approaches remains challenging [3, 24, 48], for example
due to counter-malware detection efforts by malware authors and cyber criminals. Examples
of approaches to circumvent the detection of malware detection systems include the use
of obfuscation techniques, where malware samples are modified and mutated in order to
deceive host-based and network-based detection systems [16, 40, 47, 50]. Specifically, these
obfuscation techniques alter the structure of malicious codes or run-time behavior of the
malware despite keeping the malicious functionality. This can be achieved using techniques
such as code encryption or changing the sequence and order of library calls [47, 49].

There are three major approaches for analyzing malware namely: static, dynamic and
hybrid [8, 9]. Static approaches generally rely on static feature extraction from executable,
such as API calls, OpCodes, ByteCodes, and header information, for malware analysis. On
the other hand, dynamic analysis techniques are based on the execution of suspicious sam-
ples to generate behavioral features from system calls, captured network traffics, resource
consumption pattern, etc. Although static analysis approaches are more straightforward, it is
(significantly) less effective against code obfuscations. On the other hand, dynamic analysis
techniques are relatively resource consuming and demand more time, but they are generally
more effective [31]. Malware authors are also known to continually designed circumven-
tion techniques, such as anti-disassembly, anti-virtual machine (VM), and anti-debugging,
to evade malware detection [25, 38, 44]. Therefore, there have been attempts to design
hybrid malware analysis approaches, in order to leverage features obtained from both static
and dynamic analysis to enhance the robustness of detection methods [34]. However, these
techniques are generally in their infancy and most merging of static and dynamic feature
activities are manual and time/resource consuming.

Multi-view learning approaches are a promising solution to mitigate some of the limi-
tations that underpin static, dynamic and hybrid malware detection approaches [12, 22, 45,
52]. Multi-view nature data can be acquired in real world applications, to form disparate
feature sets. Specifically, each of these feature sets is referred to as a view, which can be
obtained from multiple sources or different feature subsets to demonstrate a unique seman-
tic perspective of data. A particular single view may not adequately express or present the
information of all samples comprehensively. One naive solution for model construction on
multiple views of a data is to concatenate all of the multiple views to generate a single view
for learning algorithms [51]. However, limitations of such a naive approach include overfit-
ting on small training sets, the need for feature engineering, and dependency of the model
on the underlying data. Efficient multi-view learning methods can generally learn a func-
tion on each view, and optimize or integrate functions in order to enhance performance of
the model [42].

To adapt multi-view learning for malware threat hunting, we posit the potential of using
executable files for both malware or goodware (i.e. non-malware) as the source for multi-
view data extraction. The challenge, however, is to determine what algorithm can be used to
effectively extract features from executable files. These feature sets are generally extracted
from file header, ByteCodes, API calls, OpCodes, system calls and captured network traffic
during run time [23]. As discussed earlier, existing approaches generally use single view
information for malware detection or a combination of some views in the form of a single
view [26, 34, 37].

World Wide Web (2020) 23: –1241 12601242

In this paper, we propose an efficient ensemble multi-view learning method, which auto-
matically assigns optimized weights to different views. The proposed method is a large
margin classifier that improves generalization using a global optimum hypothesis [17].
Additionally, we introduce a new constraint programming method to perform view weight-
ing as these weights play a crucial role in our proposed ensemble. Since our optimization
problem is convex, we can always find a global optimum point.

In order to evaluate performance of our proposed approach, we use the typical machine
learning metrics, namely: True Positive (TP), True Negative (TN), False Positive (FP) and
False Negative (FN). TP demonstrates malware samples that are correctly predicted, TN
denotes the number of samples that are correctly identified as benign, FP reflects good-
ware samples that are incorrectly detected as malware, and FN shows malware samples that
are incorrectly predicted as a goodware. Accuracy, precision, recall and f-measure metric
are then calculated using these metrics. Specifically, accuracy (see (1)) is the proportion
of correct outcomes (malware and goodware) out of the observed samples, precision of a
classifier reflects the ratio of correctly predicted malware samples to the total predicted mal-
ware observation (see (2)), recall or sensitivity is the fraction of successful prediction of
relevant malware samples (see (3)), and F-measure indicates the overall performance of a
classification algorithm based on a combination of Precision and Recall (see (4)).

Accuracy = T P + T N

T P + T N + FP + FN
(1)

Precision = T P

T P + FP
(2)

Recall = T P

T P + FN
(3)

F − measure = 2 × Precision × Recall

P recision + Recall
(4)

Furthermore, we will report Receiver Operating Characteristics (ROC), Area Under the
Curve (AUC), and Matthews Correlation Coefficient (MCC) of our classifiers as well. ROC
compares different classifiers independently regardless of their class distribution or cost.
ROC curve plots TP rate against FP rate for different thresholds. AUC is a metric designed
for evaluating classifier’s output quality. AUC is calculated based on the area of the convex
shape below the ROC curve between 0 and 1, where 1 shows the perfect prediction capa-
bility andMCC provides a measurement of the quality for binary classifications to mitigate
imbalanced dataset side effect(see (5)).

MCC = T P × T N − FP × FN√
(FP + T P)(FN + T P)(FP + T N)(T N + FN)

(5)

The rest of this paper is structured as follows: Section 2 describes the datasets, feature
extraction and view generation method, used in our proposed approach and its evaluation.
Section 3 presents the proposed method, and Section 4 discusses the empirical evaluation
findings. Specifically, the findings suggest that the proposed classification method improves
the generalization performance of the learning model, with an acceptable accuracy rate.
Sections 5 and 6 respectively present the related literature and conclusion.

2 Datasets and view generation

A variety of features can be used to efficiently detect malicious programs, ranging from
file header information to OpCodes to ByteCodes to API calls to system call sequences

World Wide Web (2020) 23: –1241 1260 1243

Figure 1 Extracting various views from a program (malicious or normal)

to access privilege, and so on. We can build different views using each of these features
to test our multi-view learning algorithm (see Figure 1). Before applying a multi view-
learning algorithm, each view should be converted into machine-understandable features
[35]. Moreover, to demonstrate adaptability of our proposed approach in detecting malware
on different platforms, we evaluate our system with different datasets comprising Internet
of Things (IoT), Windows and Android malware. In this section, we will describe these
datasets and the obtained views for each dataset.

IoT dataset The IoT malware and benign application dataset, as described in our ear-
lier work [2, 14], includes malware and goodware binary files of various IoT platforms.
Specifically, the dataset includes 280 malware and 271 goodware files compiled for ARM
processor. Two views are generated for malware in this dataset, namely: OpCodes and
ByteCodes views. Figure 2 described the procedure used to construct these two views.

To extract opcodes, each sample was unpacked using Debian installer bundle and Object-
Dump [14]. Then, by considering the OpCodes of each sample as a sequence and utilizing
the information retrieval methods such as term frequency–inverse document frequency
(tf-idf), we converted textual OpCode dataset to a numerical format. Tf-idf is a popular

Figure 2 Views of IoT dataset

World Wide Web (2020) 23: –1241 12601244

Figure 3 Views of the Drebin dataset

numerical technique to highlight the importance of a word (in our context, OpCode) in a
textual dataset [5]. In this research, we applied tf-idf in the 1-gram setting [35].

The minimal part of an executable sample is ByteCode. Similar to the OpCode sequence
format, we generated N-grams tf-idf for ByteCode, which is a prevalent approach for
machine learning-based static malware analysis [29]. There are various tools to extract Byte-
Codes, such as hexdump. Once ByteCode sequence of samples are extracted, tf-idf method
can be used to convert the sequence into 1-gram ByteCode numerical vectors [35].

Android Dataset In order to evaluate the utility of our proposed approach in detect-
ing Android malware, the Drebin benchmark dataset1[1] was used. This dataset contains
123,453 goodware applications from different markets and 5,560 malware samples from
179 family of malicious code. The extracted features are organized in sets of permissions,
API calls, network addresses, intents, content providers, etc. (see Figure 3).

Application privilege is essential part of the Android security mechanism. Malicious
applications tend to request access to specific permissions more often than a benign appli-
cation [33]. Using privilege information available on the Drebin dataset, an indicator vector
is generated for each sample that a ‘1’ value represents the application requesting for some
permission and a ‘0’ value otherwise. The API call feature denotes the request to access
and execute specific API of the Android operating system. Since misusing these APIs is
a prevalent technique in Android malware [32], we collected sensitive API calls and con-
sidered them as a particular view for this dataset, and the feature vector was generated in
a manner similar to the Permissions data. Intention information in Android is designed to
establish communication and for exchanging passive data between processes. We collected
all intents in the Drebin dataset to generate another view.

PE windows dataset We also used the 2860 executable and Dynamic Link Library(DLL)
of Microsoft Windows samples, which include 1329 malware and 1531 benign. Malware
samples are a mixture of packed, not packed and metamorphic files, which are randomly

1publicly available at https://www.sec.cs.tu-bs.de/∼danarp/drebin/download.html

World Wide Web (2020) 23: –1241 1260 1245

https://www.sec.cs.tu-bs.de/~danarp/drebin/download.html

Figure 4 Views of PE files

selected from the VXHeaven dataset. To prepare benign samples, a collection of known
good executable and DLL were collected from a standard Windows installation and their
hashes were cross-checked. ByteCodes, OpCodes, and PE header are three extracted views
for Windows files are presented in Figure 4, and we remark that the PE header contains
valuable information [27]. We considered the structure defined in the Windows header files
as features, which can be extracted with different tools such as pefile library2.

The views of datasets are publicly available on https://cybersciencelab.org/
multiview-dataset/.

3 Proposed approach

For a multi-view learning problem, there is |v| views (or feature sets) for each dataset. The
collection of views is denoted as X =< X1, X2, ..., Xv, y >, where Xi is ith view and y

is a vector to demonstrate the samples’ labels. Xi
p is the feature vector of the pth training

pattern in the ith view, and yp is its corresponding class label that can be +1 and -1 for
malware and benign samples respectively. Each of these views is leveraged to distinguish
between the samples. Therefore, it is crucial to indicate more significant views by assigning
weights to them. The Support Vector Machine(SVM) [15] partly inspires our method for
assigning weights. Finally, we will have a multi-view ensemble classifier that trains our
proposed model according to calculated weights. The proposed model includes two major
phases, namely: the training and Testing Phase. Figure 5 depicts an overall information
about the method.

Ensemble models tend to improve the generality of classification approaches using a
combination of classifiers. So, the proposed model trains a classier for each view and con-
siders every trained model as a membership function or MFi (Figure 6), where the MFi

function specifies how much a pattern Xi
p is compatible with a class. The outputs of MFi

for sample Xi
p is μi+(Xi

p) for a membership value of the positive class and μi−(Xi
p) for

a membership value of the negative class. We addressed the μi+(Xi
p) and μi−(Xi

p) as the

compatibility grades of pattern Xi
p with model ith.

2https://github.com/erocarrera/pefile

World Wide Web (2020) 23: –1241 12601246

https://cybersciencelab.org/multiview-dataset/
https://cybersciencelab.org/multiview-dataset/
https://github.com/erocarrera/pefile

Figure 5 The proposed model diagram

Figure 6 Membership functions for each view

World Wide Web (2020) 23: –1241 1260 1247

Every trained model calculates μi+(Xi
p) and μi−(Xi

p) for each sample Xi
p . To have a unit

classifier, we integrated the result of models based on μi+(Xi
p) and μi−(Xi

p) for all training
samples. Moreover, we deemed the importance of trained model on each view by assigning
specific weights to them. Figure 7 briefly illustrates the proposed weighting method.

According to Figure 7, the weights of views are not initially determined. Therefore, we
should determine these such that the maximum training patterns will be correctly classified.
C(i) is the ith classifier which is trained on the ith view. Each sample Xp is classified
correctly by means of weighted voting, if (6) is satisfied.

yp(
∑

Ci

(Wi,+ × μi+(Xi
p)) − ∑

Ci

(Wi,− × μi−(Xi
p))) > 0

yp = +1 or yp = −1
(6)

Tuning the weights to satisfy (6) is not possible for all training patterns. To overcome
this problem, we propose a method to increase the size of margin of separation in order to
improve the generalization inspired by SVM for the view weighing process. The decision
boundary which is applied by SVM[15, 41] separates the space between +1 and -1 classes.
All points on decision boundary have an equal value of f(X). The proposed models defines
the decision boundary H as a sub-space such that all its points have the same compatibility
grade or in another words, they have equal strength. Here, the distance of a point to the
decision boundary is considered as the strength of correct class minus the strength of the
opposite class. Hence, the discriminant function χ(X) is defined as shown in (7).

χ(X) = sign(
∑

Ci

(Wi,+ × μi+(Xi
p))−

∑

Ci

(Wi,− × μi−(Xi
p))) = ±1

(7)

For simplicity and a better understanding of our proposed method, we define a vector
demonstrating the weights of views as ψ = [w1,+, w2,+,wv,+, w1,−, . . . , wv,−] and

Figure 7 Overview of proposed model

World Wide Web (2020) 23: –1241 12601248

transfer each pattern Xp =< Xp1 , Xp2 , . . . , Xpv > by M(X)T to a new feature space such
that the new representation includes a signed compatibility grade, which is defined in (8).

M(Xp)T = [μ1+(X1
p), μ2+(X2

p), . . . , μv+(Xv
p),

−1 × μ1−(X1
p),−1 × μ2−(X2

p), . . . , −1 × μv−(Xv
p)] (8)

Therefore, the decision boundary H, in (7) can be written as (9) based on the transforma-
tion which is a discriminant hyper-plane crossing the origin.

H : χ(X) = ψT M(X) = 0 (9)

To calculate ψ , we take similar approach to the SVM’s perpendicular vector for discrim-
inant hyperplane. Hence, ψ can be obtained by considering it as the perpendicular vector
of the discriminant hyperplane of the compatibility space. At the beginning, training pat-
terns are transferred to a compatibility grade space by using the transfer function M(X).
Afterwards, a discriminant hyperplane as the decision boundary is calculated. Although any
linear classifier can find this hyperplane, we opted the SVM based on its high generaliza-
tion capability. Therefore, the perpendicular vector of the found decision boundary is the
desired vector ψ , which is the weights of its corresponding views. Accordingly, the view
weighting problem can be presented as shown in (10).

Minimize 1
2Ψ

2 + C
∑

p

εp

s.t . ∀Xp : Ψ T M(Xp)yp ≥ 1 − εp

εp ≥ 0

(10)

Unlike SVM, this optimization problem discriminant hyperplane is forced to contain the
origin. It should be emphasized that the margin can be maximized as per (10).

The proposed method for view weighting is similar to an unbiased SVM method with
a new kernel function. A transfer function of unbiased SVM is φ(X) [6] while the trans-
fer function in the proposed method is M(X). Hence, the proposed kernel for our ensemble
multi-view classifier can be defined as shown in (11). The kernel has a considerable differ-
ence over previous kernels (RBF, Polynomial, Sigmoid, etc.). While the previous kernels
are static and calculated based on the dot product of two patterns, the proposed method’s
kernel is dynamic because it is derived from trained classifiers using multi-view data. Here,
M(Xp) is transferred sample Xp to the new multiview space using (8) and K(Xp,Xq) is
kernel on the new multiview space that we optimize it to achieve best performance for the
proposed method.

K(Xp, Xq)� = M(Xp)T M(Xq) (11)

It is worth noting that some elements of the vector of view weights (ψ) may be negated
based on the value given to parameter C because it is a regularization parameter. If we define
a condition that weights can not be negative, we can add a constraint (∀wiinψ : wi ≥ 0) to
the optimization problem in (10) to overcome the problem of negative weights [43]. Hence,
the optimization problem would be similar to (12).

Minimize 1
2Ψ

2 + C
∑

p

εp

s.t . ∀Xp : Ψ T M(Xp)yp ≥ 1 − εp

εp ≥ 0
∀wi ∈ ψ : wi ≥ 0

(12)

Algorithm 1 and Algorithm 2 describe the proposed method’s pseudo-code for training
and test phase respectively.

World Wide Web (2020) 23: –1241 1260 1249

World Wide Web (2020) 23: –1241 12601250

Figure 8 Accuracy and AUC of trained classifiers on each view of IoT dataset

4 Results and discussion

We should first train a classifier for every view of each dataset and then integrate the results
of trained classifiers in the manner described in the previous section. Although we can use
any desired classifier on each view, we decided to do an exploratory study to find the most
suitable classifier for our tasks. Furthermore, we have used 10-fold Cross-Validation[19]
to evaluate our method. Figure 8 displays the Accuracy and AUC of classifiers on OpCode
and ByteCode views of DIoT dataset. Therefore, KNN (K=5) for OpCode view and Ran-
dom Forest for ByteCode view are selected classifiers to obtain positive and negative
memberships according to Figure 8.

After training selected classifiers on each view, the evaluation metrics are reported in
Table 1. By using the outcomes of these trained classifiers to construct the proposed classi-
fier, performance will be increased as illustrated in Figure 9 The high Accuracy, F-measure,
AUC, MCC and low false positive rate of the proposed method in Table 1 indicate the
robustness of the proposed model to detect malware in compare with single view systems.

Our proposed method also outperforms Haddadpajuh et al. [14] approach which utilizes
Deep Recurrent Neural Network in terms of Accuracy (shown in Table 2). It is obvious that
employing ensemble multi-view method for malware detection leads to a more accurate
detection model.

According to Figure 9 and Table 2, the classifier on ByteCode view has resulted in
higher performance in compare with other views. Therefore, when we calculate each view’s
weights, the ByteCode view should have greater weights than the other view. As can be
seen in Figure 10, both weights of ByteCode view are greater than weights of other views.
The reason for the ByteCode view’s greater impact is that the ByteCodes of a file contain
header and instruction codes, while OpCode are reflecting instructions only.

The second dataset to evaluate the proposed method is DPE with three views. In order to
obtain positive and negative memberships of each sample, we selectedKNN (K=7) classifier

Table 1 Performance evaluation of detection methods on IoT dataset

Accuracy F-score TPR MCC FPR

ByteCode view 99.02 99.27 99.64 98.79 0.72

OpCode view 99.12 98.71 99.62 97.76 1.5

Proposed model 99.6 99.34 99.7 98.96 0.6

World Wide Web (2020) 23: –1241 1260 1251

Figure 9 Performance of proposed method and single views on IoT dataset

Table 2 Comparison Between
the Proposed Method and
HaddadPajouh et al. [14]

Accuracy

Proposed Method 99.6

Haddadpajouh 98.18

Figure 10 Assigned weights to views of IoT dataset

World Wide Web (2020) 23: –1241 12601252

Figure 11 Accuracy and AUC of trained classifiers on each view of PE dataset

for OpCode view, Random Forest for PE header view and Ada-boost classifier for ByteCode
view among evaluated classifiers in Figure 11.

Table 3 gives information about how the proposed method improves the performance
regarding various metrics against single views. The proposed method achieved high accu-
racy (98.01%) with a low false positive rate of 1.23%. According to Figure 12, it is clear that
our proposed method achieved higher performance in compare with single view systems.

We investigated the weights assigned to the views to ensured that those with higher per-
formance gain more weights and vice versa. As it is demonstrated in Figure 12 and Table 3,
the ByteCode view is the worst with the least weight for this dataset. Figure 13 displays the
weights assigned to different views and as we expected the weights which are assigned to the
ByteCode was less because this dataset contains packed malware (as referred in Section 2)
and Bytecodes are worst features for detecting packed malware samples.

Table 4 gives a comparison between the proposed method and those suggested by
Farokhmanesh et al. [10] and Azmoodeh et al. [2] which demonstrates higher performance
of our model.

It could be claimed that the proposed model is more robust in compare with previous
models as it automatically assigns lower weights to less reliable views while boosting effect
of better views by assigning higher weights. To demonstrate this conjecture, we removed
the ByteCode view and train our model using remaining two views and as can be seen in
Table 5 the performance of the model is not affected. This shows that the original model was
mainly trained using views with higher weights and disregarded poor views automatically.

We have tested the proposed method on Drebin dataset, which is a very large-scale and
unbalanced Android malware dataset to show the performance of our method in detecting
malware in unbalanced datasets. Arp et al. [1] used 10 times 3 folds for evaluation and
these folds are publicly available. So we utilized these folds to be able to make a fair com-
parison between the proposed method and the Arp et al. method. Permissions, API calls,

Table 3 Performance evaluation of detection method on the PE dataset

Accuracy F-score TPR MCC FPR

Header view 93.7 93.14 92.14 87.34 5.01

opcode view 94.37 94.1 96.9 88.86 7.81

bytecode view 88.74 87.4 84.28 77.42 7.4

Proposed model 98.01 97.8 97.14 96.01 1.23

World Wide Web (2020) 23: –1241 1260 1253

Figure 12 Performance of the proposed method against single views on the PE dataset

Figure 13 Assigned weights to views of PE dataset

Table 4 Performance evaluation of detection methods on PE dataset

Accuracy TPR MCC FPR

Farokhmanesh et al. 93.15 86.23 92.38 6.55

Azmoodeh et al. 92.16 85.10 98.32 13.41

Proposed model 98.01 96.01 97.14 1.23

Table 5 Robustness test on PE dataset

Accuracy F-score TPR MCC

Header view 93.7 93.14 92.14 87.34

opcod n-gram view 94.37 94.1 96.9 88.86

Proposed model 98.01 97.8 98.38 94.01

World Wide Web (2020) 23: –1241 12601254

Figure 14 Accuracy and AUC of trained classifiers on each view of Drebin dataset

and intents are three views and similar to the previous experiments in this section, we first
explored performance of each view with different classifiers. According to Figure 14, the
Random Forest classifier for permission and intent views and MLP classifier for API calls
demonstrate highest performance. According to Table 6, our proposed method has a greater
performance than trained classifiers on single views (see Figure 15). As can be seen from
Figure 16, the Permission view and API calls view have obtained higher weights in compare
with Intents view which indicates the relative importance of these two views in detecting
Android malware.

As observed in Table 7, the proposed method has a higher accuracy rate but lower false
positive rate in comparison to those of Arp et al. [1]. To evaluate the robustness of the
proposed method against previous models, we removed the Intent view and trained our
model again with two remaining views. As shown in Table 8, the performance of the model
is not affected significantly.

5 Related work

Multi-view learning is tightly connected to ensemble learning [45], where the latter can be
used to leverage and merge decisions of a set of classifiers to obtain better predictive per-
formance (relative to using any of the constituent classifiers alone) [28, 46]. Idrees et al.
[18], for example, used permissions and intents in a single view classifier to identify
Android malware. After extracting permissions and intents, the existence of each item is
explored in every sample to build the binary feature vectors. They then applied Boost-
ing, Bagging and Stacking algorithms to evaluate the performance and reportedly achieved
98% of detection rate, 2% of false positive rate with marginal detection time reduction, in
comparison to known non-ensemble algorithms (e.g. Decision Table, MLP, and Random
Forest). In a separate work, Sheen et al. [36] extracted features from the PE header and

Table 6 Performance evaluation of detection method on the Drebin dataset

Accuracy F-score TPR MCC FPR

Permission view 99.07 91.81 90.26 90.41 0.2

API call view 98.86 82.88 85.74 82.36 0.39

Intent view 97.58 80.35 72.51 75.9 0.26

Proposed model 99.6 92.35 94.8 92.52 0.17

World Wide Web (2020) 23: –1241 1260 1255

Figure 15 Performance of proposed method against single views on Drebin dataset

Figure 16 Assigned weights to views of the Drebin dataset

Table 7 Performance evaluation
of detection method on the
Drebin dataset

TPR FPR

Proposed Model 94.8 0.17

Arp et al. 94 1

Table 8 Robustness test on Adndroid dataset

Accuracy F-score TPR MCC

Permission view 99.07 91.81 90.26 90.41

API call view 98.86 82.88 85.74 82.36

Proposed model 99.4 92.30 94.6 92.45

World Wide Web (2020) 23: –1241 12601256

API calls, and applied different learning algorithms on the same dataset to construct a set
of heterogeneous primary classifiers. Then, two ensemble classifier HS ENSEM binary and
HS ENSEM weighted were proposed to select a subset of basic classifiers and combined
them. The authors demonstrated that their method achieved better performance than recog-
nized ensemble methods such as bagging and boosting with a 99% of detection rate and
0.1% false alarm.

Chakraborty et al. [7] extracted static and dynamic features from the Drebin and Koodous
datasets, which include Android applications. Then, they integrated both supervised and
unsupervised algorithms to detect malware families. Sahs and Khan [30] extracted a set of
features including user-defined permissions, standard permissions, and control flow graph,
and subsequently used an anomaly detection based on the One-Class SVM to detect Android
malware. Also, RevealDroid [11] uses four extracted feature-sets from APK android files,
namely: sensitive APIs, information flows, Intents, and package-level API information,
using the Decision Tree classifier for malware detection. Bai et al. [4] merged the feature
sets of ByteCode, OpCode and header in a single view, and various classifiers were trained
on this single view. Finally the output of these classifiers were combined using voting,
stacking and ensemble selection.

However, the approaches discussed above performed only a simple concatenation on
their feature vectors (views). Guo et al. [13] divided API call sequences into seven subse-
quences, such as network, file IO and other operations, and then used each subsequence to
build a classification model. The outputs of these models are combined by using BKS algo-
rithm and the final fusion output will be used to label whether a software is malicious or
not. Narayanan et al. [21] utilized multi-view learning based on Multiple Kernel Learning
(MKL) to detect Android malware. In this approach, five complementary sets of semantic
views of apps are considered as extracted views.

6 Conclusion and future works

As our society becomes more reliant on cyberspace and other technologies, having the capa-
bility to achieve efficient and effective cybersecurity is crucual, particularly from a national
security perspective. Therefore, in this paper we focused on malware detection and cyber
threat hunting. We demonstrated the potential of using different feature views in malware
detection for different platforms. Specifically, we incorporated several well studied feature
sets as distinct views, and proposed a multi-view learning approach to integrate these multi-
view features. The proposed method utilizes SVM to weigh the obtained views, in order
to improve malware detection rate. We then demonstrated that this approach improves the
overall classification performance using different datasets.

While we demonstrated the potential to use application files (malware/benign) and their
behavior in multiple perspectives (views) in malware detection. Future research will include
weighting the views using other linear classification or employing other multi-view classi-
fication models, as well as utilization of multi-view deep learning methods to improve the
performance of malware detection.

References

1. Arp, D., Spreitzenbarth, M., Hubner, M., Gascon, H., Rieck, K., Siemens, C.: Drebin: effective and
explainable detection of android malware in your pocket. In: Ndss, vol. 14, pp. 23–26 (2014)

World Wide Web (2020) 23: –1241 1260 1257

2. Azmoodeh, A., Dehghantanha, A., Choo, K.K.R.: Robust malware detection for internet of (battlefield)
things devices using deep eigenspace learning. IEEE Trans. Sustain. Comput. (2018)

3. Azmoodeh, A., Dehghantanha, A., Conti, M., Choo, K.K.R.: Detecting crypto-ransomware in iot
networks based on energy consumption footprint. J. Ambient. Intell. Humaniz. Comput., 1–12 (2017)

4. Bai, J., Wang, J.: Improving malware detection using multi-view ensemble learning. Secur. Commun.
Netw. 9(17), 4227–4241 (2016)

5. Beel, J., Gipp, B., Langer, S., Breitinger, C.: Research-paper recommender systems: a literature survey.
Int. J. Digital Libraries 17(4), 305–338 (2015). https://doi.org/10.1007/s00799-015-0156-0

6. Bishop, C.M. et al.: Neural Networks for Pattern Recognition. Oxford University Press, London (1995)
7. Chakraborty, T., Pierazzi, F., Subrahmanian, V.: Ec2: ensemble clustering and classification for

predicting android malware families. IEEE Trans. Dependable Secure Comput. (1), 1–1 (2017)
8. Cui, H., Zhou, Y., Wang, C., Li, Q., Ren, K.: Towards privacy-preserving malware detection systems for

android. In: 2018 IEEE 24th International Conference on Parallel and Distributed Systems (ICPADS),
pp. 545–552 (2018)

9. Darabian, H., Dehghantanha, A., Hashemi, S., Homayoun, S., Choo, K.K.R.: An opcode-based tech-
nique for polymorphic internet of things malware detection. Concurrency and Computation: Practice and
Experience, e5173 (2019)

10. Farrokhmanesh, M., Hamzeh, A.: Music classification as a new approach for malware detection. Journal
of Computer Virology and Hacking Techniques, 1–20 (2018)

11. Garcia, J., Hammad, M., Pedrood, B., Bagheri-Khaligh, A., Malek, S.: Obfuscation-Resilient, Effi-
cient, and Accurate Detection and Family Identification of Android Malware. Department of Computer
Science, George Mason University, Tech. Rep (2015)

12. Guo, J., Zhu, W.: Partial multi-view outlier detection based on collective learning. In: Thirty-Second
AAAI Conference on Artificial Intelligence (2018)

13. Guo, S., Yuan, Q., Lin, F., Wang, F., Ban, T.: A malware detection algorithm based on multi-view fusion.
In: International Conference on Neural Information Processing, pp. 259–266. Springer (2010)

14. HaddadPajouh, H., Dehghantanha, A., Khayami, R., Choo, K.K.R.: A deep recurrent neural network
based approach for internet of things malware threat hunting. Futur. Gener. Comput. Syst. 85, 88–96
(2018)

15. Hearst, M.A., Dumais, S.T., Osuna, E., Platt, J., Scholkopf, B.: Support vector machines. IEEE Int. Sys.
Appl. 13(4), 18–28 (1998)

16. Hopkins, M., Dehghantanha, A.: Exploit kits: the production line of the cybercrime economy? In: 2015
Second International Conference on Information Security and Cyber Forensics (Infosec), pp. 23–27.
IEEE (2015)

17. Hu, Q., Zhu, P., Yang, Y., Yu, D.: Large-margin nearest neighbor classifiers via sample weight learning.
Neurocomputing 74(4), 656–660 (2011)

18. Idrees, F., Rajarajan, M., Conti, M., Chen, T.M., Rahulamathavan, Y.: Pindroid: a novel android malware
detection system using ensemble learning methods. Comput. Secur. 68, 36–46 (2017)

19. Kohavi, R. et al.: A study of cross-validation and bootstrap for accuracy estimation and model selection.
In: Ijcai, vol. 14, pp. 1137–1145. Montreal, Canada (1995)

20. Maiorca, D., Biggio, B., Giacinto, G.: Towards adversarial malware detection: lessons learned from
pdf-based attacks. ACM Computing Surveys (CSUR) 52(4), 78 (2019)

21. Narayanan, A., Chandramohan, M., Chen, L., Liu, Y.: A multi-view context-aware approach to android
malware detection and malicious code localization. Empir. Softw. Eng. 23(3), 1222–1274 (2018)

22. Narayanan, A., Soh, C., Chen, L., Liu, Y., Wang, L.: Apk2vec: semi-supervised multi-view representa-
tion learning for profiling android applications. In: 2018 IEEE International Conference on Data Mining
(ICDM), pp. 357–366 (2018)

23. Nari, S., Ghorbani, A.A.: Automated malware classification based on network behavior. In: 2013 Inter-
national Conference on Computing, Networking and Communications (ICNC), pp. 642–647. IEEE
(2013)

24. Nguyen-Vu, L., Ahn, J., Jung, S.: Android fragmentation in malware detection. Comput. Secur. 87,
101573 (2019)

25. O’Kane, P., Sezer, S., Carlin, D.: Evolution of ransomware. IET Netw. 7(5), 321–327 (2018)
26. Prayudi, Y., Riadi, I., et al.: Implementation of malware analysis using static and dynamic analysis

method. Int. J. Comput. Appl. 117(6) (2015)
27. Raff, E., Sylvester, J., Nicholas, C.: Learning the pe header, malware detection with minimal domain

knowledge. In: Proceedings of the 10th ACMWorkshop on Artificial Intelligence and Security, pp. 121–
132. ACM (2017)

28. Rokach, L.: Ensemble-based classifiers. Artif. Intell. Rev. 33(1-2), 1–39 (2010)

World Wide Web (2020) 23: –1241 12601258

https://doi.org/10.1007/s00799-015-0156-0

29. Ronen, R., Radu, M., Feuerstein, C., Yom-Tov, E., Ahmadi, M.: Microsoft malware classification
challenge. arXiv:1802.10135 (2018)

30. Sahs, J., Khan, L.: A machine learning approach to android malware detection. In: 2012 European
Intelligence and Security Informatics Conference, pp. 141–147. IEEE (2012)

31. Salehi, Z., Sami, A., Ghiasi, M.: Maar: robust features to detect malicious activity based on api calls,
their arguments and return values. Eng. Appl. Artif. Intel. 59, 93–102 (2017)

32. Sami, A., Yadegari, B., Rahimi, H., Peiravian, N., Hashemi, S., Hamze, A.: Malware detection based on
mining api calls. In: Proceedings of the 2010 ACM Symposium on Applied Computing, pp. 1020–1025.
ACM (2010)

33. Sarma, B.P., Li, N., Gates, C., Potharaju, R., Nita-Rotaru, C., Molloy, I.: Android permissions: a perspec-
tive combining risks and benefits Proceedings of the 17th ACM symposium on Access Control Models
and Technologies, pp. 13–22, ACM (2012)

34. Santos, I., Devesa, J., Brezo, F., Nieves, J., Bringas, P.G.: Opem: a static-dynamic approach for machine-
learning-based malware detection. In: International Joint Conference CISIS’12-ICEUTE 12-SOCO 12
Special Sessions, pp. 271–280. Springer (2013)

35. Shalaginov, A., Banin, S., Dehghantanha, A., Franke, K.: Machine learning aided static malware
analysis: a survey and tutorial. Cyber Threat Intelligence, 7–45 (2018)

36. Sheen, S., Anitha, R., Sirisha, P.: Malware detection by pruning of parallel ensembles using harmony
search. Pattern Recogn. Lett. 34(14), 1679–1686 (2013)

37. Shijo, P., Salim, A.: Integrated static and dynamic analysis for malware detection. Procedia Comput. Sci.
46, 804–811 (2015)

38. Sikorski, M., Honig, A.: Pratical Malware Analysis O’Reilly (2012)
39. Singh, A., Dutta, D., Saha, A.: Migan: malware image synthesis using gans. In: Proceedings of the AAAI

Conference on Artificial Intelligence, vol. 33, pp. 10033–10034 (2019)
40. Skolka, P., Staicu, C.A., Pradel, M.: Anything to hide? Studying minified and obfuscated code in the

web. In: The World Wide Web Conference, pp. 1735–1746. ACM (2019)
41. Steinwart, I., Christmann, A.: Support Vector Machines. Springer, Berlin (2008)
42. Sun, S.: A survey of multi-view machine learning. Neural Comput. Applic. 23(7-8), 2031–2038 (2013)
43. Taheri, M., Azad, H., Ziarati, K., Sanaye, R.: A quadratic margin-based model for weighting fuzzy

classification rules inspired by support vector machines. Iranian J. Fuzzy Sys. 10(4), 41–55 (2013)
44. Wang, Q., Guo, W., Zhang, K., Ororbia, I.I., Xing, A.G., Liu, X., Giles, C.L.: Adversary resistant deep

neural networks with an application to malware detection. In: Proceedings of the 23rd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pp. 1145–1153. ACM (2017)

45. Xu, C., Tao, D., Xu, C.: A survey on multi-view learning. arXiv:1304.5634 (2013)
46. Xu, Z., Sun, S.: An algorithm on multi-view adaboost. In: International Conference on Neural

Information Processing, pp. 355–362. Springer (2010)
47. Yakura, H., Shinozaki, S., Nishimura, R., Oyama, Y., Sakuma, J.: Neural malware analysis with attention

mechanism. Comput. Secur. 87, 101592 (2019)
48. Ye, Y., Hou, S., Chen, L., Lei, J., Wan, W., Wang, J., Xiong, Q., Shao, F.: Out-of-sample node represen-

tation learning for heterogeneous graph in real-time android malware detection. In: 28th International
Joint Conference on Artificial Intelligence (IJCAI), 2019 (2019)

49. Ye, Y., Li, T., Adjeroh, D., Iyengar, S.S.: A survey on malware detection using data mining techniques.
ACM Computing Surveys (CSUR) 50(3), 41 (2017)

50. You, I., Yim, K.: Malware obfuscation techniques: a brief survey. In: 2010 International Conference
on Broadband, Wireless Computing, Communication and Applications (BWCCA), pp. 297–300. IEEE
(2010)

51. Zhao, J., Xie, X., Xu, X., Sun, S.: Multi-view learning overview: recent progress and new challenges.
Information Fusion 38, 43–54 (2017)

52. Zhou, D., He, J., Candan, K.S., Davulcu, H.: Muvir: multi-view rare category detection. In: Twenty-
Fourth International Joint Conference on Artificial Intelligence (2015)

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

World Wide Web (2020) 23: –1241 1260 1259

http://arxiv.org/abs/1802.10135
http://arxiv.org/abs/1304.5634

Affiliations

Hamid Darabian1 ·Ali Dehghantanha2 · Sattar Hashemi1 ·Mohammad Taheri1 ·
Amin Azmoodeh2 · Sajad Homayoun3 ·Kim-Kwang Raymond Choo4 ·
Reza M. Parizi5

Hamid Darabian
h.darabian@cse.shirazu.ac.ir

Ali Dehghantanha
adehghan@uoguelph.ca

Mohammad Taheri
motaheri@shirazu.ac.ir

Amin Azmoodeh
amin@cybersciencelab.org

Sajad Homayoun
s.homayoun@sutech.com

Kim-Kwang Raymond Choo
raymond.choo@fulbrightmail.org

Reza M. Parizi
rparizi1@kennesaw.edu

1 Department of Computer Science and Engineering, Shiraz University, Shiraz, Iran
2 Cyber Science Lab, School of Computer Science, University of Guelph, Ontario, Canada
3 IT and Computer Engineering Faculty, Shiraz University of Technology, Shiraz, Iran
4 Department of Information Systems and Cyber Security and Department of Electrical and Computer

Engineering, The University of Texas at San Antonio, San Antonio, TX 78249, USA
5 Department of Software Engineering and Game Development, Kennesaw State University, Marietta, GA

30060, USA

World Wide Web (2020) 23: –1241 12601260

http://orcid.org/0000-0001-9208-5336
mailto: h.darabian@cse.shirazu.ac.ir
mailto: adehghan@uoguelph.ca
mailto: motaheri@shirazu.ac.ir
mailto: amin@cybersciencelab.org
mailto: s.homayoun@sutech.com
mailto: raymond.choo@fulbrightmail.org
mailto: rparizi1@kennesaw.edu

	A multiview learning method for malware threat hunting: windows, IoT and android as case studies
	Abstract
	Introduction
	Datasets and view generation
	IoT dataset
	Android Dataset
	PE windows dataset

	Proposed approach
	Results and discussion
	Related work
	Conclusion and future works
	References
	Affiliations

