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Abstract
With the ubiquity of mobile devices and wireless networks, Spatial Crowdsourcing (SC) has
earned considerable importance and attention as a new strategy of problem-solving. Tasks
in SC have location constraints and workers need to move to certain locations to perform
them. Current studies mainly focus on maximizing the benefits of the SC platform. How-
ever, user average waiting time, which is an important indicator of user experience, has
been overlooked. To enhance user experience, the SC platform needs to collect lots of data
from both workers and users. During this process, the private information may be compro-
mised if the platform is not trustworthy. In this paper, we first define user experience-driven
secure task assignment problem and propose two privacy-preserving online task assign-
ment strategies to minimize the average waiting time. We securely construct an encrypted
bipartite graph to protect private data. Based on this encrypted graph, we propose a secure
Kuhn-Munkres algorithm to realize task assignment without privacy disclosure. Theoreti-
cal analysis shows the security of our approach and experimental results demonstrates its
efficiency and effectiveness.

Keywords Spatial crowdsourcing · Task assignment · User experience · Privacy-preserving

1 Introduction

With the rapid development of mobile device and wireless networks, Spatial Crowdsourcing
(SC) is a new extension of traditional crowdsourcing, where crowd workers are assigned by
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the crowdsourcing platform to perform spatial tasks. Spatial Crowdsourcing provides on-
demand ability and quality services and spends less monetary cost than hiring specialized
technical personnel. Now, it has been successfully applied in various industries, for example,
to online taxi-calling service (e.g., DiDi and Uber), handyman service (e.g., TaskRabbit) and
food delivery service (e.g., Eleme and Meituan). In spacial crowdsourcing services, workers
are ready for task assignment in SC platform and requesters usually raise their requests to
the SC platform, then the platform assigns these tasks to workers. The assigned workers
always need to travel to the location of corresponding task physically. The basic problem
in SC is how to choose suitable workers to perform right tasks. To ensure practicability, it
is significant to study this problem in the online scenario (online task assignment problem)
where workers and tasks appear on the SC platform dynamically.

By observing the release modes of SC task assignment proposed in existing studies, we
found that many works focus on optimizing the benefits of SC platform during the process
of task assignment. For example, [29] and [36] aim to minimize the total cost and then the
benefit of platform is maximized. However, user experience is equal significant and can
not be ignored in practice for the SC platform. The foundation of SC platform is the number
of users. There always are several similar platforms which provide the same service, and
users prefer to choose the platform which provides service with higher user experience. As
a result, it is vital for the SC platform to focus on improving the user experience. Besides,
many previous works chose the travel distance instead of the travel time between workers
and tasks. This could save some computation, but it makes experimental results inaccurate
and unpractical. The following example demonstrates the importance of user experience
and the necessary of taking the velocity attribute into consideration:

We choose online taxi-calling service as an example, users (passengers) raise their
requests to the SC platform and hope that they only need to wait a short time so that the
taxi can reach their locations and take them to their destinations as soon as possible. As is
shown in Figure 1, we assume that a taxi-calling platform has 3 tasks (s1−s3) and 5 workers
(u1 −u5) in 2D space, the ID, distance and location of them and the velocity of workers are
marked in this figure. The arriving time of all tasks and workers are shown in Table 1. We
assume that worker u3 and worker u5 get stuck in traffic and their speeds are slower than

Figure 1 An example of 3 passengers and 5 taxis
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Table 1 Arriving Time of
workers and tasks Time 0 1 2 3 4 5 6 7

T ask/worker u1 s1 u2 u3 s2 u4 s3 u5

others such as the speed of u3 is 1. What’s more, a task can only be assigned to one worker
and each worker can perform only one task. Then we compare the average waiting time (the
evaluation indicator of user experience) of the following two different strategies. In the first
strategy, we set the optimization goal as minimizing the average waiting time of all tasks,
and the solution will be that s1, s2, s3 are matched to u1, u2, u4. And the average waiting
time is (24/6 + 18/3 + 25/5)/3 = 5 (Here we ignore the time of waiting for assignment
and we will consider it in the body of this paper). In the second strategy, we set optimiza-
tion goal as minimizing the average traveling distance, the solution will be that s1, s2, s3 are
matched to u3, u2, u5. The average waiting time is (10/1 + 18/3 + 18/2)/3 = 8.3. During
this process, users need to wait for the taxi and the waiting time should be as short as pos-
sible because long waiting time may urge users to use competitive platforms and then the
benefits will be significantly reduced. In the second strategy, user (passenger) s1 and s3 wait
too long and achieve a bad user experience so that they may choose another taxi-calling
platform instead of using this platform next time. Obviously, the SC platform cannot assign
tasks based on the distance of workers and tasks rather than the traveling time of work-
ers because the speed of workers (traffic condition) could have a great influence on user’s
waiting time and user experience.

In order to make optimal task assignment, it is necessary for the SC platform to know the
locations and speeds of workers and tasks. However, the locations and speeds are privacy for
workers and tasks because they can lead to workers being tracked or tasks being destroyed,
etc. Task assignment may become inefficient when workers and tasks are hesitant to share
their locations or others due to privacy concerns. For each worker, his/her location and speed
are both private and should be protected. For tasks (users), the location is private and should
be protected. We aim to encrypt the locations and speeds based on Paillier cryptosystem and
then calculate the traveling time based on the encrypted data without compromising workers
and tasks privacy. In order to calculating traveling time by locations and speed, we need
to use division operation. How to perform division efficiently and accurately on encrypted
data is still an open problem. In [16], the author proposed a protocol which can divide
data securely based on ElGamal cryptosystem. However, this protocol cannot be applied
to large SC system for it’s key length should be set large enough to avoid computation
overflow and the large key size will lead to prohibitive computation cost in encrypted data.
To overcome this weakness, we transform the secure division problem into a secure least
common multiple (LCM) problem so that we can calculate the traveling time of workers
securely and preserve the privacy of workers and tasks.

We summarize our main contributions as follows:

– We formally define user experience-driven secure task assignment problem in
Section 2, which tries to minimize average waiting time and protect private information
during task assignment simultaneously.

– We propose two methods to construct encrypted bipartite graph to protect private
information of workers and users in Section 3.1.

– We propose in Section 3.2 a secure Kuhn-Munkres algorithm which takes an encrypted
bipartite graph as input, and outputs a plan of task assignment. Security and complexity
of this approach is discussed in Section 4.
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– We conduct extensive experiments on synthetic data and show the effectiveness and
efficiency of our approach in Section 5.

– Compared with our previous work [13], the problem considered in this paper is more
complex and reasonable in practice. To handle this complicated problem, we propose
methods of constructing encrypted bipartite graph and making KM algorithm workable
on encrypted data.

The rest of the paper is organized as follows. We present the preliminary in Section 2. In
Section 3, we present two online privacy-preserving task assignment algorithms: SKM-EG
and SKM-AG. Security and complexity analysis is presented in Section 4. Further, we report
experimental results on synthetic dataset in Section 5 and review related work in Section 6.
Finally, we conclude the paper in Section 7.

2 Preliminaries

2.1 Systemmodel

The core of a spatial crowdsourcing system is a platform connecting a set of workers with a
set of tasks. Workers and tasks arrive the platform dynamically. Without loss of generality,
we take a periodical task assignment model. Before explaining it, we give several basic
definitions.

Definition 1 (Worker) A worker u is denoted by a triple 〈l, v, x〉, where l is u’s location, v
is u’s speed, and x is the time when u appears on the platform.

Definition 2 (Task) A task s is denoted by a tuple 〈l, x〉, where l is its location and x is the
time when s is posted on the platform.

Definition 3 (Task Assignment Instance Set) Given a set of workers U and a set of tasks S,
a task assignment instance set, denoted by I , is a set of pairs in the form of pij = (ui, sj )

where (ui, sj ) means worker ui ∈ U is assigned to task sj ∈ S.

In the above definition, we assume that one worker is assigned to only one task, which
is quite common in real spatial crowdsourcing applications such as DiDi (i.e., one taxi is
assigned to one passenger). Once a worker ui is assigned to a task sj , both of them will be
removed from the platform. We don’t care how long it takes for ui to complete sj , but once
sj is completed and ui becomes available, ui will appear on the platform again. Based on
this setting, we define the periodical task assignment model as follows:

Definition 4 (Periodical Task Assignment Model) The platform performs task assignment
every τ time units. More specifically, at the beginning of one cycle, the platform generates a
task assignment instance set I , given all available workers U and all available tasks S at that
time. The workers and tasks involved in I will be removed from U and S, respectively. In
the following τ time units, U and S may be updated due to the appearance of new workers
and new tasks, or the logout of workers and the cancellation of tasks. After τ time units, the
platform generates another task assignment instance set, and so on.
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Remark: The periodical task assignment model can be regarded as a trade-off between
offline task assignment and online task assignment. When τ is so small that every task is
assigned to an available worker as soon as it is posted on the platform, this model is clearly
a complete online task assignment process. On the other hand, if τ is large enough, there
is only one round of offline task assignment. Therefore, the exact value of τ is impor-
tant and should be adjusted dynamically in practice. Further, it is very likely that not all
tasks/workers can be matched to some workers/tasks in one round of assignment. In this
case, these tasks/workers will participate the next round of task assignment until they are
assigned or offline.

As mentioned earlier, user experience plays a crucial role in spatial crowdsourcing appli-
cations. In practice, once a task is posted in the platform, it should be completed the sooner
the better. Here, a task is thought to be completed once the assigned worker arrives at its
location (e.g., a passenger has got on a taxi). Note that we do not consider the time that a
worker needs to perform a task, as sometimes this depends on the task itself (e.g., the dis-
tance between the source and the destination in a taxi-calling task), which is beyond the
scope of task assignment. Therefore, we consider using the interval between task posting
and task completion to be a specific index of user experience. In particular, we have the
following definitions.

Definition 5 (Travel Time) The travel time of worker ui to task sj , denoted by tij , is
calculated as follows:

tij = d(li , lj )/vi (1)

where d is the direct Euclidean distance between location li and location lj .

Definition 6 (AverageWaiting Time) Given cycle τ in the periodical task assignment model
and an interval of kτ time units, the average waiting time during this interval is calculated
as follows:

ω =
⎛
⎝

k−1∑
c=0

∑
pij ∈Ic

(cτ + tij − xj ) +
∑

s

kτ

⎞
⎠ /n (2)

where n is the total number of tasks posted during the period of kτ time units. The left part∑k−1
c=0

∑
pij ∈Ic

(cτ + tij −xj ) is the sum of waiting time of tasks that have matched workers,
noting that task sj has waited cτ time units before getting assigned in the c-th round of
assignment. The right part

∑
s kτ is the sum of waiting time of tasks that have not been

getting assigned in the k rounds of assignment.

In the above definition, we do not consider overdue tasks for simplicity. In practice, it
is sometimes not easy to know the exact deadline of a task, for example, a passenger can
cancel a taxi-calling request anytime.

2.2 Problem definition

We focus on the user experience-driven secure task assignment problem in spatial crowd-
sourcing under the semi-honest model. In particular, our objective is to minimize the average
waiting time of all tasks in a given period without disclosing private information of work-
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ers and tasks to unauthorized parties. Based on the aforementioned definitions, we can
formalize the User experience-driven Secure Task Assignment (USTA) problem as follows:

Definition 7 (USTA Problem) Given cycle τ in the periodical task assignment model and
an interval of kτ time units, the USTA problem is finding k task assignment instance sets to
minimize the average waiting time of all tasks defined in (2), while satisfying the security
requirement defined in (3).

2.3 Adversary model

In this paper, we try to protect the following private data: the location and speed of work-
ers, and the location of tasks. All these private data should not be disclosed to unauthorized
parties during the procedure of task assignment. To accurately describe the ability of unau-
thorized parties, we adopt the well-known semi-honest model [9]. In this model, each party
will stick to a pre-defined protocol, showing the honest aspect. On the other hand, each party
will try to derive extra information from what it received in the execution of the protocol,
showing the dishonest aspect. The security under the semi-honest model can be formally
defined as follows:

Definition 8 (Security under Semi-honest Model [9]) Suppose that F(x1, · · · , xn) =
(F1, · · · ,Fn) is a functionality computed by n parties jointly, where xi and Fi are the input
and output of the i-th party (1 ≤ i ≤ n). For I = {i1, · · · , iκ } ⊂ {1, · · · , n}, we let
FI denote the subsequence Fi1 , · · · ,Fiκ . Consider a protocol for computing F . The view
of the i-th party during an execution of this protocol, denoted as V IEWi , is (xi, y, mi)

where y represents the outcome of the i-th party’s internal coin tosses (i.e., a random inte-
ger) and mi represents the messages that the party has received. In other words, V IEWi

is all the data that the i-th party can observe during the execution of the protocol. Let
V IEWI

def= (I, V IEWi1 , · · · , V IEWiκ ). Then, we say that the protocol securely com-
putes F if there exists a polynomial-time algorithm, denoted as A, such that for every I
above

A(I, (xi1 , · · · , xiκ ,FI))
C=V IEWI , (3)

where
C= denotes computational indistinguishability.

To achieve privacy-preserving, we introduce a semi-honest crypto cloud provider (CCP)
who holds secret keys and provides crypto services. We assume the CCP and the SC plat-
form do not collude by observing that both SC platforms (e.g., DiDi and Uber) and CCPs
(e.g., pCloud Crypto and Boxcryptor) are typically run by large companies. Clearly, it is
unlikely for a CCP and an SC platform to collude as it will damage their reputation which
in turn affects their revenues. Therefore, this assumption has been widely used recently, for
example, in [1, 7, 17, 19, 20].

2.4 Cryptosystems

The privacy-preserving property of our protocol is built on several well-known cryptosys-
tems: PRG [24] and Paillier [22]. The details of PRG and Paillier can be found in the given
references and all of them are proved to be secure. Here we only emphasize some important
properties of these cryptosystems.
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Pseudo-random number generator is an algorithm which can be used to generate numbers
by a hash function. For Paillier, their encryption are denoted as Ep . In the same way, their
decryption are denoted as Dp . This cryptosystem has some important properties and we
listed them here in below:

– Homomorphic Properties of Paillier: Given two messages m1 and m2, we encrypt
them and then we have:

Ep(m1)Ep(m2) = Ep(m1 + m2). (4)

Beyond that, given a message m, we encrypt it and then we have:

Ep(m)k = Ep(km). (5)

3 User-experience-driven secure task assignment

USTA is essentially a global optimization problem. Generally, the optimal solution cannot
be found unless we have a global view of the problem. In practice, workers and tasks enter
into the SC platform dynamically. Obviously, the SC platform cannot have a global view
of the problem. At any time, it only has a local view of available tasks and workers with
their reported locations. It is therefore impossible for the SC platform to perform the opti-
mal task assignment. As a result, we adopt a local optimal task assignment strategy, that is,
we consider the k rounds of task assignment in USTA to be independent and for each round
our objective is minimizing the average waiting time of all tasks in that round. Note that,
this strategy is not new and has already been used in [11]. Solutions found by this strategy
are typically sub optimal. To improve the quality of solutions, some advanced task assign-
ment strategies, for example, those considering future tasks and workers [4, 31] have been
proposed recently. In this paper, however, we only consider this simple local optimal strat-
egy as it helps us focus on privacy-preserving during task assignment which is the main
contribution of our work.

Each round of task assignment in USTA can be reduced to the weighted bipartite match-
ing problem as follows. In round k, suppose Uk and Sk are the set of workers and tasks that
are available respectively. Let Gk = (Vk, Ek) be a bipartite graph with Vk as the set of ver-
tices and Ek as the set of edges. Each worker ui in Uk maps to a vertex vi in Vk and each
task sj in Sk maps to a vertex v|UK |+j in Vk . If a worker ui ∈ Uk can be assigned to a task
sj ∈ Sk , an edge eij connecting the vertex vi to the vertex v|UK |+j is added to Ek . Besides,
eij is associated with a weight wij which is the travel time of worker ui to task sj , that is,
tij defined in (1). Clearly, GK is a weighted bipartite graph, so finding a task assignment
instance set to minimize the average waiting time of all tasks in round k is equivalent to
solve the matching problem on Gk .

Following the above frame, the weighted bipartite matching problem can be solved by
the classic Hungarian algorithm (also known as the Kuhn-Munkres (KM for short) algo-
rithm [12, 21]). In our problem setting, however, the weights of the edges in Gk cannot be
obtained directly due to privacy concerns. More specifically, the location of tasks, and the
location and speed of workers, should not be disclosed to the unauthorized parties, such as
the SC platform. The weights of the edges in Gk also should be encrypted because they are
intermediate results of the calculation. Next, we will introduce two construction methods of
encrypted Gk which aims to realize privacy-preserving, and named them EG for encrypted
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exact graph construction and AG for encrypted approximate graph construction respectively.
After that, we will introduce the secure KM algorithm (denoted as SKM) on the encrypted
bipartite graph Gk which aims to solve the task assignment problem and get the task assign-
ment instance set Ik in round k. In particular, we combined the following two construction
methods EG and AG with the secure KM algorithm SKM and named them SKM-EG and
SKM-AG.

3.1 Construction of encrypted bipartite graph

3.1.1 Encrypted exact bipartite graph (EG)

All available workers and tasks are hold by the SC platform, so it is easy for SC platform
to obtain Vk , the set of vertices in Gk . If a worker ui can be assigned to a task sj , there is
a corresponding edge eij in Gk and this edge’s weight is tij which is the time ui takes to
travel to the location of sj . To calculate tij , the SC platform needs to know dij , the distance
between ui and sj , and vi , the speed of ui . Unfortunately, vi is the private information of
ui . Furthermore, to calculate dij , the SC platform needs to know the locations of ui and sj ,
which are also private. To enable travel-time computation without disclosing private infor-
mation, we adopt homomorphic encryption-based methodology. On one hand, we protect
private data by encrypting them, so any party without secret key cannot learn anything from
the encrypted data. On the other hand, it is feasible to calculate the distance and traveling
time on ciphertext with the homomorphic property of encryption systems.

Secure distance computation is a common problem in the security domain. Here we
follow our previous work [17] and [32] and use Paillier cryptosystem [22] to encrypt private
data. Specifically, ui and sj do not report their locations to the SC platform directly. Instead,
sj uses the public key of CCP to encrypt its location and the encrypted location is forwarded
to ui via the SC platform. Using the homomorphic addition property, ui can calculate his/her
squared Euclidean distance from sj as follows:

E(d2
ij ) = E((lix)

2 + (liy)
2)E((ljx)

2 + (ljy)
2)E(ljx)

−2lix E(ljy)
−2liy (6)

In the above equation, E((ljx)
2 + (ljy)

2), E(ljx), and E(ljy) constitute the encrypted loca-
tion of sj . In terms of computation cost, sj needs to perform encryption three times. In
contrast, ui only needs to do encryption one time to encrypt (lix)2 + (liy)

2.
With the help of the computation of workers, the SC platform can easily obtain E(d2

ij )

for every possible task assignment pair (ui, sj ). Finding square root over encrypted values
is not supported by Paillier, so the SC platform needs to turn to CCP for help. To prevent
CCP from knowing real values of distance, the SC platform needs to send the encrypted
message to the CCP and then get return. When the SC platform send message to CCP, it
must satisfying

a∗ = α(a) + β (7)

where α and β are two numbers randomly selected from prime field Zq , and a is the
encrypted message which is sent from SC to CCP. Specially, the SC platform encrypt the
value E(d2

ij ) again with the (7) and the secret key of Paillier as E(α(d2
ij )+β). Then the real

value dij can be obtained by subtracting the random noise from the decryption result. Based
on this real distance and his/her speed, ui can calculate tij and send E(tij ) to the SC plat-
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form. Once the SC platform receives the data from all workers, it has all elements of Gk and
can run secure KM algorithm for task assignment. We will present secure KM algorithm in
Section 3.2.

3.1.2 Encrypted approximate bipartite graph (AG)

In terms of security, the method of constructing encrypted bipartite graph presented
in the last section is intricate. To further improve the security of bipartite graph con-
struction, we present another method in this section. Instead of computing the exact
value of tij over ciphertext, we consider an approximate value of it and construct an
approximate bipartite graph Gk . This is motivated by the fact that the square root of
an encrypted value is hard to evaluate, and consequently, the distance between two
objects is usually approximated by its square in the security domain. In some cases,
SC platform perform task assignment by approximation result may result in sub opti-
mal results. Therefore, we should design a good approximation so that we can obtain
satisfied task assignment on the approximate bipartite graph. With sacrificing a lit-
tle bit of accuracy, we can still ensure that strong security can be achieved during
the p.

Our task assignment approximation strategy is based on the following lemma:

Lemma 1 Let U = {u1, · · · , un} be a set of n workers, S = {s1, · · · , sm} be a set of m

tasks, and D = {d11, · · · , d1m, d21, · · · , dnm} be the distances between ui and sj , Vlcm be
the Least Common Multiple of all workers’ speed, and v′

i = Vlcm/vi where 1 ≤ i ≤ n. For
any two different workers ui, uk ∈ U and two different tasks sj , sl ∈ S, dij /vi < dkl/vk

holds if dij v
′
i < dklv

′
k .

Proof dij v
′
i < dklv

′
k ⇐⇒ dij v

′
i/Vlcm < dklv

′
k/Vlcm ⇐⇒ dij /vi < dkl/vk .

The above lemma tells us the time inequation still holds when the scaled speed v′
i is

used. This is important as our task assignment is based on travel time. Furthermore, division
operation is not needed when comparing travel times. Instead, we only need to compute the
product of two numbers, which can be supported by the Paillier cryptosystem. Based on
lemma 1, we propose t ′ij , an approximation for tij , as follows:

t ′ij = d2
ij v

′2
i = d2

ij V
2
lcm/v2i . (8)

As discussed in the last section, every user can compute his/her squared Euclidean dis-
tance from a task over ciphertext directly. According to (8), the encrypted approximated
travel time will be send to SC platform for graph construction and it can be calculated by
user ui as follows:

E(t ′ij ) = E(d2
ij )

v′2
i (9)

The value of v′2
i is straightforward as long as ui knows Vlcm, which also needs to be

calculated securely. To compute Vlcm securely, we adopt an aggregation protocol denoted as
AP [14] which can calculate the sum of multiple numbers in a privacy-preserving manner.
It works as follows:
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Key generation: Let X be a set of nc random numbers where n is the number of workers
and c is a random number. Then, divide X into n random disjoint subsets Xi with c

numbers and define M = 2�log2 n�� where � is maximum value of workers’ data. At
last, send ki to ui and the sum k0 to the SC platform where ki =

(∑
v′∈Vi

v′
)
mod M

and k0 = (∑
v′∈V v′) mod M .

Encryption Ea: For each worker ui , he/she encrypts data mi by computing:

ci = (ki + mi) mod M (10)

Decryption Da: The SC platform can decrypt the sum by computing:

V

(
n∑

i=1

mi

)
=

(
n∑

i=1

ci − k0

)
mod M (11)

Based on a credible assumption that the maximal worker’s speed is limited and known to
all, we explain the Algorithm 1 as follows: In line 1 and 2, exclusion algorithm is performed
to get the list L of 2-tuples < p, cp > whose complexity is O(n log(log n)). For example,
our maximal speed is 10. Then 3 is one prime where 3 < 10, and its maximal times is 2 for
32 ≤ 10. So the tuple< 3, 2 >will be inserted into the list. Besides, every worker calculates
the factorization Fi of his own speed vi by Pollard’s rho algorithm whose complexity is

O(n
1
4 ). For example, the factorization F of a worker(vi = 6) is F = 2 ∗ 3 for 6 = 2 ∗ 3.

Based on the list L, the AP generates
∑

p∈L p ∗ (cp + 1) different keys for same key may
disclose workers’ speed in line 3. In line 4 to 7, each worker ui generates his flag data
f [k](k ∈ [0, cp]) as follows:

f [k] =
{
1, AT [p] = k

0, otherwise
(12)
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whereAT [p] is the appearance times of p in the corresponding Fi . Then, encrypts and sends
flag data. In the above examples, when p = 3, this worker(vi = 6) generates these flag data
f [0] = 0, f [1] = 1, f [2] = 0. In line 9 to 14, the LCM is computed by Vlcm = ∏

p∈L pH .
For example, the factorization of another worker(vi = 9) is 3 ∗ 3. If p = 3, this worker
generates flag data f [0] = 0, f [1] = 0, f [2] = 1. So the maximal times of 3 is 2 for the
decrypted sum of f [2] meets the condition in line 12. Meanwhile, the maximal times of
2,5,7 are 1,0,0 respectively. So Vlcm = 21 ∗ 32 ∗ 50 ∗ 70 = 18 will be returned.

3.2 Secure KM on encrypted bipartite graph (SKM)

3.2.1 KM algorithm

In this section, KM algorithm is adopted to solve the matching problem on bipartite graph.
But before we present how to run secure KM algorithm on encrypted bipartite graph (SKM),
we will give a brief introduction to KM firstly. We start from some basic definitions of KM
algorithm.

Definition 9 (Feasible Vertex Labeling) Let l(v) be the vertex labeling of vertex v and eij

be the weight of edge between vi and vj . Given a weighted bipartite graph G, if we have
l(vi) + l(vj ) ≥ eij for each edge, the vertex labeling l is a feasible vertex labeling.

Definition 10 (Tight Edge) Given a weighted bipartite graph G and feasible vertex labeling
l, if l(vi) + l(vj ) = eij , edge eij is a tight edge.

Definition 11 (Subgraph of Tight Edges) Given a weighted bipartite graph G = {V,E}
and feasible vertex labeling l, let El = {eij ∈ E|l(vi) + l(vj ) = eij }. Subgraph of tight
edges is a graph Gl which consists of edge set El and corresponding vertex.

Definition 12 (Augmenting Path) An augmenting path has the following properties: 1) all
edges in augmenting path are tight edges; 2) The number of edges included in augmenting
path is odd, and the number of odd numbered edges are one more than the number of even
numbered edges; 3) The vertices in augmenting path start from the vertex corresponding to
the worker and end at the vertex corresponding to the task, and appear in this two kinds of
vertices alternately; 4) There is no repeated vertices in augmenting path; 5) Both the starting
and finishing vertices in augmenting path are not included in the selected matching pairs,
while the other vertices belong to the selected matching pairs.

To find the perfect match where all the workers are assigned to one task with mini-
mum weight in total, KM starts by initializing all the vertex with feasible vertex labeling l.
Then it starts from vertex v1 and iterates over all the vertexes to find the augmenting path
and inserts all the founded worker-task match into the subgraph Gl accordingly. Everytime
before iteration over vertexes, it also updates the vertex labeling l based on the following
rules:

l′(v) =
⎧⎨
⎩

l(v) + d, v ∈ U ∩ P ′
l(v) − d, v ∈ S ∩ P ′
l(v), else

(13)

where v is a vertex in graph Gl and P ′ is the failing augmenting path corresponding to the
minimum d = min{li + lj −eij }. The iteration stops when all the workers are assigned with
one task and the matching result is included in subgraph Gl .
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3.2.2 Secure KM algorithm

It is noteworthy that there are three main operations in the KM algorithm: initialize feasible
vertex labeling, determine if it is tight edges and modify the vertex labeling. Specifically,
we need to initialize the vertex labeling by selecting the maximum edge weight associated
with each vertex at the beginning of algorithm. Besides, we also need to determine whether
the edge weight is equal to the sum of corresponding vertex labeling. Furthermore, we
need to choose the d = min{li + lj − eij } and modify the vertex labeling by addition and
subtraction operation. All these operations are straightforward in plaintext. However, here
we only have the encrypted bipartite graph where all the weights are in ciphertext which
makes the implementation very challenging, especially the maximum selection and compare
operation.

To implement secure max, min and compare operations without compromising partici-
pator’s privacy, we employ CCP’s capability of decryption. A general idea can be that SC
sends the encrypted message like a and b to CCP, CCP decrypts them and do the operation
over the decrypted message. And eventually returns the result in ciphertext to SC. However,
since the encrypted message can be sensitive information which should be kept privacy from
CCP too, it is inappropriate to send them directly. Instead, we disguise all the message with
random values as x∗ = xα ∗ Ep(β) which can be easily achieved by homomorphic encryp-
tion. By sending the disguised value to CCP, the privacy of original data is protected. And
also, since all the values are disguised with same random value, the relationship (max, min,
compare) is still hold. For example, SC wants the min value of two encrypted messages a

and b, instead of raw value, it sends disguised values a∗ = aα ∗Ep(β) and b∗ = bα ∗Ep(β)

to CCP, where α and β are generated according to the (7). With decryption, CCP can eas-
ily select the min value (a∗ for example) and return its ciphertext back to SC. Thus, SC can
obtain the min value (a) by comparing the returned ciphertext locally.

With the defined secure max, min and compare operations, we can go forward and design
the secure KM algorithm. The detail of secure KM is shown in Algorithm 2. Step 1 reads
in the bipartite graph Gk as eij = Ep(wij ) where j ∈ m, i ∈ n and m = n. Ep(wij ) is
calculated as follows:

E(wij ) =
⎧⎨
⎩

E(−∞), ui ∈ LW(k)

E(−∞), si ∈ LS(k)

E(−t ′2ij )orE(−tij ), else.
(14)

where LW(k), LS(k) is the set of logic workers and tasks. Here, we generate logic work-
ers or tasks to equal the number of worker and task for further applying of KM algorithm.
Xvisit and Yvisit initialized as False (step 3 and 7) are used for recording whether or not
the vertex has been accessed during the process of finding augmenting path. Step 4 and 8
initialize the feasible vertex labeling of part X (worker vertex) as the ciphertext of maximum
traveling time which is connected to the corresponding vertex and initialize the feasible ver-
tex labeling of part Y (task vertex) as the ciphertext of 0. In step 5, we set the match array
as 0 for that the corresponding worker is not matched to the task. In step 9 to 30, we con-
tinuously expand the subgraph of tight edges by traversing the worker vertex. Specifically,
in each round of expanding the subgraph of tight edges, we initialize the difference value of
each task less as the ciphertext of infinity in step 11. Then, we repeat the process of finding
the augmenting path for worker i from step 12 to 30. During this process, we running the
SecAP algorithm (details in algorithm 3) to get the maximum perfect match for the cur-
rent subgraph of tight edges in step 17. If we cannot find the maximum perfect match, we
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will update the feasible vertex labeling (from step 19 to 30) and then repeat to find the aug-
menting path by SecAP algorithm. For the feasible vertex labeling X, Y , the difference of
each path diff and less and the edge weights which are involved in algorithm 3 step 5 are
ciphertext of Paillier, we calculate and modify them based on the homomorphic properties
of Paillier. What’s more, algorithm 3 SecAP is a secure algorithm to find augmenting path
(maximum perfect match) recursively.
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4 Security and complexity analysis

4.1 Security analysis

Theorem 1 Our SKM-EG model is allowed to be privacy-preserving with K0 = Vlcm,
K−1 = {Vlcm, α(d2

ij ) + β, α(wij ) + β} and Ki = Vlcm(1 ≤ i ≤ n) extra knowledge.

Proof We firstly consider the privacy of SC platform. For SC, the observed view is V0 =
{Ep(sj ), Ep(tij ), Ep(t ′ij ), Vlcm}. We also assume there is a probabilistic polynomial-time
simulator P0 that generates V ′

0 = {Ep(sj ), Ep(xi), Ep(yi), Vlcm} where sj is a serial num-
ber defined by SC platform randomly and xi(1 ≤ i ≤ m ∗ n) and yi(1 ≤ i ≤ m ∗ n) are
random numbers uniformly distributed in ZN . As Paillier is secure, it is clear that view V0
is indistinguishable from view V ′

0, thus, the privacy of SC is preserved.
Next we analyze each worker ui with Ki = Vlcm(1 ≤ i ≤ n). The view for each

worker ui is Vi = {Vlcm,Ep((ljx)
2 + (ljy)

2), Ep(ljx), Ep(ljy)} and the view generated
by simulator Pi is V ′

i = {Vlcm,Ep(x1), Ep(x2), Ep(x3)} where xi(i = 2, 3) are random
numbers follow GaussianN (500, 4002) and x1 is the sum of the square of x2 and x3. Based
on the semantic security of Paillier, we can easily verify that Vi ≡ V ′

i (1 ≤ i ≤ n), thus, the
privacy of each worker is also preserved.

Finally, we analyze the privacy of CCP u−1 with K−1 = {Vlcm, α(d2
ij )+β, α(wij )+β}.

The view observed by CCP is V−1 = {Vlcm, α(d2
ij ) +β, α(wij ) +β}. We also assumed that

there is a probabilistic polynomial-time simulator P−1 generating V ′−1 = {Vlcm, α(xi) +
β, α(yj ) + β} where each xi(1 ≤ i ≤ m ∗ n) and and each yj (1 ≤ j ≤ m ∗ n) are the
squares of the distance which are computed from two random numbers following Gaussian
N (500, 4002). What’s more, α and β are two numbers randomly selected from prime field
Zq . As the randomness of α and β and also the security of (7), V−1 is indistinguishable
from v′−1 which means the privacy of CCP holds.
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Based on the above proofs, our SKM-EG model is secure with K disclosure where has
neglected effects on individual privacy.

Theorem 2 Our SKM-AG model is allowed to be privacy-preserving with K0 = Vlcm,
K−1 = {Vlcm, α(wij ) + β} and Ki = Vlcm(1 ≤ i ≤ n) extra knowledge.

Proof Here, we focus on the security proof of CCP as the security proof of the SC platform
u0 with K0 = Vlcm and every worker ui with Ki = Vlcm(1 ≤ i ≤ n) are similar to the
proof of Theorem 1. For CCP u−1 with K−1 = {Vlcm, α(wij ) + β}, the view is V−1 =
{Vlcm, α(wij ) + β}. We also assume there is a probabilistic polynomial-time simulator P−1
that generates V ′−1 = {Vlcm, α(xi) + β} where each xi(1 ≤ i ≤ m ∗ n) is the square of the
distance which is computed from two random numbers following Gaussian N (500, 4002).
Since α and β are two random numbers selected from prime field Zq , and the security of
(7) holds, thus it’s easy to prove that V−1 is indistinguishable from v′−1 and the security of
CCP holds.

Based on the above proofs, our SKM-AG model is secure with K disclosure where has
neglected effects on individual privacy.

4.2 Complexity analysis

In our system, every worker computes and communicates in parallel. Ignoring some cheap
operations, we will analyze the complexity of SKM-EG and SKM-AG from aspect of SC
platform, CCP, and each worker. Li (i = p, a)is the key size of Paillier or AP encryption
strategy. Due to the size of ciphertext by Paillier is larger than plaintext and the ciphertext
by AP , we exclude the latter two from communication cost Ep , Ea , are the encryption and
decryption operation of Paillier and AP . We assume that we have n workers and m tasks at
round p. At each round, our system needs to run this flow for a round. The complexity of
SKM-EG and SKM-AG in cycle p are shown in Tables 2 and 3.

5 Experiment study

5.1 Related algorithms introduction

There are many existing works on spatial crowdsourcing task assignment, most of them
adopt greedy selection strategies. However, the spatial crowdsourcing models and problems
in these works are different from ours and the existing algorithms cannot be chosen for
comparison directly. In order to evaluate the effectiveness of our privacy-preserving task
assignment strategies SKM-EG and SKM-AG, we summarize the basic idea of these works

Table 2 Computation Cost of
SKM-EG and SKM-AG Computation Cost

SC platform CCP Worker ui

EG 3mEp mnDp 2Ep

AG 3mEp Da Ep+Ea

SKM 2Ep mnDp+5mmnDp 0
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Table 3 Communication Cost of
SKM-EG and SKM-AG Communication Cost

SC platform CCP Worker ui

EG 3mLp mnLp 5mLp

AG 3mLp+nLp (n + 1)La 4mLp+2La

SKM mnLp+nLp +8nmmLp mnLp+nLp+8nmmLp 0

and design three task assignment algorithms based on different heuristic strategies for com-
parison: G-MP, G-MT and G-MD. Like the SKM-EG and SKM-AG strategies, these three
algorithms are performing task assignment based on the encrypted bipartite graph. Specifi-
cally, G-MP strategy is selecting the minimum travel time task-worker pair based on sorted
travel times iteratively. G-MT strategy is selecting minimum travel time worker for each
task when it is released on the SC platform. G-MD strategy is selecting minimum travel
distance worker for each task.

5.2 Experiment settings

We conduct our experiments on synthetic dataset. We will introduce the data setting in
below. We use a 1000 ∗ 1000 2 dimensional space as working space. We generate workers
and tasks that appear the SC platform dynamically. The location of them follows Gaussian
N (500, 4002) and the speed of workers follows Gaussian N (5, 2.52). The arriving time of
all workers and tasks follow Poisson distribution. What’s more, for comparing effectiveness,
we also generate tasks and workers with their arriving time follows uniform distribution.
The distance function dis is Euclidean distance function.

Two criteria are introduced to evaluate our proposed framework, namely computing time
and average waiting time respectively. For computing time, we compare the construction
ways of encrypted bipartite graph EG and AG and compare SKM-EG and SKM-AG strate-
gies to those three greedy strategies which are mentioned in Section 5.1. For average waiting
time, we compare the results which are produced by our SKM-EG, SKM-AG strategies and
above three greedy strategies.

Tables 4 and 5 summarize the parameters in comparisons. In our simulation, we set
the number of workers and tasks as 100,200,300,400,500 and the time interval τ are
2,5,10,20,50. We assume that the time window of our system is 10.

The algorithms are implemented in Python and the experiments are performed on a PC
with i7-7700K CPU and 16G memory.

5.3 Experimental results

5.3.1 Efficiency

As shown in Figure 2a, the computing time of EG strategy is more than AG strategy. It
is easy to explain that the EG strategy should send the encrypted edge weight to CCP for

Table 4 Evaluation Settings of
Efficiency Parameter Value

Number of workers |U | and tasks |S| 50, 60, 70, 80, 90, 100
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Table 5 Evaluation settings of
effectiveness Parameter Value

Number of workers |U | 100, 200, 300, 400, 500

Number of tasks |S| 100, 200, 300, 400, 500

Time interval τ 2, 5, 10, 20, 50

decryption and then CCP need to square it. What’s more, the secondary infilling for com-
munication also take some time. Besides, we could find that the running time of both EG
and AG are short and we could apply it in practice.

Figure 2b shows the running time of Secure KM, G-MP, G-MT and G-MD. It is obvi-
ous that the running time of SKM is clearly longer than others. However, the running
time is acceptable and practicability. We can observe that the running time of SKM when
worker/task number is 100 is nearly equal to the worker/task number is 80. The reason is that
it ran into a coincidence when the worker/task number is 100 and it does not have to do many
rounds of calculations to get the assignment set. What’s more, our work solve the problem
that key size cannot be set too long which was meet in [16]. We can compute the real trav-
eling time without consider the problem that too much workers may lead to the overflow
of result. In other words, the most important meaning for our work is to break through the
speed limitation of Liu et al.’s framework, and we put this method into real-world practice.

5.3.2 Effectiveness

Figure 3a and b show the performance of our strategies on varying the number of workers
and tasks. It is obvious that our SKM-EG and SKM-AG strategies perform much better than
others and SKM-AG is very close to the local optimal solution SKM-EG. Specifically, in
Figure 3a, we set the number of tasks as 300 and set the number of workers as 100 to 500.
We observe that the average waiting time when task number is 300 is higher than others.
To explain this, it is necessary for algorithms to match all of the workers and tasks and all
of them could be matched because the number of workers is equal to the number of tasks.
As a result, some remote workers and tasks are matched and it may cause a long waiting
time. What’s more, when the worker number is less than 300, we can find that SKM-EG,
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Figure 2 Effect of Workers/Tasks Number
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SKM-AG and G-MP strategies perform better than others. The reason is that G-MT and
G-MD do task assignment for each task when task arrived while task number is more than
worker number and this could miss better matching for the loss of perspective. When the
worker number is more than 300, G-MD performs worst shows that it is better for us to
choose travel time instead of travel distance. In Figure 3b, we set the number of workers as
300 and the number of tasks as 100 to 500. The characteristics of the result are similar to
Figure 3a whether the number of workers and tasks is equal or not. Finally, our SKM-AG
strategy is not sensitive to the quantitative relationship between tasks and workers and it
always performs well.

Figure 4a and b show the performance of our strategies on varying the time interval τ . We
generate workers and tasks while their arriving time follow Poisson distribution and uniform
distribution. Firstly, we can intuitively observe that our SKM-AG strategy is very close to
the local optimal solution SKM-EG and performs much better than others. Secondly, when
time interval τ is small, the average waiting time of all tasks is longer than the adjacent
value. The reason is that only a few number of workers are available when time interval τ

is small and it is inevitable that some of worker-task pairs have a long travel time. Thirdly,
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World Wide Web (2020) 23:2131–21512148



when time interval τ is large, the average waiting time of all task is longer than the adjacent
value too. It is caused by that there exists many tasks which appears early but waits a long
time for matching.Finally, both of the Figure 4a and b show that it is better for us to set time
interval τ as 10 to 20 instead of too large or too small. The distribution of both tasks’ and
workers’ arriving time has no effect on our SKM-AG strategy and it has similar performance
in Figure 4a and b.

6 Related work

In this section, we review representative work from three aspects, task assignment for spatial
crowdsourcing, online matching problems and privacy protection in spacial crowdsourcing.

Spatial crowdsourcing is becoming prevalent in both research community (e.g., [2, 3,
28, 29]) and industry (e.g., Waze, DiDi). Task assignment is the core problem in spatial
crowdsourcing [3–6, 11, 30, 31, 33–35, 38]. To our best knowledge, [11] firstly proposed
task assignment problem in spatial crowdsourcing. Their objective is to maximize the total
number of assigned tasks. Some follow up works also focused on the same objective such as
[30]. In addition, some other works focused on how to do better task assignment and propose
different constraints and goals for new application scenarios. [11] aims to find a maximum-
cardinality matching with minimum total distance and [5] aims to maximize the reliability
and diversity of finished tasks. In [38], the workers acceptance was maximized to improve
the system throughput. In the real world scenario, both workers and tasks arrive platform
dynamically. However, some of the earlier studies focused on static scenario. [10] first used
an online model to describe the assignment process. Most of existing works consider the
static scenario and the economic benefits for the crowdsourcing platform while we focus on
the user experience and aim to find a maximum-cardinality matching with minimum total
time between the matched worker-task pairs in the online scenario.

In [28], Tong et.al categorizes task assignment in spatial crowdsourcing into (static)
offline and (dynamic) online scenarios. In online scenarios, there are two ways to deal with
the workers and tasks which dynamically appear one by one in the physical space: (1)
batch-based matching approach [3, 6, 11, 29]; (2) online matching approach (i. e. , work-
ers/tasks are assigned as soon as they reach the platform [4, 31, 33, 35]). Our work utilizes
batch-based matching approach in online scenarios and extends [3, 6, 11, 29] in the privacy
protection aspect.

Privacy protection is an emerging issue in spatial crowdsourcing. It focuses on protecting
the information (e.g., location, speed) of workers and tasks in dynamic scenarios. State-
of-the-art techniques about privacy protection are as follows: (1)Cloaked Locations-based
protection technique (i.e., the location of workers is transformed as a cloaked area in [23]);
(2)Differential Privacy-based protection technique, (i.e., workers send their locations to a
trusted third party and the third party sanitizes the location of workers according to differ-
ential privacy techniques, such as [8, 26, 27, 37] ); (3)Encrypted Data-based protection(i.e.,
the exact distances between tasks and workers can be computed based on their encrypted
locations in [15, 16, 18, 25]). Our work utilizes Encrypted Data-based protection technique
to improve [16, 18, 25] in two aspects. First, [18, 25] is based on the encrypted data of work-
ers’ location and tasks’ location to calculate the encrypted data of the distance, involving
the add operation of encrypted data. However, our work needs us to calculate the encrypted
data of the travel time , involving the ciphertext division operation. Second, [16] can only
be small calculation, including homomorphic division operation on the ciphertext. While
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our division operation is based on the least common multiple ways, which can process
large-scale computing.

7 Conclusion

In this paper, we have studied a novel task assignment problem in spatial crowdsourcing,
named user experience-driven secure task assignment problem, which finds k task assign-
ment instance sets in kτ time units to minimize the average waiting time of all tasks while
satisfying the security requirement. We have presented two methods to construct encrypted
bipartite graph to protect private data of both workers and users. We have also enhanced
conventional KM algorithm and made it workable on encrypted graph. Extensive experi-
ments have been conducted to demonstrate the efficiency and effectiveness of our proposed
approach.
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