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Abstract
Large-scale power grids, especially smart grid systems, consist of a huge amount of com-
plex computerized electronic devices, such as smart meters. A smart maintenance system
is desired to schedule and send maintenance worker to locations where any computerized
devices become faulty. A grid management system (GMS) is purposely designed in the way
that the following three conditions are generally fulfilled: 1) all workers are working on
full capacity everyday; 2) the highest severity level faulty devices are fixed the quickest;
and 3) the overall traveling distance/time is minimized. In this study, two intelligent grid
maintenance framework are proposed considering the above three conditioned based on
two state-of-arts algorithms, namely, genetic algorithm and K-mediods clustering method,
respectively. Five real-world datasets collected from five different local cities/counties in
eastern China are adopted and applied to verify the effectiveness of the two proposed
intelligent grid maintenance frameworks.

Keywords Smart electric power grid · Maintenance planning · Genetic algorithm ·
K-mediods clustering

1 Introduction

Electric power and its grid development are among the most important living bases for peo-
ple living and civilizations of the modern world. More recently, the development of next
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generation power distribution system, i.e., the smart grid, has attracted enormous attentions
across the world. The concept of smart grid integrates the power of traditional grid technol-
ogy with cutting-edge computer and internet technology to build a intelligent power system
that receives, analyzes and applies data from various sources [5, 23].

A typical smart grid system usually consists of a huge number of equipment devices, such
as smart meters, smart appliances, renewable energy resources and energy efficient control
devices [8]. Due to the large number of smart devices and the complexity of the device
structure, failures occur frequently, which becomes a challenge of smart grid development
for real-world applications, especially for developing countries with large geographic areas
and populations [9, 14]. A grid maintenance system (GMS), is desired to identify fault
locations, evaluate conditions and make decisions [18]. It is a standard procedure to send
out workers and fix the faulty devices manually whenever necessary. However, due to the
huge amount of the faulty devices, an intelligent maintenance planning is always demanded
to reduce the time, manpower and economic losses.

This study intends to provide feasible solutions to the problem of maintaining a large-
scale power grid in eastern China with limited number of maintenance workers and budget
for a local company, named State Grid Zhejiang Electric Power LTD (SGZEP). The current
grid maintenance system generally considers the following three criteria in maintaining the
local power grid in China:

1. Maximizing the working capacity for each working crew. Adequate number of
faulty devices that assemble in a certain area of region has to be assigned to each
working crew to maximize his/her working capacity. The intelligent planning for each
working crew maximizes the overall working capacity, and consequently reduces the
necessary number of employing new working crews.

2. Making the highest severity level faulty devices reparation at the top priority. Each
faulty device is marked with a severity rate/level that indicates the fault severity of
that particular device. The top priority is always given to the higher severity level fault
devices for each working crew when a region or an assembly of devices is assigned to
him/her.

3. Minimizing the traveling distance/time for each working crew. For each working
package that is assigned to a particular working crew, there is always a minimal distance
traversal path realizable for the working crew, such that, on that path, every neighboring
pair of the faulty devices is close enough to each other. The overall traveling distance
or time must be minimized from the GMS point of view.

In this work, two intelligent grid maintenance framework are proposed considering the
above three factors based on two state-of-arts algorithms, namely, genetic algorithm (GA)
and K-mediods clustering method, respectively. The GA based maintenance framework
(GAMF) considers each working crew at one time and searches for the optimal working path
that maximizes the overall severity level and simultaneously minimizes the overall traveling
time. An overall management planning scheme is proposed to iteratively assign workers one
at a time. The K-medoids clustering based maintenance framework (KMCMF) clusters all
faulty devices into k clusters, where k is the number of available working crews on each day.
The customized algorithm is carefully designed in the way that each cluster contains one
top k severity level device; and all faulty devices are reasonably close to each other within
each cluster. After all faulty devices are clustered, each working crew will be assigned with
one cluster and works starting from the most sever faulty device in that cluster. The criterion
2 is considered first followed by criteria 3 and 1.
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A real-world dataset collected by the local electric power gird maintenance company in
eastern China, including maintenance scenarios in several local cities in China, is utilized
to verify the effectiveness of the proposed algorithms in the experiment section. The power
grid comprises approximately 25 million smart power meters; and perform computerized
analysis as well as Web services based on data sent back from the smart meters. However,
almost on each day, a number of devices becomes faulty because of various reasons. In
tradition, the local power grid company sends out reparation working crews on each day
based on trivial strategies, such as the shortest distance path first algorithm or highest sever-
ity level first algorithm. In this study, we compare our two proposed maintenance working
strategies with the trivial algorithms to show the advantages of using intelligence enhanced
strategies in maintaining large-scale power grid systems.

1.1 Problem specification

Considering a large-scale power grid system covering a medium size city consisting of
approximately 25 million smart meters, on each day, there are in total n faulty meters. All
faulty meters are enumerated as m1, m2, ..., mn, where mi is an entity containing the infor-
mation about the device location, fault type, severity level, approximated fixing hours and
etc. On each day, there are k available reparation working crews. All working crews are
enumerated as p1, p2, ..., pk , where pj is an entity containing the worker’s personal infor-
mation, traveling speed and location. The problem arises when the number the faulty devices
always greatly exceeds the number of available working crews, i.e., k << n. An intelli-
gent maintenance scheme of assigning faulty smart meters to particular working crew is
desired considering the three criteria, namely, the overall capacity, overall severity level and
overall traveling distance. Currently, the local company alternatively chooses between two
traditional approaches to send working crews to fix faulty devices everyday, which are short-
est distance path first strategy or highest severity level first strategy. A more sophisticated
strategy is demanded to consider the three criteria concurrently.

1.2 Contributions

The main contributions of this work include:

• Discretizing severity levels for different faulty devices. Discretization of severity
levels of faulty devices is an important step for intelligent control, maintenance, fault
diagnosis and other related industrial applications. In this study, we introduce a realistic
way of calculating the severity level from the grid company’s point of view. The sever-
ity level calculation involves three factors, including the fault lasting hours, averaged
power consumption each day for the faulty meter and the number of days towards the
next billing day. Compared with our previous work in [39], the calculation formula is
formal; and all severity levels are not bounded.

• Proposing two intelligent maintenance algorithms. Two intelligent maintenance
algorithms are proposed to automatically assign faulty devices to particular working
crews, namely, genetic algorithm based maintenance framework (GAMF) and K-
medoids clustering based maintenance framework (KMCMF). A series of experiments
are conducted to verify the effectiveness of the proposed two algorithms.

• Applying theoretical artificial intelligence (AI) algorithms to a real-world prob-
lems. Both genetic algorithm and K-medoids clustering algorithm are AI enhanced

World Wide Web (2020) 23: –1177 1195 1179



algorithms that have been widely applied to many scientific research areas, such as bio-
informatics, image processing, human computer interaction and etc. However, there are
quite few chances that we can verify the theoretical algorithms in real-world industrial
applications. In this work, five real-world datasets collected from five different local
cities/counties in eastern China are adopted and applied to verify the effectiveness of
the two proposed algorithms.

2 Related work

Fault detection, diagnosis, evaluation and reparation (FDDER) is an important research
topic in both scientific and industrial areas [16, 17, 28, 31]. As early as 1988, Viswanadham
and Johnson [38] started to develop intelligent monitoring and control system to perform
automatic fault detection and diagnosis for manufacturing systems. In 1990, Nelson [28]
introduced the concept of fault tolerance, which emphasized the importance of fault eval-
uation in FDDER. All faults were then classified into different severity levels. For low
severity levels, immediate reparation is not required; and fault tolerance is used. Reparation
working crews have the choice to work on high severity level faulty devices based on the
system evaluation. In 2006, Jardine et al. reviewed the state-of-art technologies in the field
of condition-based maintenance. A maintenance recommendation is made by the manage-
ment system usually based on three steps: data acquisition, data processing and maintenance
decision-making.

More recently, due to the rapid development of Internet, database and artificial intel-
ligence (AI) technology, the data size is growing exponentially. The concept of big data
is introduced, along with the AI technology development in areas, such as data mining,
machine learning and deep learning [1, 7, 10, 11, 19, 27, 41, 42]. In 2006, Lee et al. [22]
introduced the existing intelligent prognostics tools for e-maintenance of industrial subsys-
tems. Qin [29] surveyed the more recent developments of data-driven methods for FDDER.
Cai et al. [6] applied Bayesian networks to diagnose various faults in engineering systems.
Yan et al. [44, 45] employed various machine learning techniques to diagnose fault of air
handling unit subsystems in large-scale air-conditioning systems.

Genetic algorithm (GA) and K-medoids clustering method are two important technique
in the field of machine learning and AI. GA and its extensions have been widely used in
medical diagnosis, image processing and human computer interaction [3, 15, 25]. Global
optimal solutions can be found by GA with multiple criteria formulated using fitness func-
tions [26, 40]. Fei and Zhang [12] utilize genetic algorithm to diagnose potential faults
inside power transformers. Samanta et al. performed experiments to detect bearing faults
using two GA-based hybrid algorithms. One of them combines GA with artificial neural
networks (ANNs); and the other combines GA with support vector machine (SVM). Samuel
and Rajan proposed a hybrid particle swarm optimization (PSO) based genetic algorithm
and a hybrid PSO based shuffled frog leaping algorithm to maintain a power system in long-
term power generation scenarios. The proposed methods have been proved to be effective
using real-world datasets.

K-medoids clustering algorithm is one of the most commonly used clustering algorithms,
which has been widely applied to various industrial applications [13, 24, 37]. Rai and
Upadhyay [30] utilized K-medoids clustering algorithm to evaluate bearing performance
degradations. Bishnu and Bhattacherjee [4] applied K-medoids clustering algorithm to soft-
ware fault prediction. For problems without absolute labeling system applied, unsupervised
learning algorithms, such as the K-medoids clustering, can be helpful for sub-optimal
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predictions. For example, Zhong et al. [47] introduced to use an unsupervised learning
algorithm, namely, generative adversarial neural network (GAN), to detect, maintain and
diagnose possible faults in air handling units.

3 Severity level calculation for smart faulty meters

Under the situation where a large quantity of faulty smart meters are available, the mainte-
nance management system is supposed to evaluate the severity level for each faulty meter
before the faulty meters being assigned to a specific working crew. In this section, a dis-
crete formulation of the severity level measurement is proposed for each faulty smart meter
based on real-world data. Three important factors are considered in the formulation:

• The averaged power consumption of that particular unit on each day (k);
• The fault lasting hours (t);
• The number of days towards the next billing day (d).

3.1 Factor of averaged power consumption

The power consumption data collected by SGZEP consists of over 25 million of power con-
sumption units, including households, small/medium companies and large-scale industrial
factories. For normal households, the average power consumption in each month is likely
below 200 kwh. For small/medium companies, the power consumption in each month is
mostly in between of 200 and 1000 kwh; and for large-scale industrial companies, the power
consumption can be above 1000 kwh. In this study, we averaged all units’ monthly power
consumption data in 2018, and define the factor of averaged power consumption for each
unit as:

r(xi) =
⎧
⎨

⎩

1, for g(xi) < 200;
2, for 200 < g(xi) < 1000;
3, for 1000 < g(xi).

(1)

In this study, 10,000 residential units and 10,000 non-residential units are randomly selected
with their monthly averaged power consumption in 2018, which is denoted as g(xi). We plot
the graphs for these 20,000 units’ power consumption deviation of the month May, 2018 in
Figures 1 and 2. For residential units, 92% of the selected 10,000 units has power consump-
tion deviation less than 17. And for the non-residential units, 88.75% of the selected 10,000
units has power consumption deviation less than 17. All these facts suggest that the value
of g(xi) does not change that much over months. The formulation of g(xi) is proposed as:

g(xi) = α · g(xi−12) + (1 − α) · g(xi−1), (2)

where α is a parameter that can be tuned for each particular unit. The current value of g(xi)

is assumed to be closely related to the power consumption in the same month, last year
g(xi−12) and in the last month, same year g(xi−1).

3.2 Factor of fault lasting hours

The reparation of a faulty meter cannot be immediate; and the working crews are demanded
to work on the most sever faulty device that was pre-scheduled by a management system.
The time interval between the device becoming faulty and been fixed is another important
factor to measure the severity level of a faulty device. Suppose that the meter reading of a
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Figure 1 The deviations of randomly selected 10,000 residential units from g(xi) to the power consumption
in May 2018. All deviations are sorted following ascending order

faulty meter is always invalid. Further assumption is made that the faulty reading cannot
be used in any analysis and must be abandoned. The lasting hours of that particular fault
determines the number of missing entries in the data management system. And the overall
amount of power consumption that is missing can be proportional to the severity level:

j (xi) = n

θi

· r(xi), (3)

where θi is the number of days in the current billing month.

Figure 2 The deviations of randomly selected 10,000 non-residential units from g(xi) to the power
consumption in May 2018. All deviations are sorted following ascending order
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3.3 Factor of days toward next billing day

In most of the less developed countries, billing day is critical for a grid company to survive
in a highly competitive environment. If the faulty meter is not fixed on the billing day, the
exact billing amount cannot be ensured for the particular unit. A series of consequences
might happen when the estimated billing amount is not matching the actual bill. Therefore,
most of the faulty meters have to be fixed before the next billing day. In other words, the
number of days towards the next billing day is another important factor for the severity level
measurement.

To ensure the proposed method to be practical, we analyzed the number of faulty meters
at 0:00, 1st of June, 2018 in the dataset collected by SGZEP. Figure 3 shows the number
of units with consecutive missing metering data. Over 50,000 units with faulty meters have
missing metering data for two days; and only around 10,000 units have missing data more
than 15 days, which suggests that most of the faulty meters can be fixed within a short period
of time, e.g., a week. In fact, according to the statistics, 59.06% of the faulty meters can be
fixed within 8 days; the remaining 30% of the faulty meters can be fixed from 9 to 21 days;
and only 10.22% of the faulty meters are fixed more than 22 days. For those faulty meters
whose next billing day is more than 8 days away from the current date, the contribution to
severity level can be small. Otherwise, the contribution to severity level increases when the
next billing date is approaching. The last factor of the severity level measurement is defined
as:

s(xi) = 9 − l

θi

· r(xi), (4)

where l is the number of days away from the next billing day.

3.4 Discretized severity level formulation

In summary, in this section, we proposed a discretized severity level formula for intel-
ligent maintenance of a smart grid. The severity level becomes another important factor

Figure 3 The number of faulty meters at 0:00, 1st of June, 2018 in the dataset collected by SGZEP. We
sub-categorized all numbers by the fault lasting days. Around 60% of the faulty meters can be fixed within
8 days; the remaining 30% of the faulty meters can be fixed from 9 to 21 days; and only 10% of the faulty
meters are fixed more than 22 days
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Figure 4 One working area of SGZEP, in Hangzhou city, Zhejiang Province of China. The faulty meters
are marked by green color with severity level indicated. The blue houses are working stations sending out
working crews to fix those faulty meters

for the working crews to consider next reparation target other than distance and locations.
Combining (1) – (4), the discretized severity level formula can be written as:

f (xi) = j (xi) + s(xi), (5)

It can be easily seen that highest discretized severity level is 9.

4 Methodology

Considering a smart grid consisting of over 25 million smart meters with over 100,000 faulty
devices existence at different locations, with limited number of working crews, an intelligent
maintenance framework is always demanded taking 1) the travel distance for each working
crew; 2) the maximal faulty meters that can be fixed each day; and 3) the overall aggregate
severity levels that can be eliminated each day.

Figure 4 shows one working area of SGZEP, in Hangzhou city, Zhejiang Province of
China. The faulty meters are marked by green color with severity level indicated. The blue
houses are working stations sending out working crews to fix those faulty meters.

With the assistance of the digital map, e.g., the Google traffic map [20, 43], we con-
nect all faulty meter locations and work stations with edges. For intersecting edges, we
remove the longer ones and form a planar graph [2] (Figure 5). Two intelligent maintenance
framework are proposed, which are based on adaptive genetic algorithm and customized
K-medoids clustering method.
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Figure 5 Planar graph connecting faulty meters and work stations

4.1 An intelligent maintenance framework based on adaptive genetic algorithm

Genetic algorithm (GA) is proposed mimicking the genetic evolution in biology, which is
commonly used searching for globally optimal solution [40]. It constructs all candidate solu-
tions as chromosomes that are formed by small pieces of genes. Starting from any candidate
chromosome, GA exchange genes from that particular chromosome with crossover opera-
tions and mutation operations to search for better solutions [34]. The most fitted solution
after a number of iteration of evaluations will be outputted as the optimal solution.

f itness(path) = total traveling time + total fixing hours

aggregate severity rates
,

The first intelligent maintenance framework is proposed based on an adaptive GA that
allows crossover probability and mutation probability to be adjusted during the global opti-
mal search process [25]. Starting from a particular work station, there exist multiple paths
for the working crew to traverse available faulty device locations. Each of these faulty meter
locations is considered as a gene; and a working path connecting the faulty meter locations
is considered as a chromosome [46]. The adaptive genetic algorithm (AGA) generates new
series of chromosome using crossover and mutation operations, where crossover operation
searches the optimal solution globally; and mutation operation searches the optimal solution
locally [35]. The fitness function for this intelligent maintenance framework is.

World Wide Web (2020) 23: –1177 1195 1185



Figure 6 The adaptive genetic algorithm searching for the optimal path covering the most faulty meters with
high total severity measurement rates and short travel distance

The overall AGA algorithm flowchart is depicted in Figure 6, where Pc stands for the
crossover probability and Pm stands for the mutation probability. It is noted that Pc and Pm

are self-adjustable according to Formulas (6) and (7) in the search process of AGA algo-
rithm, where f , fmax , favg and f ′ represent the current fitness, maximum fitness, average
fitness, and parent fitness, respectively, in the searching process. And k1, k2, k3, k4 are con-
trol variables ranged from (0,1). In this study, we set k1, k2, k3, k4 to be 0.9, 0.6, 0.1 and
0.001, respectively.

Pc =
{

k1 · fmax−f ′
fmax−favg

if f ′ ≥ favg,

k2 otherwise
. (6)

Pm =
{

k3 · fmax−f
fmax−favg

if f ≥ favg,

k4 otherwise
. (7)

On the actual working map as we shown in Figure 4, there are multiple work stations
that can send working crews to fix faulty meters. The first intelligent maintenance frame-
work is proposed under this context to select the shortest working time path, eliminate the
most severity levels and assign multiple workers simultaneously considering their working
hours. The first proposed GA based intelligent maintenance framework (GAMF) is listed in
Algorithm 1.
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4.2 An intelligent maintenance framework using customized k-medoids algorithm

The original K-mediods algorithm was proposed by Kaufman and Rousseeuw in 1987 [21].
The K-mediods algorithm improved the traditional K-means algorithm by placing centoids
on data points instead of the actual cluster center to avoid local extreme solutions and empty
clusters [32]. Moreover, the K-mediods algorithm allows the users to alter the entropy func-
tion from Euclidean distance function to others for customized design. In this study, the
entropy function customized using severity levels, traveling time and fixing hours.

Entropy(path) = τ · traveling time + ϕ · fixing hours

ν · severity rates
,

The initial values of τ , ϕ and ν are set as 1, 0.5 and 0.5. The optimization of the three
parameters are performed in the experimental section.

The customized algorithm of K-mediods is listed in Algorithm 2, where K is the number
of available working crews. The initial seeds of the K centroids are set as the locations of
the highest K severity levels faulty devices’ locations.

Algorithm 2 A customized K-medoids algorithm for maintaining large-scale grid.

Input: All faulty devices’ locations and severity levels.

Output: K clusters, where K is the number of available working crews.

Initialization: Select the top K severity levels faulty devices as seeds.

Associate each data point to the closest centroid by customized entropy function.

While The cost of the configuration decreases:
For each centroid c, for each non-centroid data point m:

Swap c and m, update the graph by associating each data point to the closest

centroid by the customized entropy function.

If the total cost of the configuration increased in the previous step,
Then undo the swapping.

If two seeds belong to a same cluster,

Then undo the swapping and exit the program.

end-For
end-While
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In algorithm 2, all faulty devices are sorted according to their severity level. And the
top K severity faulty devices are selected as seeds. We assumed each maintenance work

Figure 7 K-medoids clustering results for faulty smart meter locations in Hangzhou city, China on Nov 12,
2018 (a) and Nov 13, 2018 (b). Fault devices marked in same color belong to the same cluster. The numbers
on nodes indicate the actually reparation sequence given by the work crew
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starts from the initial seed position; and each working crew will be assigned to one cluster
for maintenance work. The overall algorithm terminates when the K-medoids algorithm
converges or any two seeds landing at the same cluster. Figure 7 depicts the clustering results
of faulty smart meters located in Hangzhou city, China on Nov 12, 2018 (a) and Nov 13,
2018 (b). Fault devices marked in same color belong to the same cluster; and the numbers
on nodes indicate the actually reparation sequence given by the work crew.

5 Experimental comparison and analysis

The proposed two intelligent power grid maintenance framework, i.e., genetic algorithm
based maintenance framework (GAMF) and K-medoids clustering based maintenance
framework (KMCMF), are compared with two trivial maintenance planning strategies
named ‘highest severity level first’ (HSF) and ‘shortest path first’ (SPF) with five differ-
ent datasets collected by SGZEP with five different cities/counties located in eastern China,
including Hangzhou city, Cixi city, Fenghua city, Huzhou city and sanmen county. Before
the experimental results are presented, we briefly describe the two trivial strategies that are
only used for comparison purposes.

5.1 Highest severity level first strategy

The most intuitive way of faulty meter reparation for the maintenance working crew is to
select the faulty meter with the highest severity level. The general approach of the highest
severity level first strategy is listed in Algorithm 3.

Algorithm 3 Highest severity level first strategy.

1: Sort all faulty meter locations from highest severity level to lowest severity level. For

same sever level locations, sort them from nearest to farthest.

2: Select the faulty meter location with highest sever level; and find the nearest working

station.

3: According to the location of the selected working station and the highest sever level

faulty meter, find the shortest path following Dijkstra algorithm [33].

4: Mark all faulty meters on the shortest path as ‘visited’.

5.2 Shortest path first strategy

An alternative choice other than the HSF is always following the shortest path to all avail-
able faulty meters for each working crew, regardless of the severity level. Apparently, this
strategy is more undesired compared with the HSF strategy. We put this strategy into com-
parison simply because currently, most grid companies in China are still using this simple
strategy for power grid maintenance.

5.3 Results

Simulations are performed based on the data collected in five different cities located in
eastern China. The dates of collection, available numbers of working crews, the numbers
of faulty smart meters, averaged elapsed time for each faulty device of all five datasets are
listed in Table 1.
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Table 1 The dates of collection, available numbers of working crews, the numbers of faulty smart meters,
averaged elapsed reparation time for each faulty device of all five datasets corresponding to the simulations
on five different cities located in eastern China, including Hangzhou city, Cixi city, Fenghua city, Huzhou
city and sanmen county

Dataset Collection date Available #
of working
crews

# of faulty
smart
meters

Averaged
reparation
time (min)

Hangzhou Feb. 20, 2018 10 1062 64.2

Cixi Jan. 8, 2019 10 628 38.3

Fenghua Jan. 8, 2019 10 484 66.9

Huzhou Jan. 8, 2019 10 523 49.2

Sanmen Jan. 8, 2019 10 236 93.4

For each dataset, the simulations are performed assuming the averaged traveling speed
of each working crew is either 20 km/h or 30 km/h. The maximum time of working period
is set to 8 hours. The aggregate severity levels, actual working time, the aggregate travel
distance of all crews and the total number of faulty devices that have been fixed using the
four mentioned strategies, i.e., GAMF, KMCMF, HSF and SPF, on the five different datasets
collected from five cities/counties in eastern China are shown in Tables 2, 3, 4, 5 and 6.

In summary, from Tables 2–6, all four compared methods are capable to eliminate faulty
devices effectively. KMCMF eliminates the most severity levels among all datasets, fol-
lowed by GAMF, HSF and SPF. HSF has relatively good performance on eliminating
the overall severity levels, but has poor performance on eliminating the number of faulty
devices. SPF is good at eliminating the total number of faulty devices but not taking care of
the total severity levels of the fixed devices. KMCMF and GAMF take care of the both, i.e.,
eliminating as many severity levels as possible and concurrently traveling less distance and
fixing adequate amount of faulty devices.

Table 2 The aggregate severity levels, actual working time, the aggregate travel distance of all crews and
the total number of faulty devices that have been fixed using the four strategies (GAMF, KMCMF, HSF and
SPF) on the dataset collected from Hangzhou city, China

Mov. speed Strategy Aggr.
sever. rates

Total work.
time (min)

Aggr. trav.
dist. (km)

Total faul.
dev. fixed

KMCMF 210 426.94 32.63 86

20 GAMF 204 442.82 34.36 86

HSF 199 436.92 36.31 31

SPF 150 443.42 14.66 82

KMCMF 216 442.08 29.64 87

30 GAMF 209 463.58 34.19 89

HSF 192 473.36 47.03 25

SPF 155 456.82 15.55 88

The proposed KMCMF eliminates the most severity levels for different moving speeds (shown in bold)
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Table 3 The aggregate severity levels, actual working time, the aggregate travel distance of all crews and
the total number of faulty devices that have been fixed using the four strategies (GAMF, KMCMF, HSF and
SPF) on the dataset collected from Cixi city, China

Mov. speed Strategy Aggr.
sever. rates

Total work.
time (min)

Aggr. trav.
dist. (km)

Total faul.
dev. fixed

KMCMF 213 463.00 34.90 153

20 GAMF 208 452.52 38.77 151

HSF 200 474.16 50.89 50

SPF 177 463.28 31.92 154

KMCMF 223 463.58 40.65 165

30 GAMF 218 451.70 29.40 157

HSF 216 438.76 67.56 56

SPF 194 470.17 32.78 161

The proposed KMCMF eliminates the most severity levels for different moving speeds (shown in bold)

Table 4 The aggregate severity levels, actual working time, the aggregate travel distance of all crews and
the total number of faulty devices that have been fixed using the four strategies (GAMF, KMCMF, HSF and
SPF) on the dataset collected from Fenghua city, China

Mov. speed Strategy Aggr.
sever. rates

Total work.
time (min)

Aggr. trav.
dist. (km)

Total faul.
dev. fixed

KMCMF 444 429.18 52.49 72

20 GAMF 431 448.36 56.75 68

HSF 409 472.54 72.18 35

SPF 363 463.28 31.92 72

KMCMF 477 417.54 53.47 79

30 GAMF 455 464.07 59.53 75

HSF 439 474.19 73.14 45

SPF 373 452.29 39.49 80

The proposed KMCMF eliminates the most severity levels for different moving speeds (shown in bold)

Table 5 The aggregate severity levels, actual working time, the aggregate travel distance of all crews and
the total number of faulty devices that have been fixed using the four strategies (GAMF, KMCMF, HSF and
SPF) on the dataset collected from Huzhou city, China

Mov. speed Strategy Aggr.
sever. rates

Total work.
time (min)

Aggr. trav.
dist. (km)

Total faul.
dev. fixed

KMCMF 327 381.26 77.86 99

20 GAMF 311 363.83 79.33 96

HSF 289 386.15 87.28 38

SPF 186 388.45 70.12 103

KMCMF 349 414.47 89.98 103

30 GAMF 330 429.20 94.35 99

HSF 318 472.37 117.63 44

SPF 225 456.65 81.77 109

The proposed KMCMF eliminates the most severity levels for different moving speeds (shown in bold)
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Table 6 The aggregate severity levels, actual working time, the aggregate travel distance of all crews and
the total number of faulty devices that have been fixed using the four strategies (GAMF, KMCMF, HSF and
SPF) on the dataset collected from Sanmen county, China

Mov. speed Strategy Aggr.
sever. rates

Total work.
time (min)

Aggr. trav.
dist. (km)

Total faul.
dev. fixed

KMCMF 117 390.02 30.21 54

20 GAMF 116 414.51 28.85 51

HSF 114 424.52 45.36 32

SPF 112 416.25 26.77 56

KMCMF 121 407.15 32.97 58

30 GAMF 118 438.30 31.10 53

HSF 116 464.20 70.00 36

SPF 115 454.06 34.23 59

The proposed KMCMF eliminates the most severity levels for different moving speeds (shown in bold)

The improvements on aggregate severity level of faulty devices that has been fixed can be
viewed clearly from Figure 8. In overall, the proposed two intelligent maintenance frame-
work have obvious advantage in eliminating the aggregated severity level over all faulty
devices. Among the two proposed algorithms, KMCMF has slightly better performance
than GAMF. GAMF is useful when a sub-optimal solution is acceptable, since it is a more
efficient algorithm compared to KMCMF.

Figure 8 The improvement on eliminating aggregate severity levels with different datasets on five
cities/counties in China. The results are consistent with different working crews’ moving speed at 20/30
km/hour. The proposed KMCMF and GAMF has obvious advantage in eliminating the most severity levels
compared with the two traditional strategies (HSF and SPF)
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6 Conclusion

In this study, two intelligent maintenance frameworks are proposed for large-scale power
grids. The two intelligent maintenance frameworks are built based on state-of-art AI
algorithms, namely, the genetic algorithm and the K-medoids clustering algorithm. Both
algorithms were extended and customized to ensure the novelty of this work. In the exper-
iment phase, five real-world datasets collected by State Grid Zhejiang Electric Power LTD
(SGZEP) from five different local cities/counties are adopted. A comparative study is per-
formed where the two proposed intelligent maintenance frameworks are compared with
the traditional maintenance planning strategies. The simulation results show the obvious
advantage of the proposed algorithms over traditional approaches. The K-medoids cluster-
ing algorithm based maintenance framework (KMCMF) shows slightly better performance
than the GA based maintenance framework (GAMF). The GAMF still outperforms the
traditional maintenance strategies and can be useful when efficiency is the top-priority.

We summarize the main contributions of the current work to the literature:

• More sophisticated severity level formula. A more elegant formula calculating the
severity levels for faulty devices is established. The new formula considers the three
most important factors: the fault lasting hours, averaged power consumption each day
for the faulty meter and the number of days towards the next billing day.

• AI-enhanced smart maintenance methods. We propose two smart maintenance meth-
ods using two state-of-arts AI methods. The proposed AI-enhanced methods represent
the next-generation automated maintenance scheduling for large-scale smart grids and
are verified to be useful based on our simulation results.

• More comprehensive datasets for verification. Five different datasets that are col-
lected from five different locations in China are employed. The comprehensiveness
of the dataset is important to verify the effectiveness of our proposed methods.

There are several future working directions. First of all, current maintenance strategies
are proposed based on the fact that the number of faulty devices is fixed. However, in real-
world scenarios, additional faulty devices may appear in the process of maintenance. A
dynamic maintenance scheduling scheme is required in those cases. Second, the mainte-
nance work may not follow exactly the assigned path in real-world scenarios. The actual
working path important to improve the current maintenance scheduling system. Last, more
sophisticated AI algorithms, such as reinforcement learning [36], can be adopted to further
optimize the maintenance assignments.
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