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Abstract
Taxis are one of the representative modes of traffic systems. However, with the emergence
of shared cars led by DiDi and Uber in recent years, the traditional taxi companies are
facing unprecedented competitions. Without personalized data collected from the mobile
devices, passenger flow prediction based on vehicle GPS records presents a unique solution
that can improve taxis’ operating efficiency while preserving personal privacy. In this paper,
we propose the Travel Behavioral Inertia (TBI) from taxi GPS records, which embodies
Driver Inertia (DI) and Passenger Inertia (PI). Then we integrate TBI with other features to
construct multi-dimensional features and predict taxi passenger flow based on a deep learn-
ing algorithm. We call the entire framework TBI2Flow. Extensive experiments demonstrate
that TBI features has outstanding contribution to passenger flow prediction and TBI2Flow
outperforms state-of-the-art methods including time series-based method and other deep
learning-based methods on long-term taxi passenger flow prediction.
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1 Introduction

The prosperity of big data and mobile computing has brought many new opportunities for
the development of scientific research, such as user network analysis [44], academic influ-
ence aware [45], and traffic prediction [4]. Taxis are ubiquitous in urban residents’ life and
participate in urban perception to reflect dynamic changes in traffic status. In New York
City, there are nearly 13000 taxis in service every day. They make, on average, 500,000
trips each day, totaling over 170 million trips a year [7]. Recently, the Internet of Things and
cognitive cyber-physical systems are developing rapidly [21, 46]. Because of their wide dis-
tribution and high mobility, taxis have great application value in the construction of smart
city. For example, taxis can be used as the carrier of fog calculation as well as the mobile
crowdsensing. Besides, taxis are valuable sensors of city life. Information hidden in taxi
trips bring a great opportunity to understand city life in depth [35, 36]. These are likely to
pave the way for big data-driven analysis of taxi operation status.

With the rapid development of global economy in recent 10 years, the number of urban
vehicles has grown tremendously. It leads to increasingly severe traffic problems, including
traffic congestion [15], environmental pollution, and frequent traffic accidents. For many of
these problems, taxis are major contributors due to their operational characteristics. One of
the most typical aspects is the unbalanced relationship between the passenger travel demand
and the empty carrying phenomenon for taxi drivers. Take the taxi operation status of Bei-
jing for example. We get from Beijing traffic development and construction report that
each taxi travels about 400 kilometers everyday and the average empty carrying ratio of
taxis is around 40% [16]. It indicates that taxis in cities operate with low efficiency, which
leads to wasteful resources consumption and environmental pollution. On the other hand, it
also increases the operating costs of the companies, and pulls down the level of passenger
satisfaction.

Besides traditional taxi services, shared transportation based on the mobile/internet plat-
form are revolutionizing people’s travel choices, such as Mobike [25], DiDi [42], and Uber
[8]. Among them, DiDi has been rapidly developed in Chinese market in recent years and
provides convenient and quick travel service. As a result, it reduces the market of taxis fur-
ther and has a powerful impact on the operation of taxis. In the age of internet, traditional
taxi companies have fallen behind in competition due to outdated technology and lack of
personalized data. Previously all taxi services in China are provided by taxi companies. The
emergence of DiDi broke the monopoly of the industry. Everyone can provide online car-
hailing as long as he or she has a car and a driver’s license. Equipped with data collected
directly from the mobile devices, DiDi is able to deliver better personalized services and
gain market share [29]. However, frequent driver crimes recently have led people to question
the safety of online car-hailing services [40]. Therefore, how to improve taxis’ operating
status has become an urgent problem. The key lies in how to resolve the unbalanced rela-
tionship between the passenger travel demand and the empty carrying phenomenon for
taxi drivers, that is, how to inform taxi drivers where passengers locate, without personal-
ized location data from the mobile devices. Taxi passenger flow prediction presents a good
solution to this challenge.

Traffic flow prediction in general is of great significance in lots of applications, such as
urban anomaly detection and city road network planning, and has sparked high attention of
many scholars as an important means to solve urban traffic problems. However, due to the
complexity of taxi trajectory data, which contains pick up and drop off locations and times,
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taxi id, distance traveled, fare, tip amount, and so on, there are relatively few studies on taxi
passenger flow prediction. Predicting taxi passenger flow combining the characteristics of
current taxi operating status is even more rare. As mentioned above, taxis’ operating status
undergoes major changes recently.

According to current taxis’ operating status, we first analyze taxi travel behavior based
on massive taxi trajectory data. Then we refine inert travel behavioral from two types of
subjects involved in taking taxi events, taxi drivers and taxi passengers. Utilizing a deep
learning algorithm, we present a travel behavioral inertia-based approach TBI2Flow for
long-term taxi passenger flow prediction.

The major contributions of this work can be summarized as follows:

– We propose the definition of Travel Behavioral Inertia (TBI) which contains Driver
Inertia (DI) and Passenger Inertia (PI) and verify its effectiveness in long-term taxi
passenger flow prediction.

– We present TBI2Flow that includes data modeling, inertia extracting, and flow predic-
tion and uses multiple features (TBI, location, time, weather, and flow) to predict taxi
passengers’ distribution over different time intervals.

– We design a simulation experiment using a real taxi dataset. The results show that
TBI2Flow has great value for taxi operation, as well as urban traffic planning in general.

We also conduct extensive comparative experiments from three aspects, which are
with or without TBI feature, regression algorithms selection, and prediction approaches
comparing, to demonstrate the effectiveness of TBI2Flow.

The remainder of this paper is structured as follows. In Section 2, we review the related
work according to different traffic flow prediction methods categories. Section 3 mainly
illustrates our proposed approach TBI2Flow in detail. Data description and experiment
results are displayed in Section 4. Following that, we verify the effectiveness of TBI2Flow
from three aspects in Section 5. Finally, we give the conclusions of our work and offer
further discussion on open issues in Section 6.

2 Related work

Traffic flow prediction plays an essential role in tackling urban traffic problems and is
valuable in a large quantity of applications, which embody smart driving [38], modeling
spatiotemporal structure of taxi services [5, 20, 39], building passenger-finding strategies
[18, 19] and other applications [16, 17, 23]. Prediction methods can be classified into short-
term prediction and long-term prediction[26], parametric approaches and non-parametric
approaches [22]from different perspectives.

2.1 Short-term prediction and long-term prediction

According to the time span of predictive objective, traffic flow prediction is roughly divided
into short-term prediction and long-term prediction. The predictive period of short-term
prediction is usually less than 30 minutes, and long-term prediction can span a day, a week,
or even longer [26].

Faced with the fast changing traffic flow data, most of the previous literature has
focused on short-term prediction. Zhang et al. [41] propose a deep learning-based predic-
tion model for spatial-temporal data. Yang et al. [37] put forward a novel model, stacked
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auto-encoder Levenberg-Marquardt model, which is a type of deep architecture of neural
network approach aiming to improve forecasting accuracy. Zhao et al. [43] adopt the Gaus-
sian Process Dynamical Model (GPDM) to a fourth-order GPDM which is rather suitable
for traffic flow prediction.

The complexity and variety of traffic conditions cause great impediments to the research
of long-term prediction. What’s more, long-term prediction has crucial practical signifi-
cance because short-time traffic flow prediction will fail under some conditions especially
network delay. Unfortunately, there are few related research on long-term prediction. Most
current long-term prediction methods are based on traffic flow time series analysis, which
mines flow laws from historical data with the support of large-scale data. Considering traf-
fic flow as a continuous time stochastic process, Fei et al. [26] propose an non-parametric
regression-based long-term prediction model. They employ auto-correlation analysis to ana-
lyze the traffic flow and select the state vector. Besides, they further use the functional
principal component analysis as distance function to compute proximity between different
time series. Zhong et al. [13] propose the concepts of traffic flow pattern similarity and
repeatability. They split traffic flow series into basis series and deviation series. Besides,
He et al. [11] employ social media features for long-term traffic prediction. They find that
social activity and traffic activity have a strong correlation. All the above methods, whatever
time series-based or social media-based, only focus on extracting information contained in
the statistical data while ignoring the behavioral characteristics of traffic participants. The
main innovation of our work is to include taxis and passengers behavior into the predic-
tion model and experimental results show that our method can greatly improve prediction
accuracy.

2.2 Parametric techniques and non-parametric techniques

From the perspective of predictive techniques, traffic flow prediction can be classified
into parametric techniques and non-parametric techniques. Parametric approaches are also
known as model-based methods. Model parameters are often computed with empirical
data and model structure is predetermined based on certain theoretical assumptions [22].
Common parametric techniques include AutoRegressive Integrated Moving Average model
(ARIMA), exponential smoothing [32], and historical average [12]. Particularly, ARIMA
has become one of the most common parametric prediction approaches since the 1970s. It
is a classical time series prediction method proposed by Box and Jenkins [3]. ARIMA treats
the data sequence formed by the predicted object over time as a random sequence, and uses
a mathematical model to approximate the sequence. ARIMA includes moving average pro-
cess (MA), autoregressive process (AR), autoregressive moving average process (ARMA),
and autoregressive moving average mixing process (ARIMA) depending on whether the
original sequence is stationary or not. ARIMA model has been widely used in short-term
traffic predictions, such as traffic flow, travel time, speed, and occupancy [2, 10]. In addi-
tion, many existing studies proposed variants of the ARIMA model, such as the seasonal
ARIMA [33].

For non-parametric techniques, model structure and parameters are not fixed. With the
rise of data mining and science, many techniques have been widely adopted recently,
such as Support Vector Machine for Regression (SVR) [34], Kalman filtering models
[31], Neural Networks (NN) [27] and K-Nearest Neighbor (KNN) [9]. Among these
techniques, SVR is widely used for traffic flow prediction, but it may has a bad per-
formance when dealing with a large numbers of variables because of the choice of the
appropriate kernel function for the practical problem [30]. The KNN algorithm is capable of
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non-parametric predictions without prior knowledge given the k parameter. However, KNN
requires long computation time if the historical data increases [24]. NN usually can obtain
good results and it is suitable for solving complex non-linear problems without prior knowl-
edge regarding the relationships between input and output variables. The most commonly
used model in artificial neural networks methods is Multi-Layered Networks (MLNN)
model. It has become popular as a traffic flow prediction model with its excellent prediction
performance.

Existing methods for taxi passenger flow prediction only focus on the relevance of the
data but neglect the subjective factors of the individual. The time span of the data used
by these methods is usually short and can’t reflect the preference of taxis and passengers.
Differing from the existing researches, we take into account the inertia characteristics of
taxis and passengers. We will propose the concept of TBI and utilize it to conduct passenger
flow prediction. Combined with other features, TBI will ultimately improve the accuracy of
traffic flow prediction.

3 Design of TBI2Flow

In order to build an accurate and effective taxi passenger flow prediction framework, we
perform three steps as shown in Figure 1. In step 1 data modeling, we apply trajectory
extraction, time division, and region division to the taxi GPS records for flow prediction
tasks. Step 2 inertia excavation is the key innovation of our framework. We will explain in
detail what TBI is, which integrates its motivation, definition, and quantitative methods, to
pave the way for passenger flow prediction. In step 3 flow prediction, we combine TBI with
four other features (location, weather, time, and flow) to predict taxi passenger flow based
on a deep learning algorithm.

Figure 1 Framework of TBI2Flow
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3.1 Datamodeling

Before data modeling, we conduct general data preprocessing operations, which include
data cleaning, data matching, and data organizing. Data cleaning is to remove errors and
outliers and to filter out useless records of raw GPS data. Traffic data records are discrete
sample points and may not match urban road networks. We utilize map matching to align a
sequence of observed vehicle positions with the road network on a digital map.

3.1.1 Trajectory extraction

From the acquired taxi GPS records, we can get longitude, latitude, data, time, and sta-
tus of each taxi, which indicate the taxi’s geographical location and the taxi is occupied
or vacant at different time points. Each taxi is equipped with an on-board GPS positioning
equipment, which generates an unique ID number. The taxi carrying a GPS device sends
a signal to the data center every 20 seconds. In order to achieve the goal of traffic flow
prediction, we need to extract taxi travel trajectories from a huge quantity of discrete GPS
records. We first aggregate GPS records according to unique taxi IDs and then arrange
corresponding position information of taxis in sequence chronologically on the map. Conse-
quently, a continuous series of points on the map represents a taxi trajectory. We distinguish
occupied trajectories and vacant trajectories based on the status field of GPS records
data. Such operation is indispensable for subsequent traffic flow prediction. The trajectory
extraction process is displayed in Figure 2 and we use black and red to denote occupied
trajectory and vacant trajectory respectively. As shown in Algorithm 1, we segment a tra-
jectory by the change of taxi status. The pseudocode offers more details about trajectory
extraction.
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Figure 2 An example of taxi trajectory extraction

3.1.2 Temporal division

Time has a great impact on taxi passenger flow. Therefore, we need to divide the study time
range into multiple time intervals. Time division is an essential operation in conventional
traffic data processing. Common time division methods include regular time division, that
is, to divide the study time range into time intervals with equal length, and irregular time
division, which means to divide the study time range based on traffic flow distribution.
Passenger flow is highly sensitive to time, and the right choice of time division methods
dependents on analyzing goals. According to the objective of this work, passenger flow
prediction, we choose regular time division to divide a day into regular time intervals. The
granularity of time division is also critical. To keep the granularity of passenger flow pre-
diction as fine as possible, we should make the length of a time interval as short as possible.
Meanwhile, time division operation is supposed to follow the principle of keeping taxi tra-
jectories as complete as possible. In our experiments, we choose an hour as a time interval
and use (1) to do time division of taxi trajectory data,

T imet = [tθ, (t + 1)θ), t = 0, 1, . . . , 23 (1)

where t is time interval’s number and θ is the duration of each time interval. We then ana-
lyze the periodicity of passenger flow changes. We first calculate the similarity of seven
days based on passenger flow and divide them into several types. According to the results
of similarity analysis, we divide a week into weekdays and weekends and model them
separately.
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3.1.3 Spatial division

Spatial division is to divide the whole study area into multiple small regions to facilitate
fine-grained analysis. The most common method of spatial division is grid partitioning.1

Urban traffic passenger flow prediction ought to be as fine-grained as possible in spatial
division. Therefore, we first partition the whole study area into grids with a granularity of
longitude and latitude of 0.1. Traffic flow trend varies over different region categories. For
example, traffic flow trend of residential area is obviously different from that of workspace.
In this work ,we consider a factor that is directly related to the target of region passenger
flow prediction, that is, region historical passenger flow. We aggregate the results of above
spatial division to multiple kinds of regions and one kind of regions contains one or more
regions. In this way, we can perform a fine-grained passenger flow prediction on multiple
region types.

3.2 TBI excavation

As mentioned earlier, taxi operating status undergoes considerable changes in recent years
due to the impact of DiDi and Uber. In consequence, we consider combining characteristics
of taxi operation to predict passenger flow. In real life, people usually has their own habits.
For example, they like listening to a singer’s songs, or visit several hotels frequently, or
always go to a same store to buy something they like. Such kind of behavior is also reflected
in travel behavior. For instance, people often take the taxi in fixed places, such as homes and
companies. At the same time, taxi drivers usually pick passengers up in several fixed areas.
In this paper, we try to extract these preference behavior which we called inertia features,
and employ them to predict taxi passenger flow. In the composition of traffic flow, the
proportion of inert travel is higher and much easier to predict when compared with random
travel. Therefore, based on analysis of taxi travel behavior of the two types of participants,
taxi drivers and passengers, we define Travel Behavioral Inertia as follows:

Definition Travel Behavioral Inertia (TBI) is a vector consists of Driver Inertia (DI)
component and Passenger Inertia (PI) component, as shown in the following equation:

T BIt = {DIt , P It }, t = 0, 1, ..., 23 (2)

where t denotes time interval’s number.

Driver inertia DI stands for inert taxi drivers who tend to pick up passengers at certain
places frequently. Drivers of taxis that meets the conditions in following equations and
equation are regarded as inert drivers.

DI(u,t) =
{
1, F req(u,t) ≥ θδ − Aver(u,t)

0, F req(u,t) < θδ − Aver(u,t)
δ ∈ (0, 1] (3)

Aver(u,t) =
∑

u∈U(t)
F req(u,t)

|U(t)| (4)

1This method is not only simple, but also can meet the requirements of most traffic researches. Other
methods embody Voronoi tessellation division based on particles and division based on urban road net-
work framework. Researches with special spatial needs can consider the above two complex spatial division
methods.
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where u stands for a taxi and U(t) is the complete set of all taxis in t th time interval. Note
that we employ unique taxi ID to distinguish each taxi. Freq(u,t) presents the frequency of
the taxi u pick up passengers at a same place in t th time interval. θ is the duration of a time
interval. δ should be adjusted according to concrete time intervals and during the adjustment
process, we ought to ensure Freq(u,t) > 0. The number of inert drivers in a region are
regarded as DIt feature, as shown in (5). For example, driver A has pick up passengers in
a certain region for 5 times in t th time interval, and the threshold we set is 4, so driver A

can be regarded as a inert driver. If there are K inert drivers in a region, the DIt feature can
be set to K . After given the definition of DI, we identify DI in each time interval using the
pseudocode shown in Algorithm 2.

DIt =
∑

u∈U(t)

DI(u,t) (5)

DI stands for inert taxi drivers who

Passenger inertia PI indicates inert passengers who tend to take taxies in a particular
region, measuring the taxi demand of the region. Due to the lack of public transportation,
the taxi demand in some regions is significantly higher than others. To determine the bound
of the taxi demand, we analyse the historical data. The historical passenger flow is a typical
time series data which fluctuates within a certain range, and has stable periodicity. There-
fore, we employ the ARIMA model to predict the passenger flow of a region in a time
interval. After that, we calculate PI based on the prediction results of ARIMA. PI considers
three factors, the maximum, the minimum and the average of prediction results at a cer-
tain time interval which are denoted as max(t), min(t), and aver(t) respectively to estimate
passenger flow stability. As displayed in (6), PI is the linear combination of the above three
factors and α, β, γ are the weights of max(t), min(t), and aver(t) which are determined by
grid-based search algorithm.

PIt = [max(t),min(t), aver(t)] [α, β, γ ]T (6)

Based on the definition of TBI, we can excavate DI and PI features data from taxi
trajectory for passenger flow prediction.
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3.3 Passenger flow prediction

Apart from TBI features we proposed, other important features also have a great impact on
passenger flow prediction and we extract them based on travel behavior analysis.

3.3.1 Time

Time plays an important role in passenger flow prediction. Taxi passenger flow is changing
constantly because urban residents travel frequency is affected greatly by time. To be spe-
cific, passenger flow during the day is higher than that at night. Meanwhile, passenger flow
on weekdays is more compared with that of weekends and holidays. So it’s essential to take
into account of temporal factor for passenger flow prediction. We divide the day into 24
time intervals and number them chronologically.

3.3.2 Location

As we know, the probability of traffic congestion occurring in the city center is gener-
ally higher. While remote areas are much less likely to suffer from serious traffic problem
Obviously, passenger flow has a strong tie with geographical positions. Therefore, it’s vital
to consider location feature in passenger flow prediction. We build independent prediction
models for each kind of regions based on spatial division.

3.3.3 Weather

In real life, we usually consider sunny day is suitable for going out to picnic and watching
a movie at home is more comfortable when it’s raining. Weather affects people’s travel
choices, and consequently their choice of transportation. For example, people may choose
to ride a bicycle in clear, windless weather, and taxi becomes a much more compelling
option under bad weather condition. Similar to most traffic flow prediction studies, we also
consider weather factor in passenger flow prediction. We classify the weather into three
main categories, which are sunny, cloudy, and rainy, and quantified them as 0.5, 0.3 and 0.1
respectively.

3.3.4 Flow

As introduced in the section of related work, researchers apply historical flow data to predict
traffic flow. Furthermore, traditional parametric techniques rely solely on historical data
to conduct flow prediction, such as ARIMA [10, 28] and Bayesian dynamic model [6]. In
other words, historical flow data is the most relevant and straightforward factor related with
future passenger flow. In this work, we use the flow data in the corresponding time interval
in the previous day as the measure of historical flow data.

3.3.5 MLNN prediction

Multi-Layered Neural Network is an algorithm that roughly mimics the design of the human
brain to identify patterns. It attempts to use multiple processing layers containing complex
structures or multiple non-linear transformations to learn high-level abstraction of data. It
has a strong performance in learning the relationship between features, which not only can
be used for classification problems, but also widely applied in the studies of regression
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problems, such as passenger flow prediction. The patterns that a neural network can rec-
ognize are numerical forms contained in vectors. Therefore, all real-world data including
images, sounds, texts, time series, and so on, must be converted into numerical values. So
do location, time, weather, TBI. In this work, we employ MLNN to learn multiple fea-
tures embodying TBI feature to construct multi-feature passenger flow prediction model to
predict urban taxi passenger flow.

The regression effect of MLNN is highly dependent of good parameter tuning, so we
train the prediction model various times and make detailed adjustments. The number of
hidden layers and the number of neurons in each layer are two most significant parameters
and they have corresponding value ranges.We perform comparative experiments to optimize
their values for the best prediction performance. In order to evaluate the generalization
error of the algorithm, we employ the hold-out method to divide the dataset into training
set and testing set, as well as validation set. The training set consists of 60 percent of the
dataset. The rest data is divided into the testing set and validation set, each with 20 percent
respectively. Based on grid search, we determine the number of hidden layers as 4 and the
number of neurons in each layer as 30. The maximum number of iterations is 1000. To avoid
over-fitting, we add L1 and L2 regular constraints in our model and the strength is set to
0.01. The optimizer used in our network is proximal adagrad optimizer and the activation
function is Relu function. We use the batch gradient descent to updated parameters and the
learning rate is 0.01. We utilize a machine learning visualization framework, TensorFlow,
to visualize the tuning process [1].

4 Empirical study

In this section, we first describe experimental datasets in detail and present data modeling
results from the aspects of data preprocessing, temporal division, and spatial division. Then
we verify the strong relationship between TBI and taxi passenger flow. Finally we display
the prediction results of our proposed approach TBI2Flow.

4.1 Dataset description and processing

We employ real-world taxi dataset to demonstrate the effectiveness of TBI2Flow and the
datset we used in our experiments is generated by Qiangsheng Taxi Company in Shanghai.
As shown in Table 1, there are 7 main fields in taxi dataset and it covers from 1st to 30th of
April, 2015, which contains 21 weekdays and 9 weekend days. The dataset is generated by

Table 1 Description of taxi GPS records dataset

Field Annotation Example

TaxiId Taxi Id 1901252167

Latitude Coordinates 31.215545

Longtitude Coordinates 121.404068

State 1:occupied, 0:vacant 1

Date Date that GPS record wat sent 2015-04-15

Time Time that GPS record wat sent 10:53:26

Speed Taxi running speed 16.613991
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Table 2 Statistics of travel time’s duration

5th, April 6th, April 7th, April 10th, April

[0, 10) 37.4% 35.19% 34.95% 38.16%

[0, 20) 68.33% 66.24% 65.76% 67.63%

[0, 30) 80.72% 78.92% 78.78% 79.57%

[0, 40) 87.23% 85.56% 85.53% 85.96%

[0, 50) 90.81% 89.45% 89.49% 89.67%

[0, 60) 92.85% 91.88% 91.88% 91.97%

13,685 taxis which accounts for about 25% of the taxis in Shanghai. The dataset contains
34 billion GPS records with a total size of 619 GB.

Apart from cleaning errors of the dataset, we also measure the deviation between the
data and the average and filter out the records which have the largest deviation. In order to
determine an appropriate temporal division granularity, we first run a cumulative statistical
analysis of the duration of taxi travel time and select the results of four days in Table 2. These
four days include three weekdays and one weekends, they are Sunday, Monday, Tuesday,
and Friday respectively.

We can obtain from the table that for all days, the proportion of trajectories whose dura-
tion of travel time is less than one hour is more than 90% of the total number of trajectories.
Therefore, to follow the principle of trajectory integrity and fine-grained division, we set
the duration of a time interval in temporal division as one hour. Then we calculate the sim-
ilarity of seven days of a week using passenger flow and display the results in Table 3. We
can get from the table that similarity between weekdays is over 90%. So is the similarity
between weekends. However, similarity between weekdays and weekends is relatively low,
which provide the basis of days division. From Figure 3 we can intuitively observe the dif-
ferences in passenger flow trend between weekdays and weekends. Especially in Figure 3a,
there exists a flow trough at around ten o’clock of weekdays, while the corresponding time
of the weekends is a flow peak. The differences of peaks between weekdays and weekends
are accessible. People usually rise early to work on weekdays. Therefore, the flow peak of
weekdays appear at around eight o’clock in general. Meanwhile, people tend to stay home
at weekends. Thus the delay of flow peak of weekends is reasonable.

Table 3 Similarity of seven days in a week

Week Mon Tue Wed Thur Fri Sat Sun

Mon 1 0.985 0.9611 0.979 0.9245 0.868 0.881

Tue 0.985 1 0.964 0.977 0.935 0.876 0.891

Wed 0.961 0.964 1 0.979 0.973 0.825 0.899

Thur 0.979 0.977 0.979 1 0.967 0.866 0.908

Fri 0.924 0.935 0.973 0.967 1 0.808 0.894

Sat 0.868 0.876 0.825 0.866 0.808 1 0.908

Sun 0.881 0.891 0.899 0.908 0.894 0.908 1
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Figure 3 Passenger flow trend of seven days in a week at three typical regions

We select Xuhui District, one of the most prosperous areas in Shanghai, as the study
area, which is located at 31.19◦N to 31.26◦N and 121.38◦E to 121.45◦E. According to
the method introduced in spatial division, we first divide the whole study area into 49 grids
as displayed in Figure 4, in which a grid stands for a region, and then group them into
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Figure 4 Grid-based spatial division of Xuhui district

ten categories based on average flow distribution of regions. Theses ten categories cover a
variety of urban functional regions, such as Shanghai Railway Coach Station, Xuhui District
Government, Jiuzhou Living Square, and can support comprehensive traffic travel behavior
analysis.

4.2 Excavating inert travel behavior

Based on the analysis of taxi travel behavior, we excavate TBI from real-world taxi GPS data
after data modeling. What is the relationship of TBI features and region passenger flow? Is
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Table 4 Relevance analysis of TBI (DI, PI) and passenger flow

Feature No.1 Region No.2 Region No.3 Region No.4 Region No.5 Region

weekday weekend weekday weekend weekday weekend weekday weekend weekday weekend

DI-Flow 0.275 0.827 0.3 0.814 0.612 0.939 0.3 0.919 0.443 0.955

PI-Flow 0.915 0.52 0.969 0.526 0.959 0.78 0.946 0.925 0.969 0.802

TBI effective at taxi passenger flow prediction? To answer these questions, we conduct an
in-depth analysis of the framework. We measure the relevance between DI and passenger
flow, PI and passenger flow respectively, using Correlation Coefficient (CC) as the metric.
Results are displayed in Table 4. We can gain from the table that the relevance between PI
and passenger flow on weekdays can be up to 90% and the relevance is relatively low on
weekends, while it still can reach 80% at some regions. However, the relevance of DI and
passenger flow is exactly the opposite of that of PI, which can reach over 80% on weekends
and on weekdays the relevance at certain regions is up 60%. In Figure 5, the curves of PI and
passenger flow are close and DI shows a similar trend as passenger flow. We can conclude
that not only does PI and DI features demonstrate strong correlations with passenger flow
data, their contributions also complement each other perfectly.

4.3 Predicting passenger flow

In addition to TBI features, we also extract multi-dimensional features related to taxi
travel behavior, including time, weather, and flow. To account for the spatial variations, we
build independent prediction models for each region. Using the MLNN model described in
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Figure 5 Comparison of TBI (DI, PI) with passenger flow on weekdays and weekends
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Figure 6 Prediction results of TBI2Flow at three typical regions

Section 3.3, we predict taxi passenger flow of the study area and the result of three repre-
sentative regions are presented in Figure 6. By comparing passenger flow trend of predicted
data with that of real data, the predictive power of the TBI2Flow framework is full display.
For instance, in Figure 6a and especially Figure 6c, the passenger flow trend of real data has
two flow peaks at 13 and 20, two troughs at 4 and 17, which are all accurately predicted by
TBI2Flow.
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5 Performance evaluation

In this section, we conduct extensive comparative contrast experiments to verify the effect
of our proposed approach from three aspects, which embody passenger flow prediction
with TBI and without TBI, comparison of regression algorithms, and comparison among
TBI2Flow, ARIMA, and a Deep Learning Architecture (DLA) [14]. We utilize three indi-
cators that are commonly used in traffic flow prediction to evaluate the effectiveness of
algorithms, including CC, MAE, and RMSE.

– Correlation Coefficient (CC). CC can reflect the degree of correlation between vari-
ables. And as the degree of correlation increases, the value of CC gets closer to 1. In
traffic flow prediction, CC is regarded as an important reference for accuracy by ana-
lyzing the linear correlation of predicted data and real data. We define CC in this paper
as the following equation:

CC =

n∑
i=1

(pi − p)(ri − r)

√
n∑

i=1
(pi − p)2

√
n∑

i=1
(ri − r)2

(7)

where pi and ri denote predicted values and real values respectively.
– Mean Absolute Error (MAE). MAE is the average of the absolute values of the devia-

tion between all the individual predicted values and real ones. The smaller the value of
MAE, the better the performance of the algorithm. The definition of MAE is given by:

MAE = 1

n

n∑
i=1

|pi − ri | (8)

– Root Mean Square Error (RMSE). The deviation of predicted data and real data can
alternatively be measured by RMSE. Its calculating formula is shown as follows:

RMSE =

√√√√√
n∑

i=1
|pi − ri |2

n
(9)

5.1 TBI contributions

In empirical study, we illustrated the relevance between TBI features and taxi passenger
flow and draw the conclusion that there exists a strong linear correlation of TBI and pas-
senger flow. Then how does TBI perform in taxi passenger flow prediction experiments?
In this section, we conduct prediction experiments with TBI features data and without TBI
features data respectively. The result in Figure 7 demonstrates that adding TBI features
to the input can significantly improve the prediction accuracy. Meanwhile, the values of
MAE and RMSE also drop after adding TBI features. In Table 5, we offer a detailed and
quantitative illustration of TBI’s contribution in prediction accuracy and stability, where
CC represents the percentage of improving prediction accuracy. MAE and RMSE rep-
resents the percentage of reducing predictive error. Even though the field of passenger
flow prediction is relatively matured, prediction methods can achieve a high accuracy,
the addition of TBI features can significantly improve the value of CC. What’s more,
the improvement in prediction deviation is even greater. We can conclude that TBI are
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Figure 7 TBI contributions analysis
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Table 5 TBI contributions analysis of taxi passenger flow prediction

Region CC MAE RMSE

weekday weekend weekday weekend weekday weekend

No.1 region 4.34% 5.24% 23.6% 27.95% 29.74% 25.35%

No.2 region 1.17% 3.56% 20.04% 24.73% 13.32% 21.08%

No.3 region 2.59% 2.17% 32.42% 37.45% 28.47% 32.05%

indispensable features in taxi passenger flow prediction due to the high correlation with
passenger flow and have outstanding contributions in predicting passenger flow. In partic-
ular, to verify that our proposed DI features can complement PI features constructed by
ARIMA, we further verify the performance of the model without DI features, as shown in
Figure 8. The result show strong evidence of DI’s contribution to the accuracy of prediction
results.

5.2 Comparison of regression algorithms

Having demonstrated the effectiveness of our proposed features, we now compare different
learning algorithms. Like any machine learning problem in general, models and features
determines the upper limit of the performance, but a good regression algorithm is also criti-
cal. While there is no universal algorithm for prediction. Different algorithms will differ in
effectiveness for different data sets.

In this subsection, we select three common regression algorithms, including SVR, Back
Propagation Neural Network (BPNN), and Gradient Boosting Decision Tree (GBDT) to
compare with MLNN in prediction performance. Figure 9 illustrates the comparison results
of four algorithms. GBDT has the worst performance, with lower accuracy and higher
MAE and RMSE. Compared with GBDT, TBI-based SVR and BPNN performed much bet-
ter. However, the prediction accuracy and stability of the above two algorithms are lower
than that of MLNN. In summary, based on the research background of this paper, TBI-
based MLNN has significant advantages over taxi passenger flow prediction compared with
common regression models.

5.3 Comparison of prediction approaches

In the previous subsection, we conduct assessment of each part of our proposed approach
TBI2Flow and their validity is verified. However, the sum of partial optimum isn’t
supposed to be the global optimum. Therefore, it’s necessary to perform the assess-
ment of the overall approach’s effectiveness. Here we choose two traffic flow pre-
diction methods for comparison experiments, which embody ARIMA and DLA. The
thought of ARIMA is to learn the law of data changing over time from historical
data and then utilize the law to predict future data, that is, ARIMA is used to predict
time series. As a simple prediction model, ARIMA can predict future passenger flow
based on historical data alone and is widely used in traffic flow prediction. Another
algorithm, DLA, is a deep learning architecture proposed by Huang et al. for traf-
fic flow prediction. The architecture has two steps. In the first step, multi-dimensional
features are extracted from data by Deep Belief Network (DBN). The features are
employed to predict traffic flow using SVR. The number of features in our experiments
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Figure 9 Comparison of four regression algorithms, including SVR, BPNN, GBDT and MLNN

is set as 5. This architecture is similar to ours because they are all based on deep learning
algorithms.

Prediction experiments of the three algorithms is based on the same dataset, that is, the
preprocessed Shanghai taxi trajectory data. Results of prediction evaluation are presented in
Figure 10. Compared with prediction methods based on deep learning algorithms, ARIMA
has far less prediction performance, which relies solely on historical data to simulate trends.
At some regions its accuracy is even less than 80%, which is a quite poor result in taxi
passenger flow prediction. What’s worse, ARIMA’s prediction results is extremely unstable.
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Figure 10 Comparison of TBI2Flow, ARIMA, and DLA

An potential explanation is that ARIMA model only considers a single factor, data trends,
and neglects some other significant factors. In contrast, the prediction performance of DLA
is respectful, but our proposed TBI2Flow is consistently better. For example, in terms of
accuracy, the basic difference between DLA and TBI2Flow at each region is around one
percentage point. DLA is a algorithm proposed for short-term passenger flow prediction
and has poor expansibility and adaptability to long-term passenger flow prediction of our
work. To sum up, the validity of TBI2Flow on long-term taxi passenger flow prediction is
well demonstrated.
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6 Conclusion and future work

In this paper, we put forward a taxi passenger flow prediction framework TBI2Flow. The
approach is based on TBI features, containing DI feature and PI feature, which are exca-
vated from taxi trajectory data according to travel behavior analysis. The strong relationship
between TBI and the the passenger flow is verified by statistic analysis. We conduct
extensive experiments and the results demonstrate that TBI2Flow is remarkably effec-
tive to predict long-term taxi passenger flow. Our TBI2Flow has considerably practical
significance in traffic management, especially for taxi industry and smart city construction.

There are multiple venues for future work. Real-time is extremely essential for passenger
flow prediction. Therefore, we will construct a real-time prediction architecture based on
TBI2Flow and even build a real-time prediction system to provide effective suggestions for
urban taxi drivers and passengers. We also will focus on further refinement of passenger
flow prediction granularity.
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support vector machine theory. Transportation Research Part C Emerging Technologies 27(2), 219–232
(2013)

31. Wang, Y., Papageorgiou, M., Messmer, A.: Real-time freeway traffic state estimation based on extended
kalman filter: a case study. Transp. Sci. 41(2), 167–181 (2007)

32. Williams, B., Durvasula, P., Brown, D.: Urban freeway traffic flow prediction: Application of seasonal
autoregressive integrated moving average and exponential smoothing models. Transp. Res. Rec. 1644(1),
132–141 (1998)

33. Williams, B.M., Hoel, L.A.: Modeling and forecasting vehicular traffic flow as a seasonal arima process:
Theoretical basis and empirical results. J. Transp. Eng. 129(6), 664–672 (2003)

34. Wu, C.H., Ho, J.M., Lee, D.T.: Travel-time prediction with support vector regression. IEEE Trans. Intell.
Transp. Syst. 5(4), 276–281 (2004)

35. Xia, F., Rahim, A., Kong, X., Wang, M., Cai, Y., Wang, J.: Modeling and analysis of large-scale urban
mobility for green transportation. IEEE Trans. Ind. Inf. 14(4), 1469–1481 (2018)

36. Xia, F., Wang, J., Kong, X., Wang, Z., Li, J., Liu, C.: Exploring human mobility patterns in urban
scenarios: a trajectory data perspective. IEEE Commun. Mag. 56(3), 142–149 (2018)

37. Yang, H.F., Dillon, T.S., Chen, Y.P.: Optimized structure of the traffic flow forecasting model with a deep
learning approach. IEEE Transactions on Neural Networks and Learning Systems PP(99), 1–11 (2016)

38. Yuan, J., Zheng, Y., Xie, X., Sun, G.: T-drive: Enhancing driving directions with taxi drivers. IEEE Trans.
Knowl. Data Eng. 25(1), 220–232 (2013)

39. Yue, Y., Zhuang, Y., Li, Q., Mao, Q.: Mining time-dependent attractive areas and movement patterns
from taxi trajectory data. In: International Conference on Geoinformatics, pp. 1–6 (2009)

World Wide Web (2020) 23:1381–14051404

https://doi.org/10.1177/1687814016628397


40. Zhang, F., Zhang, L.: Regulation of car-hailing against the background of “Internet Plus” in China. In:
2017 2nd International Seminar on Education Innovation and Economic Management (SEIEM 2017),
Atlantis Press (2017)

41. Zhang, J., Zheng, Y., Qi, D., Li, R., Yi, X.: Dnn-based prediction model for spatio-temporal data.
In: Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic
Information Systems, p. 92. ACM (2016)

42. Zhang, L., Lu, J., Zhou, J., Zhu, J., Li, Y., Wan, Q.: Complexities’ day-to-day dynamic evolution analysis
and prediction for a didi taxi trip network based on complex network theory. Mod. Phys. Lett. B 32(09),
1850,062 (2018)

43. Zhao, J., Sun, S.: High-order gaussian process dynamical models for traffic flow prediction. IEEE Trans.
Intell. Transp. Syst. 17(7), 2014–2019 (2016)

44. Zhou, X., Bo, W., Jin, Q.: Analysis of user network and correlation for community discovery based
on topic-aware similarity and behavioral influence. IEEE Transactions on Human-Machine Systems
PP(99), 1–13 (2017)

45. Zhou, X., Liang, W., Kevin, I., Wang, K., Huang, R., Jin, Q.: Academic influence aware and multidimen-
sional network analysis for research collaboration navigation based on scholarly big data. IEEE Trans.
Emerg. Top. Comput. (2018)

46. Zhou, X., Zomaya, A.Y., Li, W., Ruchkin, I.: Cybermatics: Advanced strategy and technology for cyber-
enabled systems and applications (2018)

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

World Wide Web (2020) 23:1381–1405 1405


	TBI2Flow: Travel behavioral inertia based long-term taxi passenger flow prediction
	Abstract
	Introduction
	Related work
	Short-term prediction and long-term prediction
	Parametric techniques and non-parametric techniques

	Design of TBI2Flow
	Data modeling
	Trajectory extraction
	Temporal division
	Spatial division

	TBI excavation
	Definition
	Driver inertia
	Passenger inertia


	Passenger flow prediction
	Time
	Location
	Weather
	Flow
	MLNN prediction


	Empirical study
	Dataset description and processing
	Excavating inert travel behavior
	Predicting passenger flow

	Performance evaluation
	TBI contributions
	Comparison of regression algorithms
	Comparison of prediction approaches

	Conclusion and future work
	References


