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Abstract
Internet of things (IoT) have entirely revolutionized the industry. However, the cyber-
security of IoT enabled cyber-physical systems is still one of the main challenges. The
success of cyber-physical system is highly reliant on its capability to withstand cyberattacks.
Biometric identification is the key factor responsible for the provision of secure cyber-
physical system. The conventional unimodal biometric systems do not have the potential to
provide the required level of security for cyber-physical system. The unimodal biometric
systems are affected by a variety of issues like noisy sensor data, non-universality, sus-
ceptibility to forgery and lack of invariant representation. To overcome these issues and to
provide higher-security enabled cyber-physical systems, the combination of different bio-
metric modalities is required. To ensure a secure cyber-physical system, a novel multi-modal
biometric system based on face and finger print is proposed in this work. Finger print match-
ing is performed using alignment-based elastic algorithm. For the improved facial feature
extraction, extended local binary patterns (ELBP) are used. For the effective dimensionality
reduction of extracted ELBP feature space, local non-negative matrix factorization is used.
Score level fusion is performed for the fusion. Experimental evaluation is done on FVC 2000
DB1, FVC 2000 DB2, ORL (AT&T) and YALE databases. The proposed method achieved
a high recognition accuracy of 99.59%.
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1 Introduction

Cyber-physical systems (CPS) have recently drawn a significant attention. The recent
advances in technology have further led emphasis on the need of CPS. Cyber security is the
critical challenge in the IoT enabled CPS [57, 58]. Cyber security is threatened by cyber
attacks. Thus, for the successful deployment of secure CPS, cyber security is a critical fac-
tor. Biometric identification systems are one of the key identification systems in CPS [8,
14, 31, 59]. The success of CPS is highly reliant on its capability to withstand the cyber
attacks. To overcome cyber attacks and provision of highly secure CPS, fusion of different
biometric modalities is the need of hour. The main challenge in the design of highly accu-
rate and secure deployment of biometric systems is the unavailability of high-quality data
to ensure consistently high recognition results. Lighting conditions, distance to surveillance
camera, equipment and operator training can significantly affect the performance. These
limitations of unimodal biometrics can be alleviated by multi-modal biometrics to provide
reliable authentication system [27, 48].

The consolidation of multiple biometric modalities can result in a more accurate iden-
tification system [11, 41, 42, 51]. Accuracy enhancement is the core motivation behind
multi-biometric systems [17]. Accuracy of multi biometric systems is alleviated due to two
reasons. Firstly, it reduces the overlap between the intra class distribution and effectively
increases the dimensionality of the feature space [47]. Discriminatory information of a sin-
gle trait can be affected by various reasons like noise, imprecision, and inherent drift due
to aging [46]. Along with accuracy multi-modal biometrics have other advantages over uni-
modal like alleviation of the non-universality problem and reduction of enrollment errors,
high degree of flexibility for user authentication and increased resistent to forgery [33].
Multi-modal biometrics are implemented by the fusion of unimodal biometrics. For the effi-
cient performance of multi-modal biometric system an effective biometric fusion approach
is required for the fusion of the information from multiple sources [22].

In this paper, the face and finger print biometric traits are fused to construct a multi-
modal biometric recognition system. These two modalities are selected as they are most
natural and acceptable means of biometrics. The elastic alignment algorithm is used to
extract features from finger image. While ELBP is used for facial features extraction. Fusion
of the chosen modalities is performed at the matching score level. The success of face recog-
nition is highly reliant on the representation of high-dimensional face space. An efficient
way is to find intrinsically low-dimensional subspace that effectively represent the underly-
ing data. Local non-negative matrix factorization (LNMF) for dimensionality reduction of
face subspace. LNMF not only achieves the dimensionality reduction by part based repre-
sentation, but also focuses to preserve the local information, adds sparsity, retian only the
most significant basis and provides more true parts based representation. As the face space
have reminiscent features like lips, eyes, and nose, etc. [35–37]. So, LNMF completely suits
the face feature space. The main motive of LNMF is to find reduced subspace without using
class information. The non-negativity constraint leads to a sparsely distributed data cod-
ing that might be useful for extracting parts-based representation of data patterns with low
feature dimensionality [52]. The major contributions of this paper are as follows:

– Effective feature extraction ELBP is used for facial feature extraction. In contrast to
conventional local binary pattern(LBP) that only encodes the local information, ELBP
also encodes the additional information that results in more discriminatory features. It
provides more effective feature extraction.

– Improved dimensionality reduction LNMF is used for dimensionality reduction of
face space. In contrast to traditional NMF it not only imparts non-negativity constraint,
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but also highlights and make localized features more clear. As a result in contrast to
NMF, LNMF provides more true parts-based representation.

2 Related work

A lot of work has been done in the field of multi-modal biometrics. Brunelli and Falavigna
proposed a multi-modal biometrics based on the fusion of voice and face. Fusion is per-
formed using weighted geometric average and for normalization hyperbolic tangent is used
[9]. Kittler et al. used a variety of fusion techniques for voice and face. The experimenta-
tion was done on several fusion techniques including sum, product, minimum, median, and
maximum rules and they have found that the sum rule outperformed others. It was found out
that the sum rule is not significantly affected by the probability estimation errors and found
out to be superior [32]. Multi-modal identification based on face and finger was proposed
by Hong and Jain. First the database was pruned via face matching and after that finger
print matching was performed [23]. Ben-Yacoub et al. developed a multi-modal biometric
system based on face and voice. Several fusion techniques were analyzed including support
vector machines, tree classifiers, and multilayer perceptrons. Of all these techniques Bayes
classifies were found to be the optimal method [6]. Ross and Jain developed multi-modal
system by fusion of face, finger print, and hand geometry. Several fusion techniques were
evaluated including sum, decision tree, and linear discriminant-based methods. Sum rule
method outperformed the other paralleled techniques [43]. Komal [50] proposed iris and
finger print fused multi-modal system. The proposed method used minutiae ponts and ridge
to reduce spoofing attacks. The proposed system minimized the spoofing attack because of
the acquisition source nature used for both modalities. Gaussian Mixture Modal (GMM)
based Expectation Maximization (EM) algorithm was used for multi-modal biometric sys-
tem [49]. Lu et al. used a combination of different classifiers for face recognition. The fusion
is performed on match score level.

Chen and Te Chu et al. [12] proposed a biometric system with the combination of face
and iris. The method made use of combination of ORL and CASIA databased for face and
iris respectively. Besbes et al. [7] proposed a prototype multi biometric system with the
integration of finger print and face. The method is proposed to overcome several limita-
tions faced by the face recognition and finger print verification systems as a uni-models.
The integration of these biometric traits resulted in an acceptable response time. Liau and
Isa [38] introduced a multi biometric system, which combined face and iris for person iden-
tification. The fusion is performed at matching score level and enhanced support vector
machine. An enhanced feature selection method was used for the feature extraction of face
and iris. Al-khassaweneh et al. [5] fused finger print and iris for a person identification sys-
tem. Haar wavelet decomposition is used for iris recognition and Euclidean distance from
the bifurcation point to the core point is used for the finger print recognition. Shruthi et al.
[45] performed fusion of finger and finger vein based on a new score level fusion approach.
The performed fusion was a holistic and nonlinear.

3 Proposedmethodology

The proposed biometric recognition system is based on the integration of two biomet-
ric traits i.e. finger print and face. It comprises of two main modules: Enrollment and
Identification. The enrollment module is further divided into two sub-modules: finger print
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enrollment and face enrollment. Finger print enrollment comprises of:- Pre-Processing: for
artifacts exclusion, Center point detection: locating center point, Tessellation: region of
interest is tessellated around the center point, Gabor filtering: enhancing the finger print,
Feature extraction: the digital representation is further processed by a feature extractor to
generate a compact but expressive representation, which are then stored in the database.
Face enrollment:- Pre-processing: for elimination of unwanted information, Feature extrac-
tion: ELBP is used for the extraction of more discriminative features as compared to the
conventional methods. Dimensionality reduction: ELBP extracted features are subjected to
dimensionality reduction using LNMF for better representation as compared to the other
parallel frames. The dimensionality reduced feature vectors are then stored in the database.
Identification module comprises of:- Matching: fusion of individual scores obtained by each
of the modality is performed. The final score is generated by the sum rule. Fused score
is then compared with a pre-defined threshold. The final decision is made on the basis of
thresholding. The overview of the proposed method is shown in Figure 1.

Figure 1 System Overview: The system consists of two main modules. a Enrollment Module:- Finger
print: Pre-Processing: Artifacts are removed from the input images. Core point determination: Orientation
field masking is used for core point determination. Tessellation: Region of interest around the the detected
core point is tessellated. Gabor Filtering: Images are subjected to gabor filtering to make them appro-
priate for feature extraction. Feature Extraction: Features are extracted from Gabor filtered images. The
resulting feature vectors are then stored in the database. Face: Pre-Processing: Artifacts are removed from
the input images. Feature Extraction: Features are extracted using enhanced local binary pattern (ELBP).
Dimensionality reduction: The extracted feature vectors dimensionality is reduced using local non-matrix
factorization(LNMF). The reduced feature vectors are then stored in the database. Identification Module:-
Matching: Extracted features are matched with the feature vectors stored in the database. Score Fusion:
Scores obtained from both the modalities are fused. On the basis of score final identification is performed
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Figure 2 Finger print Enrollment Module:- Pre-Processing: Finger prints are subjected to preprocessing for
removing artifacts. Core point detection: Core point is detected for alignment. Tessellation: The region of
interest around the detected core point is tessellated. Feature Extraction: Tessellated images are subjected to
Gabor filtering in six different directions. The feature are then extracted from Gabor Filtered images. The
resulting feature vectors are stored in the database

3.1 Finger print recognition

The individuality of finger prints have been known since decades. They are utilized widely
for biometric identification due to their invariance and singularity. The main factor responsi-
ble for widespread use of finger prints is the numerous advantages they offer like matching
speed and accuracy [29]. A series of operations are to be performed to make them appro-
priate for the accurate feature extraction [18]. Despite the discriminatory nature of finger
prints, the development of a reliable finger print matching system is sill a very challenging
task. The overview of the proposed finger print module is given in Figure 2.

3.1.1 Pre-processing

The quality of finger print image is adversely affected by the image acquisition modality.
As a result, breaks between different features points occur that later on affect the identifi-
cation process. Furthermore, there is a poor contrast between foreground and highly noisy
background. All these artifacts must be removed before the identification process. Thus
pre-processing is vital to remove all these artifacts.

3.1.2 Center point detection

To make a robust and accurate identification system it is necessary to make finger prints
invariant to rotation, translation and scale. Core point is used as a reference point in this
work. For core point detection, orientation field mask is used. The chosen method exploits
the fact that core point have specific pattern orientation field. These patterns appear as loops
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Figure 3 Core Point Detection: a Determination of core point using orientation field mask. b Detected core
point

in the region containing core points as shown in Figure 3. The mask gives a maximum mag-
nitude of convolution in the region of core point. The angle in the regions a, c ranges from
40 to 90 degrees. While the angle in the regions b, c ranges from 0 to 45. Whenever such
pattern exists in the finger print, it can be regarded as a core point. We empirically gener-
ated a mask to locate and detect similar pattern in the orientation field shown in Figure 3a.
The orientation field mask is shown below in Figure 3a. The response achieved by applying
orientation mask corresponds to the nature of orientation field around that point. Loop field
strength (LFS) in the orientation field is given by:

LFS =
x=s/2∑

x=−s/2

y=s/2∑

y=−s/2

IM[X, Y ]O[i + x, j + y] (1)

where s is mask size, I is the image and M is the mask. LFS is calculated for each element
in the orientation map. After that threshold is applied to the obtained magnitude array.

3.1.3 Tessellation of region of interest

After the successful detection of center point, the next step is to tessellate the region of
interest around the core point. The region of interest corresponds to all the sectors around
the core point. We have divided the region of interest into 80 sectors. Let I (x, y) denote the
gray level at pixel in an finger print image and let I (xc, yc) denote the reference point and
Si as sector.

Si =(x, y)|b(Ti + 1) <=r <b(Ti + 2), θi <= θ <= θi+1, 1<= x <= N, 1<= y <= M

(2)
where Ti = i div k, θi = (i mod k) × (2π/k), r = √

(x − xc)
2 + √

(y − yc)
2 and

θ = tan−1((y − yc)/(x − xc)).

3.1.4 Gabor filtering

Feature vector in this work is composed of the ordered calculation of features of all the sec-
tors specified by tessellation. As a result, feature vectors have local feature information. The
ordered calculation of features from all the sectors helps to attain global feature information.
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Thus, both local and global information is retained by our method. The local information
is captured by feature elements and ordered calculation from the tessellation achieves the
global information among the obtained local features. After having the information from
local features, the next step is to decompose the discriminatory information achieved by
each of the sectors independently. Gabor filters are well known for capturing information
in separate bandpass channels and are capable of converting this information in terms of
spatial frequency by decomposing the information into biorthogonal components [30]. The
Gabor filter in spatial domain is given by:

G(x, y, f, θ) = exp

{
−1

2

[
x′2

δ2
+ y′2

δ2

]}
(3)

x′ = x sinθ + y cosθ (4)

y′ = x cosθ − y sinθ (5)

where f is the frequency of the sinusoidal plane wave along the direction θ from the x-
axis, δx′ and δy′ are the space constants of the Gaussian envelope along x′and y′ axes,
respectively.

The region of interest is obtained by filtering finger print with Gabor filter in six different
directions. These directions are mandatory to capture both local and global information of
the finger print. Filtering with Gabor filter is performed in spatial domain with mask of size
30x30. The convolution with Gabor filtering is the chief contributor to overall execution
time for feature extraction.

3.1.5 Feature vector formation

After filtering, the finger print is appropriate for feature extraction. Absolute deviation from
the mean of Gabor filtered image for every individual sector is calculated. After that aver-
age of the mean from all the sectors obtained as a result of tessellation is calculated. This
average absolute deviation is used as a feature to be stored in feature vector. Feature vector
is formulated as:

Viθ = 1

2

(
∑

ni

|Fiθ (x, y) − Piθ |
)

(6)

where fIθ is the direction filtered image for the tessellated sectors Si , θε =
{0, π

6 , π
3 , π

2 , 2π
3 , 5π

6 } ,the feature value Viθ is s the average absolute deviation from the
mean, ni is the number of pixels in and Piθ is the mean of pixel values of in sector Si .

3.2 Face recognition

3.2.1 Pre-processing

One of the main challenges of face recognition is the illumination variance. Images having
uncontrolled lighting conditions suffer from non-uniform contrast because of the uneven
distribution of the gray levels. In order to equally distribute the intensity level and to increase
the contrast of the input image, histogram equalization [16] is used for the preprocessing.
Figure 4 shows the proposed face recognition system.

h = CDF(V ) − CDFmin

I − CDFmin
(L − 1) (7)
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Figure 4 Face Enrollment Module:- Pre-processing: Removed the artifacts. Feature Extraction: Features are
extracted using Extended Local Binary Pattern. Dimensionality reduction: Extracted features are subjected
to dimensionality reduction using LNMF. The reduced dimensionality templates are then stored in database

where I (x, y) is the input image, M and N corresponds to the total number of rows and
columns, CDF is the cumulative distribution function, V is the pixel value and L refers to
the gray levels.

3.2.2 Feature extraction

LBP has been extensively used for feature extraction in face recognition. It is a pixel based
texture extraction method that has achieved remarkable performance along with low com-
putation cost [24]. The key issue affecting the performance of local appearance based face
recognition is the method of finding the most discriminative facial areas [53]. Recently a lot
of variants of LBP have been developed for the improvement of discriminative capability
of LBP. To further enhance the discriminative power of LBP, additional information about
the local patterns and structures can be encoded [4]. To enhance the discriminative power
of LBP, the ELBP is used in this work [25, 26].

In addition to the comparison between the central and its neighbouring pixels done by
the conventional LBP, ELBP also encodes the exact gray level values using some additional
binary units. ELBP consists of several layers. These layers have various LBP codes that
encode the gray level differences. ELBP first computes the LBP code. The LBP is calculated
by thresholding the 3x3 neighbourhood of all the pixels in image to the central pixel of the
window. The LBP labels computed over this region are used as texture descriptors [21].
Formally, given a pixel at (xc, yc), the resulting LBP can be expressed in decimal form as:

LBPP,R(xc, yc) =
P−1∑

p=0

s(ip − ic)2
P , (8)
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Figure 5 Extended Local Binary Pattern (ELBP) work flow. On first step the conventional LBP is extracted.
The pixels in 3x3 window are compared with the central pixel. The pixel values that are less than central
pixel gets the code of zero and the ones that are greater than central pixels get 1. L1 has the code of sign of
gray level values difference in LBP. 0 is placed in L1 where the difference is negative and 1 is placed where
the difference is positive. In the successive layers the actual code for gray level value is stored

where ic and iP are the gray-level values of the central pixel and P are the surrounding
pixels in the circle neighborhood with a radius R, and function s(x) is defined as:

s(x) =
{
1 if x >= 0
0 if x < 0

(9)

The working mechanism of ELBP is shown in Figure 5. After calculating LBP, the ELBP
stores the code of the absolute sign of gray level difference in the first layer (L1). For a
positive gray level difference, value 1 and for negative gray level difference, value 0 is
stored at L1 respectively. In the successive layers the actual gray level value is encoded.
So, first the absolute sign of gray level difference is encoded on L1 and then the gray level
values in their corresponding binary representations are stored in the following layers [19].
Consequently, LBP does not yield discriminative features for the similar texture features. In
contrast, ELBP encodes the additional information in layers that boosts up its discriminative
power.

3.2.3 Subspace learning

The high-dimensional feature vectors contain the redundant representation of face space.
To achieve more compact face space, feature space can be reduced [54]. This reduction
becomes even more crucial for face recognition system for real-time systems. NMF is used
widely for dimensionality reduction. However, there are two main drawbacks that affect
the dimensionality reduction through NMF. First is the high computational cost associated
with the high dimension matrix reduction and other is repetitive learning that needs to be
performed with the class and training samples update [13]. Subspace learning performs
the dimensionality reduction by mapping data set from high to low dimensionality [44].
To overcome these issues, we reduced the dimensionality of the feature space by LNMF.
LNMF ensures three factors: a) Sparsity: the motive is to make weight coefficient matrix
as sparse as possible. b) Orthogonal basis: ensure that basis are orthogonal by making the
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Figure 6 Comparison of NMF and LNMF. a The dimensionality reduction achieved by NMF. The basis have
a lot of redundant information. b The dimensionality reduction achieved by LNMF. The representations are
both part based and localized. LNMF has also eliminated the redundant information much efficiently

difference between base of minimum redundancy. c) Retain useful information: retain only
the most significant information of the base. LNMF cost function is given as:

F =
∑

i,j

(Vij log
Vij

WHij

− Vij + WHij ) − α
∑

i,j

pij − b
∑

+iqij (10)

where the matrixX is decomposed in toW andH .W refers to the base image i.e. the feature
space and H = [h1, h2, ..., h3] for weight coefficient. ELBP and LNMF have two main
advantages. a) the effective face texture information extraction, b) dimensionality reduction
of the facial subspace. These two factors effectively improve the recognition accuracy. As
evident from Figure 6, LNMF learns such basis components which not only lead to non-
subtractive representations, but also highlights and make localized features much clear. As
a result in contrast to NMF, LNMF is more true parts-based representations. Depending on
the number of components and dimension.

4 Identificationmodule

4.1 Finger print matching

An alignment-based elastic matching algorithm [28] is used for finger print matching. This
algorithm finds the correspondence among the feature points without resorting to a thor-
ough exploration. The algorithm first performs alignment of the feature points between the
query image template and the templates stored in the database. The alignment is done by
estimating parameters through transformations including translation, scaling and rotation.

A = ((xA
1 , yA

1 , θA
1 )T , ....(xA

a , yA
a , θA

a )T ) (11)

B = ((xB
1 , yB

1 , θB
1 )T , ....(xB

b , yB
b , θB

b )T ) (12)

World Wide Web (2020) 23:1299–13171308



where A is the query image template, B are the templates stored in the database, a are the
feature points in A and b are the feature points in B respectively.

The aligned feature vectors are then converted to strings in the polar coordinate sys-
tem. The conversion represents each of the pattern as two symbolic strings. The strings are
formed by concatenating every feature point in an increasing order of radial angles as:

A∗ = ((rA
1 , eA

1 , θA
1 )T , ....(rA

a , eA
a , θA

a )T ) (13)

and
B∗ = ((rB

1 , eB
1 , θB

1 )T , ....(rB
b , eB

b , θB
b )T ), (14)

where rA
i is the radius, eA

i is the radial angle and θA
i is orientation of normalized feature

vector with respect to reference feature (x, y, θ).
After the conversion, matching between the converted string A∗ and B∗ is performed

using a modified dynamic programming algorithm. The algorithm performs the similarity
analysis by computing the the distance A∗ and B∗. The minimum distance between A∗ and
B∗ is used to establish the correspondence between the A∗ and B∗ feature vectors. The
matching score was calculated as:

S = 100M2
AB

ab
(15)

where ab are the features points in the query image temple and templates stored in the
database, MAB are the feature points which lie in the bounding boxes of the template.
The bounding box of a feature point defines the suitable acceptance in the locations of the
corresponding feature of input with reference to the template.

4.2 Facematching

The query image I with dimension MxN is first converted into a vector x where x ∈ RMN .
Feature vector x represents the intensity at the pixel (m, n) as the (mN + n)th dimension in
x. The similarity between the query image feature vector x and a feature vectors y stored in
the database is evaluated on the basis of Euclidean distance.

d2(x, y) =
MN∑

k=1

(xk − yk)2 = (x − y)T (x − y) (16)

where d represents the calculated distance, k = {1, 2, ...,MN} is the index, M corresponds
to total number of rows and N is total number of columns. Based on the similarity analysis,
the feature vector y from the database having the minimum Euclidean distance with the
input feature vector x is considered as a closest possible match.

4.3 Fusion

The scores obtained from the matching stage of both finger print and face do not lie in the
same numerical range. So, the scores retrieved from both the modalities first need to be
transformed to the same numerical range. The scores normalization is done by min-max
approach [2].

w∗
ik = wik − minf (wi)

maxf (vi) − minf (vi)
(17)

where wik are the un-normalized scores from the matching stage, w∗
ik is the normalized

score, min and max represents the minimum and maximum scores of the feature to be
normalized and f corresponds to the modality under consideration. The sum-rule based
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fusion is then used for the fusion of normalized scores of the both modalities. After a set of
normalized scores (x1, x2, ...xm) is obtained for both finger and face fusion is performed.

fs = w1x1 + ... + wmxm (18)

where fs is the final score after fusion, w is the weight associated to each individual score.
The fused score fs is then compared to a pre-defined threshold T . If fs ≥ T , then the
individual is declared as the match, otherwise declared as an imposer.

5 Experimental results

5.1 Datasets

FVC 2000 DB1 [10] and FVC 2000 DB2 [39] are used for the evaluation on finger print.
The samples in FVC 2000 DB1 [10] are taken over the different time interval, using low-
cost optical sensor, and the resolution of images is 300 x 300. In FVC 2000 DB2 [39] there
are four samples per subject, low-cost capacitive sensor is used for acquisition, and the
resolution of the images is 256 x 364. ORL (AT&t) and YALE [15] databases are used for
performance evaluation on facial images. ORL is standard AT&T database that consists of
400 images of 40 subjects with 10 samples per subject. The images are of resolution 92 x
112. The Yale Face Database [15] consists of 15 subjects with 11 samples per subject.

5.2 Recognition accuracy based comparison

To evaluate the performance of proposed method, it is compared with other existing multi-
modal and unimodal biometric system. Following experiments have been carried out for
the comparative analysis. Experiment1: The unimodal biometrics (i.e. finger print and
face) which are used for the proposed multi-modal method are compared with the pro-
posed method. For finger print evaluation FVC 2000 DB1 [10] and DB2 [39] and for face
ORL (AT&T) and YALE [15] databases are used. The statistical details of this experi-
ment are given in Table 1. Recognition accuracy is the chosen evaluation parameter for
the performance analysis of this experiment. Recognition accuracy of different modalities
is compared. From Table 1. it is evident that proposed multi-modal system achieved high-
est accuracy in contrast to the unimodal systems. The proposed method achieved 99.59%
accuracy. Comparison of the unimodal versus multi-modal system can be analyzed in
Figure 7.

Table 1 Accuracy comparison between unimodal and proposed multi-modal system

Modality Database Recognition accuracy (%)

Finger print FVC 2000 DB1 [10] 98.00

Finger print FVC 2000 DB2 [39] 98.30

Face ORL (AT&T) 97.20

Face YALE [15] 97.71

Proposed FVC 2000 DB1 , DB2, ORL, YALE 99.59
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Figure 7 Accuracy comparison of unimodal versus multi-modal biometrics: a Recognition accuracy com-
parison between of the proposed method and unimodal biometrics. The proposed method achieved the
highest recognition accuracy. b Recognition accuracy comparison of the proposed method and the modali-
ties fused for our multi-modal system i.e. finger and face. The proposed multi-modal clearly surpass the two
unimodalities

According to the performed experiment, the proposed method outperforms the unimodal
systems. The unimodal system based on face yielded 97% accuracy, finger print based iden-
tification system resulted in 98% accuracy, whereas the proposed method achieved 99.59%
recognition accuracy. Experiment 2: The proposed multi-modal recognition system is com-
pared with other existing multi-modal techniques. Various multi modalities including face
+ palm print [20], side + gait [56], hand geometry + palm print [34], palm print+middle
finger [55], finger print+ iris [1], iris + palm print [3] have been compared with our pro-
posed combination. Our multi-modal biometric system achieves better recognition accuracy
in contrast to other existing techniques.

Table 2 gives the statistical details of this comparison. From the experimental results, it is
evident that fusion of face and finger print achieved highest recognition accuracy in contrast
to other modalities fusion. So, the natural acquisition of both modalities and better accuracy
gives it a lead over other paralleled methods. Accuracy comparison of the proposed method
with other methods is shown in Figure 8. Based on the performed comparison, it can be
analyzed the recognition accuracy for face and palm print [20] is 81.46%, side face and gait
[56] is 93.30%, hand geometry and palm print [34] is 94.59%, palm print and middle finger
[55] is 92.67%, for face and finger print [40] is 92.67%, for finger print and iris is [1] is

Table 2 Recognition accuracy comparison of various multi-modal methods

Method Modalities Recognition accuracy (%)

Guo et al. [20] Face and palm print 81.46

Zhao and Bhanu et al. [56] Side face and gait 93.30

Kumar et al. [34] Hand geometry and palm print 94.59

Zhang et al. [55] Palm print and middle finger 92.67

Korves et al. [40] Face and finger print 92.67

Abdolahi et al. [1] Finger print and Iris 98.20

Aguilar et al. [3] Iris and palm print 98.20

Our Proposed Face and finger print 99.59
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Figure 8 Recognition accuracy comparison of proposed method and other multi-modal approaches. The
proposed method achieved highest recognition accuracy as compared to all other techniques. Hence our
method is superior as compared to other paralleled frame works

98.20%, iris and palm print [3] is 98.20%. In contrast to all these techniques, the proposed
method achieved the highest recognition accuracy of 99.59%.

5.3 Results in terms of error rate

Error rate is the evaluation metric that decides the performance of the biometric system.
Equal error rate (EER) corresponds to that value of error where both False acceptance
rate(FAR) and False rejection rate(FRR) are equal. The lower the value of EER better is the
performance of the biometric system. To evaluate the performance of the proposed fused
modalities with other existing multi-modal systems their corresponding EER have been
compared. The statistical details of this comparison are given in Table 3. The proposed
multi-modal system has the least EER as compared to all the other paralleled multi-modal
systems. Figure 9a shows the EER with respect to FAR and FRR for the proposed method
and other existing techniques. With proposed method EER is 0.035, with face EER is 0.0528
and for finger EER is 0.042. Hence the proposed method achieved lower EER in contrast to
paralleled modalities.

Table 3 Equal error rate comparison of different modalities

Modality Database Equal error rate (%)

Finger print FVC 2000 DB1 [10] 0.40

Finger print FVC 2000 DB2 [39] 0.45

Face ORL (AT&T) 0.5

Face YALE [15] 0.83

Proposed FVC 2000 DB1 , DB2, ORL, YALE 0.035
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Figure 9 Error rate comparison. a The error rate of face, finger and the proposed method are compared. The
proposed method achieved the lowest EER. b The effect of dimensionality reduction on the error rate. LNMF
baseline shows that it achieved the lowest EER

Furthermore, we evaluated the EER with respect to dimensionality change. The effect of
dimensionality change has been observed using NMF and LNMF and comparing the corre-
sponding errors rates of the two techniques. The corresponding error rate of both methods
clearly shows that LNMF have less error rate as compared to NMF. Error rate for LNMF
ranges from 0.22 to 0.061 and for NMF it ranges from 0.24 to 0.09. The LNMF base-
line shows that EER of 0.035 and NMF baseline shows that EER of 0.059 is achieved
with LNMF and NMF respectively. These metrics clearly depict that our proposed method
achieved the lowest EER as compared to the other existing techniques. In addition it uses
LNMF with which lowest EER is achieved.

5.4 Subspace learning technique comparison

Subspace leaning has a very significant impact on the recognition accuracy. As the opted
subspace learning method decides which of the features are to be retained in the final feature
vector. So, such a sub space learning technique should be opted that provides the optimal
performance. After experimentation and comparison we found out that LNMF provides
optimal solution for the proposed method. The impact of subspace is evaluated in terms of
error rate and the basis components retained by the resulting basis. Though NMF has been
widely used for subspace learning in face recognition. However the high computational
cost and repetitive learning are two major drawbacks associated with NMF. A comparative
analysis has been done to evaluate the performance of LNMF and NMF for the proposed
method. The error rate of LNMF is less as compared to NMF as shown in Figure 9b. As
error rate is one of the crucial factors that attributes to performance of biometric system. So,
LNMF provides the optimal solution in contrast to NMF.

The dimensionality of chosen subspace learning method also impacts the performance
as the basis components vary tremendously according to the chosen dimension. Figure 10
shows the visual impact of varying dimensionality on the basis learned correspondingly.
The basis components are clearly depicting that LNMF retains more localized information.
While NMF components have non useful information as well. With increasing dimension-
ality the learned basis provide more localized information. Figure 9 shows the impact of
varying dimensionality on error rate. Dimensionality is varied over the range of 10 to 150.
Error rate varies corresponding to dimensionality. For NMF the lowest EER is observed at
dimensionality of 70 and for LNMF it is observed at 110.
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Figure 10 Impact of varying dimensionality on the basis components. Dimensions 25 (column 1), 49 (col-
umn 2) and 81 (column 3). The first row corresponds to dimensionality reduction achieved by NMF. The
basis have a lot of redundant and un useful information. The second row corresponds to dimensionality reduc-
tion achieved by LNMF. The representations are both part based and localized. LNMF has also eliminated
the redundant information much efficiently

6 Conclusion

An accurate multi-modal system based on the fusion of face and finger is developed. In con-
trast to the other existing techniques, the fusion of the proposed modalities achieved a high
recognition accuracy of 99.59%. Experimental result showed that lowest EER of 0.035%
is achieved with the proposed method. For the extraction of feature with more discrimina-
tory power ELBP is used. These enhanced discriminative power features resulted in more
effective feature extraction and high recognition accuracy. LNMF is used for dimensionality
reduction to overcome the decline in recognition that occur due to dimensionality reduction
technique. In addition to non-negativity, LNMF make localized features more clear that in
turn results in more true parts-based representation. In future, we aim to further improve
the recognition accuracy to make the proposed method even more suitable for real time
applications.

Acknowledgments This work was supported in part by the National Natural Science Foundation of China
under Grant 61872241 and Grant 61572316, in part by the National Key Research and Development Pro-
gram of China under Grant 2017YFE0104000 and Grant 2016YFC1300302, in part by the Macau Science
and Technology Development Fund under Grant 0027/2018/A1, and in part by the Science and Technol-
ogy Commission of Shanghai Municipality under Grant 18410750700, Grant 17411952600, and Grant
16DZ0501100.

World Wide Web (2020) 23:1299–13171314



References

1. Abdolahi, M., Mohamadi, M., Jafari, M.: Multimodal biometric system fusion using fingerprint and iris
with fuzzy logic. International Journal of Soft Computing and Engineering 2(6), 504–510 (2013)

2. Aboshosha, A., El Dahshan, K.A., Karam, E.A., Ebeid, E.A.: Score level fusion for fingerprint, iris and
face biometrics. Int. J. Comput. Appl. 111(4), 47–55 (2015)

3. Aguilar, G., Sánchez, G., Toscano, K., Nakano, M., Pérez, H.: Multimodal Biometric System Using
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