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Abstract
This article presents a comprehensive survey of online test-time adaptation (OTTA), focusing on effectively adapting machine
learning models to distributionally different target data upon batch arrival. Despite the recent proliferation of OTTA meth-
ods, conclusions from previous studies are inconsistent due to ambiguous settings, outdated backbones, and inconsistent
hyperparameter tuning, which obscure core challenges and hinder reproducibility. To enhance clarity and enable rigorous
comparison, we classify OTTA techniques into three primary categories and benchmark them using a modern backbone, the
Vision Transformer. Our benchmarks cover conventional corrupted datasets such as CIFAR-10/100-C and ImageNet-C, as
well as real-world shifts represented by CIFAR-10.1, OfficeHome, and CIFAR-10-Warehouse. The CIFAR-10-Warehouse
dataset includes a variety of variations from different search engines and synthesized data generated through diffusion models.
To measure efficiency in online scenarios, we introduce novel evaluation metrics, including GFLOPs, wall clock time, and
GPU memory usage, providing a clearer picture of the trade-offs between adaptation accuracy and computational overhead.
Our findings diverge from existing literature, revealing that (1) transformers demonstrate heightened resilience to diverse
domain shifts, (2) the efficacy of many OTTA methods relies on large batch sizes, and (3) stability in optimization and
resistance to perturbations are crucial during adaptation, particularly when the batch size is 1. Based on these insights, we
highlight promising directions for future research. Our benchmarking toolkit and source code are available at https://github.
com/Jo-wang/OTTA_ViT_survey.

Keywords Online test-time adaptation · Domain shift · Transfer learning

1 Introduction

Dataset shift (Quinonero-Candela et al., 2008) poses a
notable challenge for machine learning. Models often expe-
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rience significant performance drops when confronting test
data characterized by superior distribution differences from
training. Such differences might come from changes in style
and lighting conditions andvarious formsof corruption,mak-
ing test data deviate from the data upon which these models
were initially trained. To mitigate the performance degrada-
tion brought by these shifts, test-time adaptation (TTA) has
emerged as a promising solution. TTA aims to rectify the
dataset shift issue by adapting the model to unseen distribu-
tions using unlabeled test data (Liang et al., 2023). Different
from unsupervised domain adaptation (Ganin & Lempitsky,
2015; Wang et al., 2022; Wang & Deng, 2018; Chen et
al., 2023a, b, 2021; Wang et al., 2020; Luo et al., 2020),
TTA does not require access to source data for distribu-
tion alignment. Commonly used strategies in TTA include
unsupervised proxy objectives, spanning techniques such as
pseudo-labeling (Liang et al., 2020), graph-based learning
(Luo et al., 2023), and contrastive learning (Chen et al.,
2022), applied on the test data through multiple training
epochs to enhancemodel accuracy, such as autonomous vehi-
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cle detection (Hegde et al., 2021; Chen et al., 2024), pose
estimation (Lee et al., 2023), video depth prediction (Liu et
al., 2023a), frame interpolation (Choi et al., 2021), and med-
ical diagnosis (Ma et al., 2022; Wang et al., 2022c; Saltori
et al., 2022). Nevertheless, requiring access to the complete
test set at every time step may not always align with practi-
cal use. In many applications, such as autonomous driving,
adaptation is restricted to using only the current test batch
processed in a streaming manner. Such operational restric-
tions make it untenable for TTA to require the full test set
tenable.

In this study, our focus is on a specific line of TTA meth-
ods, i.e., online test-time adaptation (OTTA), which aims
to accommodate real-time changes in the test data distri-
bution. We provide a comprehensive overview of existing
OTTA studies and evaluate the efficiency and effectiveness
of these methods. To facilitate a structured OTTA landscape,
we categorize existing approaches into three groups: opti-
mization, data, and model-based OTTA.

– Optimization-based OTTA focuses on various optimiza-
tion methods. Examples are designing new loss func-
tions, updating normalization layers (e.g., BatchNorm)
during testing, using pseudo-labeling strategies, teacher-
student frameworks, and contrastive learning-based
approaches, etc.

– Data-based OTTA maximizes prediction consistency
across diversified test data. Diversification strategies use
auxiliary data, improved data augmentationmethods, and
diffusion techniques and create a saving queue for test
data, etc.

– Model-based OTTA adjusts the model backbone, such as
modifying specific layers or their mechanisms, adding
supplementary branches, and incorporating prompts.

It is potentially useful to combine methods from different
categories for further improvement. An in-depth analysis of
this strategy is presented in Sect. 3. Note that this survey does
not include the paper if source-stage customization is needed,
such as (Thopalli et al., 2022; Döbler et al., 2023; Brahma &
Rai, 2023; Jung et al., 2022; Adachi et al., 2023; Lim et al.,
2023; Choi et al., 2022; Chakrabarty et al., 2023; Marsden et
al., 2022;Gao et al., 2023), as they necessitate extra operation
or information at the source pre-training stage, which may
not be feasible in some scenarios and cannot form a fair
comparison.
Differences from the existing survey. Liang et al. (2023) pro-
vided a comprehensive overview of the vast topic of test-time
adaptation (TTA), discussing TTAs in diverse configurations
and their applicability in vision, natural language processing
(NLP), and graph data analysis. One limitation is that the sur-
vey does not provide experimental comparisons of existing
methods. Mounsaveng et al. (2023) studied fully test-time

adaptation for some specific components, e.g., batch nor-
malization, calibration, class re-balancing, etc. However, it
does not focus too much on analyzing the existing meth-
ods and exploring ViTs. Marsden et al. (2024) conducted
comprehensive study on universal test-time adaptation set-
ting. In contrast, our survey concentrates on purely online
TTA approaches and provides valuable insight from exper-
imental comparisons, considering various domain shifts,
hyperparameter selection, and backbone influence (Zhao et
al., 2023b).
Contributions. As Vision Transformer (ViT) architectures
gain increasing prominence, a critical question arises: Do
OTTA strategies, originally devised for CNNs, retain their
effectiveness when applied to ViT models? This question
stems from the significant architectural differences between
ViTs and conventional CNNs, such as ResNets, particu-
larly in their normalization layers and information processing
mechanisms. Given the growing adoption of ViTs, investi-
gating their compatibility with existing OTTA strategies is
essential. To thoroughly explore this question, we evaluate
eight representative OTTA algorithms across diverse distri-
bution shifts, employing a set of metrics to evaluate both
effectiveness and efficiency. Below, we summarize the key
contribution of this survey:

– [A focused OTTA survey] To the best of our knowledge,
this is the first focused survey on online test-time adap-
tation, which provides a thorough understanding of three
main working mechanisms. Experimental investigations
are conducted in a fair comparison setting.

– [Comprehensive Benchmarking and Adaptation of OTTA
Strategies with ViT] We reimplemented representative
OTTA baselines under the ViT architecture and testified
their performance against six benchmark datasets. We
drive a set of replacement rules that adapt the existing
OTTA methods to accommodate the new backbone.

– [Both accuracy and efficiency as evaluation Metrics]
Apart from using the traditional recognition accuracy
metric, we further provide insights into various facets
of computational efficiency by Giga floating-point oper-
ations per second (GFLOPs), wall clock time, and GPU
memory usage. These metrics are important in real-time
streaming applications and can be treated as a supple-
mentary of (Marsden et al., 2024).

– [Real-world testbeds] While existing literature exten-
sively explores OTTA methods on both corruption
datasets and real-world datasets (Marsden et al., 2024),
the diverse difficulty levels of these datasets hinder a
fair comparison. Therefore, we further assess OTTA per-
formance on CIFAR-10-Warehouse, a newly introduced,
expansive test set of CIFAR-10, to ensure a comprehen-
sive comparison across the same label set. Using the same
pre-trainedmodel for adaptation,we provide insights into

123



International Journal of Computer Vision

Fig. 1 Taxonomy of existing OTTA methods. The categories, i.e.,
optimization-, data-, and model-based, inform three mainstream work-
ing mechanisms. To provide a clear illustration, methods related to
prompts are categorized into model-based methods

various domain shifts that were previously unexplored in
the existing survey (Liang et al., 2023).

This work aims to summarize existing OTTA methods
with the aforementioned three categorization criteria and
analyze some representative approaches by empirical results.
Moreover, to assess real-world potential, we conduct com-
parative experiments to explore the portability, robustness,
and environmental sensitivity of the OTTA components. We
expect this survey to offer a systematic perspective in navigat-
ing OTTA’s intricate and diverse solutions. We also present
new challenges as potential future research directions.
Organization of the survey. The rest of this survey will be
organized as follows. Section2 presents the problem def-
inition and introduces widely used datasets, metrics, and
applications. Using the taxonomy shown in Fig. 1, Sect. 3
comprehensively reviews existing OTTA methods. With
Vision Transformer as new backbones, Sect. 4 empirically
analyzes eight state-of-the-art methods by multiple evalua-
tion metrics on corrupted and real-world distribution shifts.
We introduce the potential future directions in Sect. 5 and
conclude this survey in Sect. 6.

2 ProblemOverview

Online Test-time Adaptation (OTTA), with its real-time
characteristics, represents a critical approach in test-time
adaptation.This sectionprovides a formal definitionofOTTA
and delves into its fundamental attributes. Furthermore, we
explore widely used datasets and evaluation methods, and
examine the potential application scenarios of OTTA. To
ensure a clear understanding, a comparative analysis is also
undertaken to differentiate OTTA from similar settings.

2.1 Problem Definition

In OTTA, we assume access to a trained source model and
adapt the model at test time over the test input to make
the final prediction. The given source model fθ S param-
eterized by θ S is pre-trained on a labeled source domain
DS = {(xS, yS)}, which is formed by i.i.d. sampling
from the source distribution pS . Unlabeled test data DT =
{xT1 , xT2 , xTt , . . . , xTn } come in batches, where t indicates the
current time step and n is the total number of time steps
(i.e., number of batches). Test data often come from one
or multiple different distributions (xTt , yTt ) ∼ pT , where
pS(x, y) �= pT (x, y) under the covariate shift assumption
(Huang et al., 2006). During TTA, we update the model
parameters for batch t , resulting in an adapted model fθ t .

Before adaptation, the pre-trained model is expected to
retain its original architecture, especially the backbone, with-
out modifying its layers or introducing new model branches
during training. Additionally, the model is restricted to
observing the test data only once and must produce predic-
tions promptly online. By refining the definition of OTTA in
this manner, we aim to minimize limitations associated with
its application in real-world settings. Note that the model is
reset to its original pre-trained state after being adapted to a
specific domain, i.e., fθ S → fθ0 → fθ S → fθ1 → fθ S →
· · · → fθ t .

Since there is no way to align the source and test set as
in unsupervised domain adaptation in OTTA, what optimiza-
tion objective works in this limited environment? As test data
arrive at a fixed pace, howmuch data is ideal for effective test-
time adaptation? Will adaptation work with new backbones
(e.g., ViTs)? Does “Test-time Adaptation” lose validity with
backbone changes? To address these concerns, we explore
OTTA methods by their datasets, evaluations, and applica-
tions, decoupling strategies to identify which components
work and why with updated backbones.

2.2 Datasets

This survey summarizes datasets in image classification,
while recognizing that OTTA has been applied to many
downstream tasks (Ma et al., 2022; Ding et al., 2023; Saltori
et al., 2022). Testbeds inOTTAusually seek to facilitate adap-
tation from natural images to corrupted ones. The latter are
created by perturbations such as Gaussian noise and Defo-
cus blur. Despite including corruptions at varying severities,
these synthetically induced corruptions may not sufficiently
mirror the authentic domain shift encountered in real-world
scenarios. Ourwork uses corruption (Croce et al., 2021), gen-
erated images, and real-world shift datasets, summarized in
Table 1. Details of each testbed are described below.
CIFAR-10-C is a standard benchmark for image classifica-
tion. It contains 950,000 color images, each of 32×32 pixels,
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Table 1 Datasets used in this survey

Datasets # Domains # Images # Classes Corrupted? Image size

CIFAR-10-C (Hendrycks & Dietterich, 2018) 19 950, 000 10 Yes 32 × 32

CIFAR-100-C (Hendrycks & Dietterich, 2018) 19 950, 000 100 Yes 32 × 32

ImageNet-C (Hendrycks & Dietterich, 2018) 19 4, 750, 000 1000 Yes 224 × 224

CIFAR-10.1 (Recht et al., 2018) 1 2000 10 No 32 × 32

CIFAR-10-Warehouse (Sun et al., 2023) 180 608, 691 10 No 224 × 224

OfficeHome (Venkateswara et al., 2017) 4 15, 500 65 No Non-uniform

We list their key statistics

spanning ten distinct classes. CIFAR-10-C retains the class
structure of CIFAR-10 but incorporates 19 diverse corrup-
tion styles, with severities ranging from levels 1 to 5. This
corrupted variant aims to simulate realistic image distortions
or corruptions that might arise during processes like image
acquisition, storage, or transmission.
CIFAR-100-C has 950,000 colored images with dimensions
32 × 32 pixels, uniformly distributed across 100 unique
classes. The CIFAR-100 Corrupted dataset, analogous to
CIFAR-10-C, integrates artificial corruptions into the canon-
ical CIFAR-100 images.
ImageNet-C is a corrupted version of ImageNet (Krizhevsky
et al., 2012) test set. Produced from ImageNet-1k, ImageNet-
C has a similar setup to the CIFAR-10-C and CIFAR-100-
C corruption types. For each domain, 5 levels of severity
are produced, with 50, 000 images per severity from 1, 000
classes.
CIFAR-10.1 (Recht et al., 2018) is a real-world test set of
CIFAR-10. It contains roughly 2,000 images sampled from
the Tiny Image dataset (Yang et al., 2016).
CIFAR-10-Warehouse (Sun et al., 2023) integrates images
from both diffusion model (i.e., Stable Diffusion-2-1 (Rom-
bach et al., 2022)) and targeted keyword searches across eight
popular search engines. The diffusion model uses the prompt
“high quality photo of color class name”, with color chosen
from 12 options. The dataset comprises 37 generated and 143
real-world subsets, each containing between 300 and 8,000
images.
OfficeHome is a widely used benchmark in domain adapta-
tion and domain generalization tasks. It has 65 classes within
4 distinct domains: Artistic images (Art), Clip Art, Product
images (Product), and Real-World images (RealWorld).

2.3 Evaluation

For a faithful comparison, effectiveness and efficiency are
both considered in online test-time adaptation. This survey
employs the following evaluation metrics:
mean Error (mErr) is one of the most commonly used met-
rics to assess model accuracy. It computes the average error
rate across all corruption types or domains.

GFLOPs refers to giga floating point operations per second,
which quantifies the number of floating-point calculations a
model performs in a second. A model with lower GFLOPs
is more computationally efficient.
Wall-clock timemeasures the actual time taken by themodel
to complete the adaptation process.
GPU memory usage refers to the amount of memory the
model uses while running on a GPU. A model with lower
GPU memory usage is more applicable to a wider range of
devices.

2.4 Relationship with Other Tasks

Offline Test-time Adaptation (TTA) (Liang et al., 2020,
2022; Ding et al., 2022; Yang et al., 2021) aims to adapt
a source pre-trained model to the target (i.e., test) set with
access to the entire dataset at once. This differs from online
test-time adaptation, where test data is given in batches.
Continual TTA Contrary to the classic OTTA setup, where
adaptation occurs in discrete steps corresponding to distinct
domain shifts, continual TTA (Wang et al., 2022a; Hong et
al., 2023; Song et al., 2023; Chakrabarty et al., 2023; Gan et
al., 2023) operates under the premise of seamless, continuous
adaptation to new data distributions. This process does not
require resetting themodel with each perceived domain shift.
Instead, it emphasizes the importance of a model’s ability to
autonomously update and refine its parameters in response
to ongoing changes in the data landscape, without explicit
indicators of domain boundaries.
Gradual TTA tackles real-world scenarios where domain
shifts are gradually introduced through incoming test sam-
ples (Marsden et al., 2022;Döbler et al., 2023).An example is
the gradual and continuous change inweather conditions. For
corruption datasets, existing gradualTTAapproaches assume
that test data transition from severity level 1 to level 2 and
then progress slowly toward the highest level. Both continual
and gradual TTA methods ensure online adaptation.
Test-time Training (TTT) introduces an auxiliary task for
both training and adaptation (Sun et al., 2020; Gandelsman et
al., 2022). During training, the original backbone is modified
into a “Y”-shaped structure, with one branch for image clas-
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sification and another for an auxiliary task, such as rotation
prediction. During adaptation, the auxiliary task continues
to be trained in a supervised manner, updating the model
parameters. The classification head output serves as the final
prediction for each test sample.
Test-time Augmentation (TTAug) applies data augmen-
tations to input data during inference, creating multiple
variations of the same test sample, fromwhich predictions are
obtained (Shanmugam et al., 2021; Kimura, 2021). The final
prediction typically aggregates these predictions through
averaging ormajority voting. TTAug enhancesmodel perfor-
mance by providing a range of data views and can be applied
to various tasks, including domain adaptation, offline TTA,
and OTTA, as it does not require any modification to the
model training process.
Domain Generalization (Qiao et al., 2020; Wang et al.,
2021b; Xu et al., 2021; Zhou et al., 2023) aims to train mod-
els that perform effectively across multiple distinct domains
without specific adaptation. It assumes the model learns
domain-invariant features applicable across diverse datasets.
While OTTA emphasizes dynamic adaptation to specific
domains over time, domain generalization seeks to establish
domain-agnostic representations.

3 Online Test-time Adaptation

Given the distribution divergence of online data from source
training data, OTTA techniques are broadly classified into
three categories that hinge on their responses to two primary
concerns: managing online data and mitigating performance
drops due to distribution shifts. Optimization-based meth-
ods anchored in designing unsupervised objectives typically
lean towards adjusting or enhancing pre-trained models.
Model-based approaches look to modify or introduce par-
ticular layers. On the other hand, data-basedmethods aim to
expand data diversity, either to improvemodel generalization
or to harmonize consistency across data views. According to
this taxonomy, we sort out existing approaches in Table 9
and review them in detail below.

3.1 Optimization-Based OTTA

Optimization-based OTTA methods consist of three sub-
categories: (1) recalibrating statistics in normalization layers,
(2) enhancing optimization stability with the mean-teacher
model, and (3) designing unsupervised loss functions. A
timeline of these methods is illustrated in Fig. 2.

3.1.1 Normalization Calibration

In deep learning, a normalization layer aims to improve
the training process and enhance the generalization capac-

ity of neural networks by regulating the statistical properties
of activations within a given layer. Batch normalization
(BatchNorm) (Ioffe&Szegedy, 2015), themost commonly
used normalization layer, stabilizes the training process by
utilizing global statistics or a large batch size. By standard-
izing the mean and variance of activations, BatchNorm
reduces the risk of vanishing or exploding gradients during
training. Alternatives to BatchNorm include layer normal-
ization (LayerNorm) (Ba et al., 2016), group normalization
(GroupNorm) (Wu & He, 2020), and instance normaliza-
tion (InstanceNorm) (Ulyanov et al., 2016) (Fig. 3). A
similar concept to normalization layers is feature whitening,
which adjusts features immediately after the activation layer.
Both strategies are used in domain adaptation literature (Roy
et al., 2019; Carlucci et al., 2017).
Example. Take the most commonly used BatchNorm as an
example. Let xi be the activation for feature channel i in a
mini-batch. The BatchNorm layer will first calculate the
batch-level mean μ and variance σ 2 by:

μ = 1

m

m∑

i=1

xi , σ 2 = 1

m

m∑

i=1

(xi − μ)2, (1)

wherem is themini-batch size. Then, the calculated statistics
will be applied to standardize the inputs:

x̂i = xi − μ√
σ 2 + ε

, yi = γ x̂i + β, (2)

where yi is the final output of the i -th channel from this batch
normalization layer, adjusting two learnable affine parame-
ters, γ and β. And ε is used to avoid division of 0. For the
update, the running mean μrun and variance σ run are com-
puted as a moving average of the mean and variance over all
batches seen during training, with a momentum factor α:

μrun = αμ + (1− α)μrun, σ run = ασ + (1− α)σ run. (3)

Motivation. In domain adaptation, aligning batch normaliza-
tion statistics helpsmitigate performance degradation caused
by covariate shifts (Wang et al., 2023b). Thehypothesis is that
data information is encoded in the weight matrices of each
layer, while domain-specific knowledge is conveyed through
the statistics of the BatchNorm layer. Therefore, updat-
ing the BatchNorm can enhance performance on unseen
domains (Li et al., 2017). This idea is broadly applied to
online test-time adaptation where we assume for a neural
network f trained on a source dataset DS with normaliza-
tion parameters β and γ , updating {γ, β} based on test data
xti at each time step t will improve f ’s robustness on the test
domain.
Building on this assumption, initial investigations in OTTA
predominantly focused on fine-tuning by updating only the
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Fig. 2 Timeline of optimization-based OTTA methods

Fig. 3 Visualizing normalization layers (Wu & He, 2020)

normalization layers. This strategy has several popular varia-
tions. A common practice adjusts the statistics (μ and σ ) and
affine parameters (β and γ ) in the BatchNorm layer. The
choice of normalization techniques, such as LayerNorm
(Ba et al., 2016) or GroupNorm (Wu & He, 2020), may
depend on the backbone architecture and specific optimiza-
tion objectives, such as stabilizing entropyminimization (Niu
et al., 2023).

Tent (Wang et al., 2021a) and its subsequent works,
such as (Jang et al., 2023), are representative approaches
within this paradigm. They update the statistics and affine
parameters of BatchNorm for each test batch while freez-
ing the remaining parameters. However, the effectiveness
of batch-level updates, as seen in Tent, which is updated
by minimizing soft entropy, depends on data quality within
each batch, introducing potential performance fluctuations.
For example, noisy or biased data can significantly affect
BatchNorm updates. Methods aimed at stabilization via
dataset-level estimates have been proposed to mitigate such
performance fluctuations. Gradient preserving batch normal-
ization GpreBN (Yang et al., 2022) allows for cross-instance
gradient backpropagation by modifying the BatchNorm

normalization factor.

ŷi =
xi−μc

σ c
σ̄ c + μ̄c − μ

σ
γ + β, (4)

where xi−μc
σ c

is the standardized input feature x̂i as in Eq. (2).
σ c and μc means stop gradient. GpreBN normalizes x̂i by
arbitrary non-learnable parameters μ and σ . MixNorm (Hu
et al., 2021)mixes the statistics of the current batch, produced
by augmented sample inputs, with global statistics com-
puted through a moving average. Combining global-level
and augmented batch-level statistics bridges the gap between
historical context and real-time fluctuations, enhancing per-
formance regardless of batch size. As an alternative, RBN
(Yuan et al., 2023a) uses global robust statistics from amem-
ory bank with a fixed momentum for the moving average
to ensure high statistic quality. Similarly, Core (You et al.,
2021) incorporates a momentum factor in the moving aver-
age to fuse source and test set statistics.

Instead of using a fixed momentum factor for the moving
average, Mirza et al. (2022) proposed a dynamic approach
that determines the momentum based on a decay factor. As
model performance deteriorates over time, the decay fac-
tor increasingly considers the current batch to avoid biased
learning from misled source statistics. ERSK (Niloy et al.,
2023) follows a similar idea but determines its momentum
by the KL divergence of BatchNorm statistics between the
source-pretrained model and the current test batch.
Stabilization via renormalization. Focusing solely on mov-
ing averages can undermine the inherent characteristics
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of gradient optimization and normalization when updat-
ing BatchNorm layers. As noted by Huang et al. (2018),
BatchNorm centers and scales activations but does not
address their correlation, where decorrelated activations can
lead to better feature representation (Schmidhuber, 1992)
and generalization (Cogswell et al., 2016). Additionally,
batch size significantly influences correlated activations, pos-
ing limitations when the batch size is small. The test-time
batch renormalization module (TBR) in DELTA (Zhao et al.,
2023a) addresses these limitations through a renormaliza-
tion process. They adjust standardized outputs using two new

parameters, r and d. r = sg
(
σ̂ batch

)

σ̂ ema and d = sg
(
μ̂batch

)−μ̂ema

σ̂ ema ,
where sg(·) is stop gradient. Both parameters are computed
using batch and global moving statistics, inspired by (Ioffe,
2017)), to maintain stable batch statistics. Then x̂i is fur-
ther normalized by x̂i = x̂i · r + d. The above OTTA
methods reset the model for each domain, limiting their
applicability to scenarios without clear domain boundaries.
NOTE (Gong et al., 2022) focuses on continual OTTA under
temporal correlation, i.e., distribution changes over time t :
(xt , yt ) ∼ PT (x, y | t). The authors proposed instance-level
BatchNorm to avoid potential instance-wise variations in a
domain non-identifiable paradigm.
Stabilization via enlarging batches. To improve the stability
of adaptation, another idea is using large batch sizes. In fact,
most methods based on batch normalization employ substan-
tial batch sizes such as 200 in (Wang et al., 2021a; Hu et al.,
2021). Despite their effectiveness, this practice cannot deal
with scenarios where data arrives in smaller quantities due
to hardware (e.g., GPU memory) constraints, especially in
edge devices.
Alternatives to Batchnorm. To avoid using large-sized
batches, viable options includeupdatingGroupNorm (Mum-
madi et al., 2021) or LayerNorm, especially in transformer-
based tasks (Kojima et al., 2022). In scenarios with limited
computational resources,MECTA (Hong et al., 2023) replaces
BatchNorm with a customized MECTA norm, reducing
memory usage during adaptation. This change mitigates the
overhead associated with large batches, extensive channel
dimensions, and numerous layers requiring updates. Taking
a different tack,EcoTTA (Song et al., 2023) incorporates and
exclusively updates meta networks, including BatchNorm
layers, effectively reducing computational expenses while
maintaining source data discriminability and robust test-
time performance. To address performance challenges with
smaller batch sizes, TIPI (Nguyen et al., 2023) intro-
duces additional BatchNorm layers alongside existing
ones, maintaining two sets of data statistics and leveraging
shared affine parameters to enhance consistency across dif-
ferent views of test data.

3.1.2 Mean Teacher Optimization

The mean teacher model, discussed in (Tarvainen &Valpola,
2017), enhances optimization stability in OTTA. This
approach initializes both the teacher and student models with
a pre-trained source model. For each test sample, weak and
strong augmented versions are created and processed by the
student and teacher models, respectively. The key lies in
using prediction consistency, or consistency regularization,
to update the student model. This strategy ensures identi-
cal predictions from different data views, reducing model
sensitivity to test data changes and improving stability. The
teacher model is refined as a moving average of the stu-
dent across iterations. In OTTA, the mean teacher model and
BatchNorm-based methods can be effectively integrated.
Incorporating BatchNorm updates into the teacher–student
framework can yield more robust results (Sect. 4). Simi-
larly, integrating the mean teacher model with data-driven
(Sect. 3.2) or model-driven (Sect. 3.3) methods can further
enhance prediction accuracy and stability, marking signifi-
cant progress in the field.
Model updating strategies. Following the idea of mean-
teacher learning, ViDA (Liu et al., 2023b) supervising
student output with teacher predictions from augmented
input. It introduces high/low-rank adapters to facilitate con-
tinual OTTA learning (see Sect. 3.3). Wang et al. (2022a)
generally followed the standard consistency learning strategy
but introduced a reset method: a fixed number of weights are
reset to their source pre-trained states after each iteration to
preserve source knowledge and enhance robustness against
misinformed updates.

RoTTA (Yuan et al., 2023a) adopts a different approach,
focusing on updating only the customized batch normaliza-
tion layer RBN in the student model, rather than altering all
parameters. This strategy leverages consistency regulariza-
tion and integrates statistics from the test data.
Divergence in augmentations. Drawing inspiration from the
prediction consistency strategy in the mean teacher model,
Tomar et al. (2023) proposed learning adversarial aug-
mentation to identify the most challenging augmentation
policies. These policies drive image feature representations
toward uncertain regions near decision boundaries. This
method not only achieves clearer decision boundaries but
also enhances the separation of class-specific features, sig-
nificantly improving model robustness to styles of unseen
test data.
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Fig. 4 Common optimization objectives in OTTA

3.1.3 Optimization Objectives

Designing a proper optimization objective is important under
the challenges of shifted test data with a limited amount.
Commonly seen optimization-based Online Test-time Adap-
tation (OTTA) are summarized in Fig. 4. Existing literature
addresses the optimization problem using three primary
strategies:
Optimizing (increasing) confidence. Covariate shifts typi-
cally lead to lower model accuracy, which in turn causes
the model to express high uncertainty. The latter is often
observed. As such, to improve model performance, an intu-
itive way is to enhance model confidence for the test data.
Entropy-based confidence optimization. This strategy typi-
cally aims to minimize the entropy of the softmax output
vector:

H(ŷ) = −
∑

c

p
(
ŷc

)
log p

(
ŷc

)
, (5)

where ŷc is the c-th predicted class, p
(
ŷc

)
is its correspond-

ing prediction probability. Intuitively, when the entropy of
the prediction decreases, the vector will look sharper, where
the confidence, ormaximumconfidence, increases. InOTTA,
minimizing entropy increases the model’s confidence for the
current batch without relying on labels, thereby improving
accuracy.

There are two main approaches within this strategy: one
considers the entire softmax vector, and the other focuses on
the maximum entry of the softmax output. Tent is a typ-
ical method for the former that uses entropy minimization
to update the affine parameters in BatchNorm. Subsequent
studies have expanded upon this strategy. For example, Seto
et al. (2023) introduced entropyminimizationwith self-paced
learning, ensuring the learning process progresses adaptively.
By integrating general adaptive robust loss (Barron, 2019),
the method achieves robustness against large and unstable
loss values. TTPR (Sivaprasad & Fleuret, 2021) combines
entropyminimizationwith prediction reliability, using a con-
sistency loss across various views of a test image by merging
the mean prediction across three augmented versions. Lin et

al. (2023)minimized entropy loss on augmentation-averaged
predictionswhile assigninghighweights to low-entropy sam-
ples. In SAR (Niu et al., 2023), when minimizing entropy,
sharpness-aware minimization is used allowing parameters
to find “flatter” minimum regions for better model updating
stability.

While entropy minimization is widely used, a natural
question arises: what makes soft entropy a preferred choice?
To reveal the working mechanism of the loss function,
Conj-PL (Goyal et al., 2022) addresses this by designing
a meta-network to parameterize the loss function, observing
that the meta-output mirrors the temperature-scaled softmax
output. They prove that if cross-entropy loss is used during
source pre-training, soft entropy loss is the most appropriate
during adaptation.

However, one observation of entropy minimization is the
risk of obtaining a degenerate solutionwhere every data point
is assigned to the same class. To avoid this,MuSLA (Kingetsu
et al., 2022) employsmutual information of the sample X and
the corresponding prediction Ŷ ,

It (X; Ŷ ) = H
(
p̂0

) − 1

M

∑

t i

H
(
p̂it

)
, (6)

where p̂0 is the prior distribution, M is mini-batch size, i
is the index of the sample within the batch. Maximizing
1
M

∑
t i p̂

i
t could be seen as a regularizer to avoid same-class

prediction.
In entropyminimization, gradients can often be dominated

by low-confidence predictions. Conversely, cross-entropy
loss can be too strict with predicted labels, leading to incor-
rect updates even with a single wrong prediction. To address
this trade-off,Mummadi et al. (2021) proposed the Soft Like-
lihood Ratio (SLR) loss, which was further employed by
Marsden et al. (2024). This approach emphasizes predicted
classes while addressing the issue raised by MuSLA:

LSLR(ŷti ) = −
∑

c

wti ŷtic log

(
ŷtic∑
j �=c ŷti j

)
, (7)

where ŷti is the softmax probability for the i-th test sample at
time step t. wti is a ROID-only weight, combining diversity
(the similarity between the recent trend of themodel’s predic-
tion and the current model output) and certainty (the negative
entropy of the output). If the output confidence for class c is
low, the loss calculation is reweighted by the summation over
all other predictions

∑
j �=c ŷti j in the denominator, reducing

the focus on low-confidence classes.
The cooperation between a teacher and a student is another

possible solution to optimize prediction confidence with reli-
ability. Here, the teacher is usually the moving averaged
model of interest across iterations. CoTTA (Wang et al.,
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2022a) uses the Softmax prediction from the teacher to super-
vise the Softmax predictions from the student under the
cross-entropy loss.

To give more precise supervision to the student, RoTTA
(Yuan et al., 2023b) adds a twist: the model is updated using
samples stored in a memory bank. A reweighting mecha-
nism is introduced to prevent the model from overfitting to
“old” samples in thememory bank, prioritizing updates using
“new” samples, ensuring a more dynamic and current learn-
ing process. See Sect. 3.2.2 formore details about itsmemory
bank strategy.

Supervised by the student output, TeSLA (Tomar et al.,
2023) designs its objective as a cross-entropy loss with a
regularizer:

Lpl(X, Ŷ) = − 1

B

B∑

i=1

K∑

k=1

fs (xi )k log
((
ŷi

)
k

)

+
K∑

k=1

f̂s(X)k log
(
f̂s(X)

)

k
, (8)

where f̂s(X) = 1
B

∑B
i=1 fs (xi ) is the marginal class distri-

bution of the student over the batch. ŷ is the soft pseudo-label
from the teacher model. k is the number of classes. Except
for the cross-entropy loss similar to the previous methods,
it also maximizes the entropy for the averaged prediction of
the student model across the batch to avoid overfitting.

A cross-entropy loss helps minimize model prediction
uncertainty but may fail to provide consistent uncertainty
scores under different augmentations. This issue is more crit-
ical when the teacher–student mechanism is not used. To
address this, MEMO (Zhang et al., 2022) computes the aver-
age prediction across multiple augmentations for each test
sample and then minimizes the entropy of the marginal out-
put distribution over augmentations:

�(θ; x) � H ( p̄θ (· | x)) = −
∑

y∈Y
p̄θ (y | x) log p̄θ (y | x),

(9)

where p̄ denotes the averaged Softmax vector. Here, aug-
mentations are randomly generated by AugMix (Hendrycks
et al., 2020).

To encourage consistency against smaller perturbations,
Marsden et al. (2024) proposed a consistency loss based on
symmetric cross-entropy loss (SCE) (Wang et al., 2019):

LSCE (ŷti ; yti )

= −w′
ti

2

(
C∑

c=1

ŷtic log ỹtic +
C∑

c=1

ỹtic log ŷtic

)
.

(10)

This loss promotes similar outputs between test images iden-
tified as certain and diverse and their augmented views. Here,
ŷti is the softmax probability for the i-th test sample at time
step t , ỹt is the softmax probability of the augmented view,
and w′

ti is the weight of the augmented view as in Eq. (7).
Prototype-based optimization. Prototype-based learning
(Yang et al., 2018) is a strategy used for unlabeled data by
selecting a representative or average for each class and classi-
fying unlabeled data using distance-based metrics. However,
its effectiveness can be limited under distribution shifts. To
find reliable prototypes, TSD (Wang et al., 2023a) uses a
Shannon entropy-based filter to identify class prototypes
from target samples with high confidence. A target sample
is then used to update the classifier-of-interest if its nearest
prototypes are consistent with its class predictions from the
same classifier.
Improving generalization ability to unseen target samples.
Typically,OTTAuses the samebatchof data formodel update
and evaluation. Here, we would like the model to perform
well on upcoming test samples or have good generalization
ability. A useful technique is sharpness-aware minimization
(SAM) (Foret et al., 2021),where instead of seeking aminima
that is “sharp” in its gradients nearby, a “flat” minima region
is preferred. Niu et al. (2023) used the following formulation
to demonstrate the effectiveness of this strategy.

min
	̃

S(x)ESA(x;	). (11)

Here, S(x) is an entropy-based indicator function that can
filter out unreliable predictions based on a predefined thresh-
old. ESA(x;	) is defined as:

ESA(x;	) � max‖ε‖2≤ρ
E(x;	 + ε). (12)

This term aims to identify a weight perturbation ε within a
Euclidean ball of radius ρ that maximizes entropy. It quanti-
fies sharpness by measuring the maximal change in entropy
between 	 and 	 + ρ. As such, Eq. (12) jointly minimizes
entropy and its sharpness. Gong et al. (2023) used same idea
for their optimization.

Another difficulty affecting OTTA generalization is class
imbalance in a batch: a limited number of data for model
updates often cannot reflect the true class frequency. To
address this, DynamicOnlineRe-weighting (DOT) in DELTA
(Zhao et al., 2023a) uses a momentum-updated class-
frequency vector. This vector is initializedwith equalweights
for each class and is updated at every inference step based on
the pseudo-label of the current sample andmodel weight. For
a target sample, a significant weight (or frequency) for a par-
ticular class prompts DOT to diminish its contribution during
subsequent adaptation learning. This prevents biased opti-
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mization towards frequent classes, thereby improving model
generalization.
Feature representation learning. Since no annotations are
assumed for the test data, contrastive learning (van den Oord
et al., 2018) can be naturally applied to test-time adaptation
tasks. In a self-supervised manner, contrastive learning aims
to learn feature representations where positive pairs (a data
sample and its augmentations) are close, and negative pairs
(different data samples) are pushed away from each other.
However, this typically requires multiple epochs of updates,
which is incompatible with the online adaptation setting. To
suit online learning,AdaContrast (Chen et al., 2022) uses
target pseudo-labels to disregard potential same-class nega-
tive samples rather than treating all other data samples as
negative.

3.1.4 Pseudo-Labeling

Pseudo-labeling is a useful technique in domain adaptation
and semi-supervised learning. It assigns labels to samples
with high confidence, and these pseudo-labeled samples are
then used for training.

In OTTA, where adaptation is confined to the current
batch of test data, batch-level pseudo-labeling is often
employed. For example, MuSLA (Kingetsu et al., 2022)
implements pseudo-labeling as a post-optimization step fol-
lowing BatchNorm updates, refining the classifier using
pseudo-labels of the current batch to enhance model accu-
racy.

Furthermore, the teacher–student framework, as seen in
models likeCoTTA (Wang et al., 2022a),RoTTA (Yuan et al.,
2023b), and ViDA (Liu et al., 2023b), also adopts the pseudo-
labeling strategy. Here, the teacher outputs are used as soft
pseudo-labels, which preventing the model to be overfitted
to incorrect predictions.
Reliable pseudo-labels are essential but challenging in
OTTA. Continuous data streams limit opportunities for
reviewing the prediction. Besides, covariate shifts between
the source and test sets degrades pseudo-label reliability.

To address these challenges, TAST (Jang et al., 2023) uses
a prototype-based pseudo-labeling strategy. Class centroids
are obtained from a support set, initially derived from the
source pre-trained classifier’s weights and refined using nor-
malized test data features. To avoid performance degradation
brought by unreliable pseudo labels, it calculates centroids
only using the nearby support examples and then uses the
temperature-scaled output to obtain the pseudo labels. Alter-
natively, AdaContrast (Chen et al., 2022) uses soft K
nearest neighbors voting (Mitchell & Schaefer, 2001) in the
feature space to produce reliable pseudo-labels. Wu et al.
(2021) suggest using multiple augmentations and majority
voting to achieve consistent and trustworthy pseudo-labels.

Complementary pseudo-labeling (PL). One-hot pseudo-
labels often result in substantial information loss, especially
under domain shifts. To address this, ECL (Han et al., 2023)
considers both maximum-probability predictions and pre-
dictions that fall below a certain confidence threshold (i.e.,
complementary labels). The intuition is that if the model
is less confident about a prediction, this prediction should
be penalized more heavily. This helps prevent the model
from making aggressive updates based on incorrect but
high-confidence predictions, offering amore stable approach
similar to soft pseudo-label updates.

3.1.5 Other Approaches

Deviating from the conventional path of adapting source pre-
trained models, Laplacian Adjusted Maximum likelihood
Estimation (LAME) (Boudiaf et al., 2022) focuses on refin-
ing the model output. This is achieved by discouraging the
refined output from deviating from the pre-trained model
while encouraging label smoothness according to the mani-
fold smoothness assumption. The final refined prediction is
obtained when the energy gap for each refinement step of a
batch is small.

To prevent loss of generalization and catastrophic forget-
ting, weight ensembling offers a solution. ROID (Marsden et
al., 2024) continuously ensembles the weights of the initial
source model and the weights of the current model at time
step t using a moving average, allowing for partial retention
of source knowledge. This approach is similar to the param-
eter reset strategy in CoTTA, commonly used in continual
adaptation tasks. Additionally, to address temporal correla-
tion and class imbalance during adaptation, ROID introduces
prior correction. The intuition is that if the class distribu-
tion within a batch tends to be uniform, strong smoothing is
applied to ensure no class is favored. This is indicated by the
sample mean over the current softmax prediction p̂t . Thus,
the smoothing scheme is defined as:

p̄t = p̂t + γ

1 + γ Nc
, (13)

where Nc denotes the number of classes and γ is an adaptive
smoothing factor.

3.1.6 Summary

Optimization-based methods are the most common in online
test-time adaptation, focusing on consistency, stability, and
robustness.However, they rely on the availability of sufficient
target data to reflect the global test data distribution. The
next sectionwill explore data-basedmethods, which partially
address the challenge of limited target data in OTTA.
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3.2 Data-Based OTTA

With a limited number of samples in the test batch, encoun-
tering unexpected distribution changes is common. We
recognize that datamight be key to bridging the gap between
the source and test data.

This section delves into data-centric strategies in OTTA.
We explore methods for diversifying data in each batch
(Sect. 3.2.1) and preserving high-quality information on a
global scale (Sect. 3.2.2). These strategies aim to enhance
model generalizability and adapt the model’s discriminative
capacity to the current data batch (Fig. 5).

3.2.1 Data Augmentation

Data augmentation is important in domain adaptation (Wang
&Deng, 2018) anddomain generalization (Zhou et al., 2023),
as it mimics real-world variations to improve model trans-
ferability and generalizability. It is particularly useful for
test-time adaptation.
Predefinedaugmentations. Commondata augmentationmeth-
ods like cropping, blurring, and flipping are effectively
incorporated into various OTTAmethodologies. An example
of this integration is TTC (Lin et al., 2023), which updates
themodel using averaged predictions frommultiple augmen-
tations. Mean teacher models such as RoTTA (Yuan et al.,
2023b), CoTTA (Wang et al., 2022a), and ViDA (Liu et al.,
2023b), applies predefined augmentations to teacher/student
input, and maintains prediction consistency across different
augmented views.

To ensure consistent and reliable predictions, ROID
(Marsden et al., 2024) uses augmentation for prediction con-
sistency by employing symmetric cross-entropy (SCE). PAD
(Wu et al., 2021) employs multiple augmentations of a single
test sample for majority voting, believing that if most aug-
mented views yield the same prediction, it is likely correct.
TTPR (Sivaprasad & Fleuret, 2021) adopts KL divergence
to achieve consistent predictions by aligning the average
prediction across three augmented views with the predic-
tion for each view. Another approach, MEMO, uses AugMix
(Hendrycks et al., 2020) for test images. For a test data point, a
range (usually 32 or 64) of augmentations from the AugMix
pool A is generated to make consistent predictions.
Contextual augmentations. Previously, OTTAmethods often
predetermined augmentation policies. Given that test distri-
butions can undergo substantial variations in continuously
evolving environments, fixed augmentation policies may not
be suitable for every test sample. In CoTTA (Wang et al.,
2022a), rather than augmenting every test sample by a uni-
formed strategy, augmentations are judiciously applied only
when domain differences (i.e., lowprediction confidence) are
detected, mitigating the risk of misleading the odel.

Adversarial augmentation. Traditional augmentation meth-
ods always provide limited data views without fully repre-
senting the domain differences. TeSLA (Tomar et al., 2023)
addresses this by leveraging adversarial data augmentation
to identify the most effective augmentation strategy. Instead
of using a fixed augmentation set, it creates a policy search
space O as the augmentation pool and assigns a magnitude
parameter m ∈ [0, 1] for each augmentation. A sub-policy
ρ consists of augmentations and their corresponding magni-
tudes. To optimize the policy, the teacher model is adapted
using an entropy maximization loss with severity regular-
ization, encouraging prediction variations while avoiding
augmentations that are too strong and deviate too far from
the original image.

3.2.2 Memory Bank

Going beyond augmentation strategies that could diversify
the data batch, a memory bank is a powerful tool to pre-
serve valuable data information for future memory replay.
Setting up a memory bank involves two key considerations:
(1) Determining which data to store, identifying samples
valuable for replay during adaptation. (2) Managing the
memory bank, including adding new instances and remov-
ing old ones.

Memory bank strategies are generally time-uniform and
class-balanced. Many methods integrate both for maximum
effectiveness. To address temporally correlated distributions
and class imbalance, NOTE (Gong et al., 2022) introduces
Prediction-Balanced Reservoir Sampling (PBRS), saving
sample-prediction pairs. PBRS combines time-uniform and
prediction-uniform sampling. The time-uniform approach,
reservoir sampling (RS), aims for uniform data over a tem-
poral stream. For a sample x predicted as class k, a value
p is randomly sampled from a uniform distribution [0, 1].
If p is smaller than the proportion of class k in the mem-
ory bank, a random sample from the same class is replaced
with x . The prediction-uniform strategy (PB) prioritizes pre-
dicted labels to maintain majority class balance, replacing a
random instance from the majority class with a new sample.
PBRS ensures a balanced distribution across time and class,
enhancing the model’s adaptability.

A similar strategy is employed in SoTTA (Gong et
al., 2023) to facilitate class-balanced learning. Each high-
confidence sample-prediction pair is stored when the mem-
ory bank has available space. If the bank is full, the method
opts to replace a sample either from one of the majority
classes or from its class if it belongs to the majority. This
ensures a more equitable class distribution and strength-
ens the learning process against class imbalances. Another
work,RoTTA (Yuan et al., 2023b), offers a category-balanced
sampling with timeliness and uncertainty (CSTU) module,
dealing with the batch-level shifted label distribution. CSTU
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Fig. 5 Timeline of Data-based OTTA methods

proposes a category-balancedmemory bankM with capacity
N , storing data samples x with predicted labels ŷ, heuristic
scores H, and uncertainty metrics U . The heuristic score is
calculated by:

H = λt
1

1 + exp(−A/N )
+ λu

U
log C , (14)

whereλt andλu is the trade-off between time and uncertainty,
A is the age (i.e., how many iterations this sample has been
stored in thememory bank) of a sample stored in thememory
bank. C is the number of classes, N is the capacity of the
memory bank, and U is the uncertainty measurement, which
is implemented as the entropy of the sample prediction. The
score H is then used to decide whether a test sample should
be saved into the memory bank for each class. As the lower
heuristic score is always preferred, its intuition is to maintain
fresh (i.e., lower ageA), balanced, and certain (i.e., lower U)
test samples. thereby enhancing adaptability during online
operations.

To avoid the negative impact of the batch-level class dis-
tribution, TeSLA (Tomar et al., 2023) incorporates an online
queue to hold class-balanced weakly augmented sample fea-
tures and their corresponding pseudo-labels. To enhance the
correctness of pseudo-label predictions, each test sample is
compared with its closest matches within the queue. Simi-
larly, TSD (Wang et al., 2023a) is dedicated to preserving
sample embeddings and their associated logits in a memory
bank for trustworthy predictions. Initialized by the weights
from a source pre-trained linear classifier (Iwasawa andMat-
suo, 2021), this memory bank is subsequently employed for
prototype-based classification.

Contrastive learning is well-suited for OTTA, as discussed
in Sect. 3.1.3.However, it can be challenging for online learn-
ing, especially when it pushes away feature representations
of data from the same class. Unlike conventional methods

that revisit the feature space multiple times, AdaContrast
(Chen et al., 2022) offers an innovative solution. It keeps all
previously encountered key features and pseudo-labels in a
memory queue to avoid forming “push-away” pairs from the
same class. This speeds up the learning process and reduces
error accumulation in data from the same class, improving
efficiency and precision.

ECL (Han et al., 2023) represents a novel shift away from
traditional methods by incorporating a memory bank about
output distributions for setting thresholds on complementary
labels. The memory bank is also periodically refreshed using
the newly updated model parameters, ensuring its relevance
and effectiveness.

3.2.3 Summary

Data-based techniques handle biased online test sets or
unique stylistic constraints but often increase computa-
tional demands, posing challenges in online scenarios. The
following section focuses on an alternative strategy: how
architectural modifications can offer distinct advantages in
Online Test-Time Adaptation.

3.3 Model-Based OTTA

Model-basedOTTAadjusts themodel architecture to address
distribution shifts. Changes generally involve either adding
new components or replacing existing blocks. This cat-
egory includes developments in prompt-based techniques,
involving adapting prompt parameters or using prompts to
guide the adaptation process (Fig. 6).
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3.3.1 Module Addition

Input transformation. In an effort to counteract domain shift,
Mummadi et al. (2021) introduced to optimize an input trans-
formation module d, along with the BatchNorm layers as
discussed in Sect. 3.1.3. This module is built on the top of the
source model f , i.e., g = f ◦ d. Specifically, d(x) is defined
as:

d(x) = γ · [τ x + (1 − τ)rψ(x)] + β, (15)

where γ and β are channel-wise affine parameters. The com-
ponent rψ denotes a network designed to have the same input
and output shape, featuring 3×3 convolutions, group normal-
ization, and ReLU activations. The parameter τ facilitates a
convex combination of the unchanged and transformed input
rψ(x).
Adaptation modules. To stabilize predictions during model
updates, TAST (Jang et al., 2023) integrates 20 adapta-
tion modules to the source pre-trained model. Based on
BatchEnsemble (Wen et al., 2020), these modules are
appended to the top of the pre-trained feature extractor.
The adaptation modules are updated multiple times inde-
pendently by merging their averaged results with the corre-
sponding pseudo-labels for a batch of data.

For continual adaptation, promptly detecting and adapt-
ing to changes in data distribution is essential to address
catastrophic forgetting and error accumulation. To achieve
this, ViDA (Liu et al., 2023b) employs low/high-rank feature
cooperation. Low-rank features retain general knowledge,
while high-rank features capture distribution changes. The
authors introduced two adapter modules parallel to the linear
layers (if the backbonemodel is ViT) to obtain these features.

Since distribution changes in continual OTTA are unpre-
dictable, strategically combining low/high-rank information
is crucial. The authors used MC dropout (Gal & Ghahra-
mani, 2016) to assess model prediction uncertainty about
input x . This uncertainty adjusts theweight given to each fea-
ture. If the model is uncertain about a sample, the weight of
domain-specific knowledge (high-rank feature) is increased;
conversely, the weight of domain-shared knowledge (low-
rank feature) is increased. This helps the model dynamically
recognize distribution changes while preserving its decision-
making capabilities.

3.3.2 Module Substitution

Module substitution typically refers to swapping an existing
module in a model with a new one. The commonly used
techniques are about:
Classifiers. Cosine-distance-based classifier (Chen et al.,
2009) offer flexibility and interpretability by leveraging simi-
larity to representative examples for decision-making. TAST

(Jang et al., 2023) formulates predictions by assessing the
cosine distance between the sample feature and the support
set. TSD (Wang et al., 2023a) employs a similar classi-
fier, comparing features of the current sample against its
K-nearest neighbors from a memory bank. PAD (Wu et al.,
2021) uses a cosine classifier for predicting augmented test
samples in its majority voting process. T3A (Iwasawa and
Matsuo, 2021) relies on the dot product between templates
in the support set and input data representations for classifi-
cation.
In the context of updating BatchNorm statistics, any alter-
ation to BatchNorm that extends beyond the standard
updating approach falls under this category. This includes
techniques such as MECTA norm (Hong et al., 2023),
MixNorm (Hu et al., 2021), RBN (Yuan et al., 2023a), and
GpreBN (Yang et al., 2022), etc. Tomaintain focus and avoid
redundancy, these specific methods and their intricate details
will not be extensively covered again in this section.

3.3.3 Adaptation Techniques Using Prompts

Prompt, widely discussed in vision language models like
CLIP (Radford et al., 2021), involves various design and
learning strategies, especially when set as a learnable param-
eter. We consolidate all prompting related adaptation meth-
ods here for clarity.1

“Decorate the Newcomers” (DN) (Gan et al., 2023) uses
prompts as supplementary information atop image input.
It employs a student-teacher framework with a frozen
source pre-trainedmodel to capture both domain-specific and
domain-agnostic prompts. For domain-specific knowledge, it
optimizes cross-entropy loss between the teacher and student
models’ outputs. Additionally, DN introduces a parameter
insensitivity loss to reduce the impact of parameters prone
to domain shifts. This ensures updated parameters retain
domain-agnostic knowledge while learning new, domain-
specific information.

DePT (Gao et al., 2022) innovatively segments the trans-
former into stages, adding learnable prompts at the initial
layer of each stage alongside image and CLS tokens. Dur-
ing adaptation, a mean-teacher model updates the learnable
prompts and the classifier in the student model. The stu-
dent model updates based on the cross-entropy loss between
pseudo labels and outputs from strongly augmented data.
Here, pseudo labels are generated using the averaged predic-
tions of the top-k nearest neighbors from the student’sweakly
augmented output within a memory bank. To mitigate errors
from incorrect pseudo labels, DePT employs entropy loss
between predictions from strongly augmented views of both
student and teacher models. Additionally, it minimizes the
mean squared error between the combined prompts of the

1 Refer to the timeline tables for component details.
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Fig. 6 Timeline of Model-based OTTA methods

student and teacher models at the transformer’s output layer.
To ensure diversity and prevent trivial solutions, DePTmax-
imizes the cosine distance among the student’s combined
prompts.

To adapt test data in VLMs, Test Time Prompt Tuning
merges an solution. Unlike conventional methods that fine-
tune with a fixed number of labeled test samples per class, it
learns the prompt by adjusting only the context of themodel’s
input, thus preserving themodel’s generalization power.TPT
(Shu et al., 2022) generates N randomly augmented views
of each test image and updates the learnable prompt param-
eter by minimizing the entropy of the averaged prediction
probability distribution. Additionally, a confidence selection
strategy filters out outputs with high entropy to avoid noisy
updates fromunconfident samples. By updating the learnable
prompt parameter, the model can adapt more easily to new,
unseen domains (Fig. 7).

3.3.4 Summary

Model-based OTTA methods have shown effectiveness but
are less prevalent than other groups, mainly due to their
reliance on specific backbone architectures. For example,
layer substitution primarily based on BatchNorm is inap-
plicable to ViT-based architectures.

A critical feature of this category is its effective integration
with prompting strategies. This combination allows for fewer
but more impactful model updates, leading to greater perfor-
mance improvements. Such efficiency makes model-based
OTTA methods especially suitable for complex scenarios.

4 Empirical Studies

Existing OTTA methods predominantly use WideResNet
(Zagoruyko &Komodakis, 2016) or ResNet (He et al., 2016)

for experiments, overlooking the evolution of backbones in
recent years. In this study, we explore the possibility of
decoupling OTTA methods from their conventional CNN
backbones. We specifically focus on adapting these methods
to the Vision Transformer model (Dosovitskiy et al., 2021).
Our work presents strategies for adapting methods, initially
developed for CNNs, to work effectively with ViT archi-
tectures, thereby examining their flexibility under backbone
changes.
Baselines. We evaluate eight OTTA methods, using a stan-
dardized testing protocol for fair comparison. We use six
diverse datasets: three corrupted datasets (CIFAR-10-C,
CIFAR-100-C, and ImageNet-C), two real-world shifted
datasets (CIFAR-10.1 and OfficeHome), and one compre-
hensive dataset (CIFAR-10-Warehouse). CIFAR-10-
Warehouse plays a pivotal role in our evaluation, featuring a
broad array of subsets, including real-world variations from
different search engines with different colors and images cre-
ated through the diffusion model. Specifically, we used the
Google split in CIFAR-10-Warehouse to assess the OTTA
model’s ability to handle color shifts andmixed object styles.
Additionally,we evaluated theDiffusion split to test the effec-
tiveness of OTTA on artificially generated image samples,
which have gained popularity in recent years.

4.1 Implementation Details

Optimization details. We use PyTorch for implementation
on an NVIDIA RTX A6000. The foundational backbone
for all approaches is ViT-base-patch16-224 (Dosovitskiy et
al., 2021).2 For CIFAR-10-C, CIFAR-10.1, and CIFAR-10-
Warehouse as target domains, we trained the sourcemodel on
CIFAR-10 for 8000 iterations, including a warm-up phase of
1600 iterations. The training used a batch size of 64 and the

2 https://github.com/huggingface/pytorch-image-models.
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Fig. 7 The exemplars of the adopted datasets. The datasets include color variations, synthetic data, and types of corruption

stochastic gradient descent (SGD) algorithm with a learning
rate of 3e-2. We applied the same configuration for training
the source model on CIFAR-100, extending the training to
16,000 iterations with a warm-up period of 4000 iterations.
The source model on the ImageNet-1k dataset was obtained
from the Timm repository.3 For the OfficeHome dataset, we
trained the source model on the clipart domain for 3,500
iterations with 200 iterations of warmup. Basic data augmen-
tation techniques, including random resizing and cropping,
were applied across all methods. The common optimization
setup employed the Adam optimizer with a momentum term
β of 0.9 and a learning rate of 1e-3. Resizing and crop-
ping techniques were used as default preprocessing steps for
all datasets, followed by input normalization (0.5, 0.5, 0.5)
to mitigate potential performance fluctuations from external
factors beyond the algorithm’s core operations.
Component substitution. We develop a series of strategies to
adapt the OTTA methods to vision transformers:

– Switch to LayerNorm: Due to the absence of the
BatchNorm layer inViT, allBatchNorm-based strate-
gies in the original implementations would be automati-
cally moved onto LayerNorm.

– Disregard BatchNorm mixup: Removing statistic
mixup strategy originally designed for BatchNorm-
based methods because LayerNorm is designed to
normalize each data point independently.

– Sample embedding changes: Formethods that rely on fea-
ture representations, an effective solution is to use class
embedding as the image feature.

– Pruning incompatible components:Any elements incom-
patible with vision transformer are removed.

Baselines: We select eight methods that represent the eight
OTTA categories mentioned in this paper, respectively. They
include:

3 vit_base_patch16_224.orig_in21k_ft_in1k.

1. Tent: [ optimization ] A fundamental OTTA method
rooted in BatchNorm updates for both statistics and
affine parameters with entropy minimization. To repro-
duce it onViTs, we replace itsBatchNorm updates with
a LayerNorm updates.

2. CoTTA [ optimization , data ] uses the mean-teacher
model, where the teachermodel is updated by themoving
average of the student. During adaptation, soft entropy
is optimized and combined with selective augmentation.
For each iteration, it also applies parameter reset (i.e.,
partially reset the model parameter to the source pre-
trained version). While it requires updating the entire
student network (i.e., CoTTA-ALL), we further assess
CoTTA-LN that only update LayerNorm on its stu-
dent model.We also examine its parameter reset strategy,
resulting in another two variants: updating LayerNorm
without parameter reset (CoTTA∗-LN), and full network
updating without parameter reset (CoTTA∗-ALL).

3. SAR [ optimization ] followsTentwhile using sharpness-
aware minimization (SAM) (Foret et al., 2021) for flat
minima.

4. Conjugate-PL: [ optimization ] As the source model
is optimized by the cross-entropy loss, this method is
Conj-CE. It is similar to Tent but allows the model to
interact with the data twice for each iteration: once for
updating LayerNorm and another for prediction.

5. MEMO: [ optimization , data ] For each test sample,
MEMO applies various data augmentations and adjusts
the model parameters to minimize the entropy across
the model marginal output distributions from these aug-
mentations. To ensure consistency and avoid unexpected
performance fluctuations, we omit all data normaliza-
tion processes from its set of augmentations. At the same
time, we evaluate the performance of MEMO on two ver-
sions, LayerNorm update and full update, resulting in
MEMO-LN and MEMO-ALL correspondingly.

6. RoTTA [ optimization , data , model ] uses a memory
bank to store class-balanced data, considering uncer-
tainty and the “age” of each saved data sample. It
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Fig. 8 Comparison of the OTTA performance on the CIFAR-10-C
(severity level 5) and CIFAR-10.1 datasets with ViT-base-patch16-224.
The top and bottom plots show the experiments conducted with batch

size 16 and 1 based on the LayerNorm updating strategy, respectively.
Source-only (i.e., direct inference) performance is shown with the dot-
ted line

also introduces a time-aware reweighting strategy to
enhance adaptation stability. For evaluation, given that
BatchNorm is not compatible with ViTs, we exclude
the RBN module.

7. TAST [ optimization , data , model ] integrates multi-
ple adaptationmodules into the source pre-trainedmodel.
Based on BatchEnsemble (Wen et al., 2020), these
modules are appended to the top of the pre-trained fea-
ture extractor. The adaptation modules are then updated
multiple times independently by merging their averaged
results with the corresponding pseudo-labels for a batch
of data. To accommodate the ViT architecture (especially
ViT-base), we use the class embedding as the feature rep-
resentation.

8. ROID4 [ optimization , data ] is a method for not only
typical OTTA but also universal TTA, capable of han-

4 For fair comparison, we do not use gradient accumulation.

dling temporal correlation and domain non-stationarity.
It incorporates weighted SLR loss with the Symmetric
cross-entropy loss, alongside weight ensemble and prior
correctionmechanisms to ensure efficacy in complex sce-
narios.

Despite the broad range of available OTTA methods, we
believe that a detailed examination of this carefully selected
subset will yield valuable insights. Our empirical study is
designed to explore the following key questions.

4.2 Does OTTA StillWork with ViT?

To assess the transferability and adaptability of the selected
OTTA methods, we compare them against the source-only
baseline (i.e., direct inference) on vision transformers. For
consistency and controlled variable comparison, each bar
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chart included in our analysis is plotted based on the
LayerNorm updating strategy.

4.2.1 On CIFAR-10-C and CIFAR-10.1 Benchmarks

We evaluate the CIFAR-10-C and CIFAR-10.1 datasets with
batch sizes 1 and 16 and show results in Fig. 8. We discuss
our observations in three aspects.
Corruption types. Across both batch sizes, most methods
exhibit high error in response to noise-induced corruptions,
as illustrated in Figs. 8 and 13. In contrast, these methods
tend to perform better than noise-induced corruptions when
dealing with structured corruptions, such as snow, zoom,
or brightness. This pattern suggests that various corruption
types reflect different degrees of divergence from the cor-
ruption domain to the source dataset. Especially, adapting to
noise corruption poses a significant challenge for confidence
optimization-based methods (such as Tent, MEMO-LN, and
Conj-CE), regardless of the batch size. This difficulty can
be linked to the substantial domain gap and the unpredictable
nature of noise patterns discussed earlier. Although these
strategies aim to increase themodel’s confidence, they are not
equipped to directly correct erroneous predictions. It is worth
noting that ROID surpasses all other baselines on noise-
based corruptions. This may attributed to the certainty- and
diversity-weighted SCE loss, which is designed to address
noise issues while avoiding trivial solutions. CIFAR 10.1
stands out as an exception, as it is not associated with any
specific corruption. Instead, it represents real-world data that
share the same label set as CIFAR 10. Compared to other
corruption domains - except the brightness domain - CIFAR
10.1 exhibits a smaller domain gap, as evidenced by the lower
error rate achieved through direct inference. In this context,
most methods yield results comparable to direct inference.
Notably, Conj-CE excels with a batch size of 16, while
CoTTA∗-LN,CoTTA-LN, and SAR stand out when the batch
size is reduced to 1.
Batch sizes. Batch size is found to aid pure optimization-
based methods like Tent, Conj-CE, and MEMO-LN in
outperforming direct inference (i.e., source only). Similarly,
batch size significantly influences the performance of ROID.
It achieves the highest performance, with a significant mar-
gin over others, in terms of mean error on CIFAR-10-Cwhen
the batch size is 16. Nevertheless, it makes almost entirely
erroneous predictions under a batch size of 1. As detailed in
Sect. 4.4, our analysis leads to the conclusion that larger batch
sizes tend to stabilize loss optimization, which is beneficial
for adaptation processes in these methods. This phenomenon
is also evident in CIFAR-10.1, where entropy-based meth-
ods such as Tent and Conj-CE face challenges at smaller
batch sizes.

Methods that incorporate prediction reliability can effec-
tively navigate the limitations associated with smaller batch
sizes.

4.2.2 On CIFAR-100-C Benchmark

The performance on the CIFAR-100-C dataset exhibits a
trend similar to that observed in the CIFAR-10-C dataset,
as shown in Table 2.
Number of classes. As CIFAR-100-C shares the same cor-
ruption setup as CIFAR-10-C, it is important to understand
the differences between the CIFAR-10-C and CIFAR-100-C
datasets. CIFAR-10-C consists of only 10 classes, allowing
all classes to be represented within a single batch if its size
is 16. In contrast, CIFAR-100-C, with its 100 classes, intro-
duces a distinct challenge for online streaming adaptation.
This scenario is particularly problematic for methods like
Tent, which rely on updating the LayerNorm parameters
within the current batch for subsequent use.While nomethod
surpasses the source-only performance, Tent experiences a
1.33% accuracy reduction on CIFAR-10-C and a more pro-
nounced 3.94% reduction on CIFAR-100-C.
Batch sizes. A noteworthy finding from the CIFAR-100-C
experiments is that RoTTA, with a mean error rate of 41.30%
at any experimented batch size, consistently outperforms
direct inference (which has a mean error rate of 41.88%).
This achievement is likely due to RoTTA’s ability to main-
tain label diversity within its memory bank, emphasizing
the importance of preserving a wide and varied information
spectrum to tackle batch-sensitive and complex adaptation
tasks effectively. This trend is similarly observed in Figs. 13
and 9, further reinforcing the robustness of RoTTA. More-
over, although SAR and TAST underperform compared to
direct inference, they demonstrate stability across various
batch sizes. Considering RoTTA, these methods represent
primary approaches to handling different batch sizes: (1)
stable optimization, as flatminima aremore resilient to gradi-
ent fluctuations, and (2) information preservation, providing
additional insights for each batch and reducing model sensi-
tivity to batch sizes. Nevertheless, ROID and CoTTA-ALL
exhibit significant performance variations concerning batch
sizes.

4.2.3 On ImageNet-C Benchmark

When comparing performance across CIFAR-10-C, CIFAR-
100-C, and ImageNet-C, it becomes apparent that ImageNet-
C (Fig. 9) exhibits notably poorer performance overall. This
could be attributed to the larger number of classes in the
ImageNet-Cdataset, as a similar trend is observedwhen com-
paring CIFAR-10-C (Fig. 8) with CIFAR-100-C Table 2.
Corruption types. Varying domain gaps emerge across
datasets when employing the same mechanism to generate
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Fig. 9 Comparison of theOTTAperformance on the ImageNet-C at the severity level 5. The upper and bottom plots show the experiments conducted
with batch size 16 and 1 based on the LayerNorm updating strategy, respectively. Source-only performance is shown with the dotted line

corrupted data. Nevertheless, overall consistency remains,
likely influenced by the training process of the source model.
Additionally, corruptions representing natural domain gaps
(e.g., brightness, zoom, snow) consistently appear simpler
than noise-based corruptions (e.g., Gaussian noise, shot
noise). Surprisingly, contrast exhibits a notably high error
rate for both direct inference and most methods, indicating a
substantial domain gap compared to other corruption types.
In this case, ROID appears to excel in addressing it. In con-
trast, brightness appears to have the smallest domain gapwith
the source data.
Batch sizes. When batch size is 1, optimization-based meth-
ods exhibit error rates exceeding 95% across all domains.
This also applies toROID, whichmainly relies onmodel opti-
mization. An exception to this trend is SAR, which produces
a similar trend as in CIFAR-100-C. However, it produces
a larger performance gap in ImageNet-C than CIFAR-100-
C compared with direct inference. With different numbers
of classes, this further indicates that datasets with increased

complexity and a higher degree of challenge exhibit greater
sensitivity to batch-size alterations.
Adaptation strategy. As depicted in Fig. 9, when batch size
is 16, SAR, Conj-CE, RoTTA, and ROID outperform the
source-only model in terms of mean error. In contrast, Tent,
MEMO-LN, and CoTTA-LN demonstrate significantly poor
results. The error rate of each domain exhibits a similar
trend. Notably, Conj-CE, which conducts an additional
inference of each batch for final prediction compared with
Tent, markedly surpasses Tent across most domains and
in mean error. This suggests a significant inter-batch shift in
ImageNet-C, such as class differences.

4.2.4 On CIFAR-10-Warehouse Benchmark

In our study, the CIFAR-10-Warehouse dataset (Sun et al.,
2023) emerges as an indispensable resource for assessing
OTTA methods, perfectly aligning with the CIFAR-10 label
set to facilitate comprehensive comparisons across a spec-
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Fig. 10 Comparison of the OTTA performance on the Google split of CIFAR-10-Warehouse. The upper and bottom plots show the experiments
conducted with batch size 16 and 1 based on the LayerNorm updating strategy. Source-only performance is shown with the dotted line

trum of distribution shifts. Specifically, we examine two
dataset domains—real-world shifts and diffusion synthesis
shifts - to assess the resilience and adaptability of OTTA
methods.
Google split. Diverging from previous CIFAR-10 variances,
which primarily integrated artificially induced corruptions
(i.e., CIFAR-10-C) or relied on sample differences (i.e.,
CIFAR 10.1), the Google split of the CIFAR-10-Warehouse
offers an unparalleled perspective. Sourced from Google
search queries, this segment includes 12 subdomains that
exhibit a range of color variations within the CIFAR-10
labels. It constructs an essential benchmark to measure con-
temporary OTTA methods’ proficiency against real-world
distribution shifts.
Cross-dataset comparison: real-world versus corruptions.
Comparing the empirical results for both the Google split
(Fig. 10) and CIFAR-10-C (Fig. 8), a notable difference is
that the real-world shift presented in CIFAR-10-Warehouse
exhibits a smaller domain gap globally, as indicated by the

performances of direct inference. Concerning subdomains,
the real-world shifts also demonstrate lower variance com-
pared to corruption domains. This suggests that dealing with
attacks or noise in a streaming manner is the most challeng-
ing adaptation task, as these two datasets are based on the
same source pre-trained model.
Batch sizes. Regarding the differences in batch sizes depicted
in Fig. 10, when the batch size is 16, five OTTA methods
based on LayerNorm updating either match or surpass the
performance of direct inference. This observation suggests
that the LayerNorm updating strategy is generally effec-
tive in handling real-world shifts. However, when the batch
size is reduced to 1, methods that solely rely on entropy
minimization, such as Tent and Conj-CE, experience per-
formance degradation across most domains. This decline
may be attributed to the instability of optimization for single-
sample batches. Additionally, the fact that ROID performs
similarly to corruption-based datasets indicates its sensitiv-
ity to changes in batch size.
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Adaptation strategy. RoTTA, TAST and SAR demonstrate
exceptional stability regardless of batch sizes, which is
also shown in CIFAR-100-C. Furthermore, ROID exhibits
a smaller margin for surpassing performance compared to
corruption-based datasets, indicating its robustness against
data noise.
Diffusion split. Furthermore, we incorporate the Diffusion
split into our analysis as shown in Table 3. Created using sta-
ble diffusion (Rombach et al., 2022), this domain introduces
a novel examination of synthetic samples. Considering the
increasing prevalence of diffusion-generated imagery, this
evaluation offers unique insights into the capability of OTTA
methods to adapt to the rising tide of generated images.
Cross-dataset comparison: corruption, real-world, or dif-
fusion? In terms of mean error, the diffusion split has the
smallest domain gap among CIFAR-10-based datasets when
comparing Fig. 8 with Table 3. This is even true when com-
pared to the CIFAR 10.1 dataset, suggesting that OTTA
methods based on ViT can generally handle diffusion-based
images.
Adaptation strategy. The outcomes in Table 3 indicate that,
on average, eachOTTAmethod performs equally well or bet-
ter than the baseline direct inference in terms of mean error.
However, some methods still exhibit poor performance in
certain domains. For instance, while TAST delivers satisfac-
tory results on DM-01, it fails to perform onDM-02, DM-08,
DM-09, and DM-12 domains. Similarly, Tent, Conj-CE,
and MEMO-LN methods fall short on DM-05.

In contrast, RoTTA and ROID demonstrate their capabil-
ity to surpass direct inference outcomes for every domain.
Similarly, SAR enables the model to reach a region in the
optimization landscape that is less sensitive to data varia-
tions, resulting in stable predictions.

4.2.5 On OfficeHome Benchmark

OfficeHome (Venkateswara et al., 2017) has four domains.
We use the clipart domain as the source dataset and apply
OTTA methods to the remaining domains: Art, Product, and
RealWorld.
Subdomains. The Art domain is the most difficult to adapt
to from clipart based on the given pre-trained source model.
However, evenwithminimal batch size,SAR,RoTTA,TAST,
and ROID show competitive results against the baseline in
the Art domain. Conversely, in the Product domain, reducing
batch sizes significantly impacts the performance of several
methods. The RealWorld domain presents the most signifi-
cant challenge for adaptation, with few methods surpassing
direct inference across different batch sizes.
Batch sizes.SAR,RoTTA, andTAST consistently outperform
the source-only baseline irrespective of batch size, indicating
stable performance. On the other hand, Tent, Conj-CE,
and ROID show a decline in performance at a batch size of Ta
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Table 4 Classification error rate (%) for the OfficeHome online test-
time adaptation task using a source model trained on Clipart with ViT-
base-patch16-224

Method Art Product RealWorld Mean
SO 39.56 34.42 29.54 34.51

Batch size = 16

Tent 39.10 33.63 28.69 33.81

CoTTA-ALL 72.23 86.30 79.55 79.36

SAR 39.02 33.30 28.85 33.72

Conj-CE 43.47 32.28 27.01 34.26

MEMO-LN 43.14 34.74 30.25 36.04

RoTTA 39.56 34.42 29.47 34.48

TAST 39.47 32.30 30.02 33.93

ROID 37.74 33.03 28.23 33.00

Batch size = 1

Tent 39.60 67.97 47.56 51.71

CoTTA-ALL 96.25 97.63 97.41 97.10

SAR 39.27 34.65 29.56 34.49

Conj-CE 68.40 69.59 30.30 56.09

MEMO-LN 48.17 94.05 91.51 93.39

RoTTA 39.56 34.44 29.47 34.49

TAST 39.43 32.28 30.11 33.94

ROID 96.95 98.22 98.03 97.73

Bold values indicate the lowest error rate
SO denotes source-only

1, suggesting a dependency on larger batch sizes for optimal
results.
Adaptation strategy. It is observed that CoTTA-ALL and
MEMO-LN do not perform well across all domains. This sug-
gests that they heavily rely on augmentations that are not
effective enough to bridge the domain gap inOfficeHome.As
a result, it is crucial to further examine current augmentation
strategies to address domain discrepancies more efficiently.

4.2.6 Conclusion

Based on our extensive experiments, most OTTA methods
exhibit similar behavioral patterns across various datasets.
This consistency indicates the potential of contemporary
OTTA techniques in effectively managing diverse domain
shifts. Of particular note are two methods, RoTTA and SAR,
which highlight the significance of optimization insensitivity
and information preservation, respectively. Additionally, the
effectiveness of ROID is demonstrated when the batch size
is reasonable, showcasing its capability.

4.3 Is OTTA Efficient?

To assess the efficacy of OTTA algorithms, especially within
the constraints of hardware limitations, we employ three

primary evaluation metrics: wall clock time, GPU memory
usage, and GFLOPs.

As depicted in Fig. 11, lower values across these metrics
are indicative of superior performance. Our analysis reveals
that within the context of the ImageNet-C dataset, MEMO-LN
exhibits suboptimal performance, accompanied by elevated
computational demands,which are deemed disadvantageous.

Meanwhile, RoTTA demonstrates commendable results,
characterized by reducedGFLOPs andprocessing time; how-
ever, its memory bank demands greater GPU memory. This
requirement may necessitate further hardware provisions or
memory optimizations for deployment in practical applica-
tions. Note that in our analyses, CoTTA-ALL is excluded to
maintain the integrity and informativeness of the compara-
tive showcase. This decision is made since CoTTA-ALL has
unexpectedly high GFLOPs and wall clock time cost, along
with high error rates, which made the comparative landscape
appear skewed.

Conversely,SARmaintains lowmean errorwhile ensuring
computational efficiency, especially compared with Tent.
Similarly, Conj-CE attains significant error reduction with
slightly increased resource consumption, performing infer-
ence for each batch directly after every iteration. ROID,
additionally, achieves a balance between effectiveness and
efficiency, as evidenced by its notably low time consump-
tion and GFLOPs, alongside moderate GPU memory usage,
while still delivering a superbly low error rate.

4.4 Is OTTA Sensitive to Hyperparameter Selection?

In this section, we investigate whether OTTA methods will
be impacted by various hyperparameters. We conduct our
experimental study on ImageNet-C with batch size 16 using
Vit-base-patch16-224 to assess optimizers, learning rates,
and schedulers.

4.4.1 Batch Size Matters, But Only to an Extent

Figure 13 examines the impact of different batch sizes on
Tent in theCIFAR-10-C dataset. It reveals that performance
significantly varies with batch sizes from 1 to 16 across most
corruptions. However, this variability diminishes with larger
batch sizes (16 to 128), indicating a reduced influence of
LayerNorm updating on batch size, in contrast to tradi-
tionalBatchNorm settings. This pattern is consistent across
other datasets, as depicted inFig. 12.Nevertheless,batch size
remains crucial for stabilizing the optimization process.
For example, a batch size of 16 outperforms a batch size of
1 in confidence optimization methods in the Google split of
the CIFAR-10-Warehouse dataset.

However, Larger batch sizes are essential for complex
datasets like CIFAR-100-C and ImageNet-C, where direct
inference struggles. Besides, Fig. 13 suggests that increasing
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Fig. 11 Mean error versus a average wall-clock time per domain, b GPU memory usage, and c GFLOPs. All experiments are conducted on a
severity level of 5 on the ImageNet-C dataset

Fig. 12 Impact of varying batch sizes for Tent on CIFAR-10.1,
CIFAR-10-Warehouse Google split, CIFAR-100-C, and ImageNet-C

batch sizes does not fully address challenging corrup-
tions, such as Gaussian and Shot noise. This indicates the
necessity for more advanced adaptation strategies beyond
mere batch size adjustments in complex learning scenarios.
Additionally, it is worth noting that gradient accumulation

(Marsden et al., 2024) could be treated as a solution to allow
single-sample adaptation.

4.4.2 Optimization Layer Matters!

To assess the critical role of LayerNorm, we compare
LayerNorm update with the full model update, as sum-
marized in Table 5. This ablation study primarily focused
on CoTTA and MEMO, evaluating the impact of optimizing
LayerNorm alone. A notable observation is, for all meth-
ods, LayerNorm update plays an important role in gaining
high performance, underscoring its effectiveness in boosting
model performance by avoiding significant forgetting of the
source knowledge. This is also proven by Tent, SAR, and
Conj-CE, as shown in Fig. 15 in the appendix.

4.4.3 Optimizer Matter?

We evaluate Adam and SGD across eight methods with a
batch size of 16 on the ImageNet-C dataset. Our findings,

Fig. 13 Impact of batch size on CIFAR-10-C severity level 5. The base model is Tent optimized on LayerNorm
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detailed in Table 6, reveal several key observations. Firstly,
methods that adapt to test data under soft supervision, such
as soft entropy, appear more susceptible to changes in the
optimizer. For instance, switching to SGD resulted in a sig-
nificant mean error reduction of 9.84% for Tent. Similarly,
when updated by soft entropy, SGD enabled CoTTA-ALL
to achieve a mean error difference of over 10%. This pat-
tern was also observed in Conj-CE and MEMO-LN. This
disparity likely stems from the superior generalization capa-
bilities of SGD, as discussed by Wilson et al. (2017). The
notable exception within this group is SAR, which utilizes
Sharpness-AwareMinimization (SAM) to find stable minima.
This approachmaydiminish the impact of the choice between
optimizers.

Another distinct category includes RoTTA and TAST.
These methods, significantly reliant on their memory banks
or the averaging of predictions across multiple adaptation
modules, demonstrate reduced sensitivity to the choice of
optimization strategy. ROID instead exhibits high sensitivity
in terms of the optimizer changes. Here, Adam shows its sta-
bility due to its adaptive learning rate andmoment estimation
for noisy and non-stationary objectives.

4.4.4 Impact of Learning Rate

To further explore the impact of hyperparameters, we exam-
ine the learning rate within the range [0.0001, 0.0005, 0.001,
0.005, 0.01] on the ImageNet-Cdataset, as detailed in Fig. 14.
Results indicate that lower learning rates benefit online adap-
tation.

The empirical results shown in Fig. 14 confirm a gen-
eral idea: a high learning rate can cause quick overfitting of
the current batch in online adaptation. Lower rates enhance
model stability, enabling smoother pattern adaptation. Con-
versely, a large learning rate could disrupt the finely learned
knowledge from the source model thus causing performance
degradation.

However, this is not universally applicable. Methods such
as RoTTA and TAST consistently demonstrate stable per-
formance across varying learning rates. By incorporating
more information for prediction, they alleviate the impact
of batch-specific label variations, bolstering model stability.
Moreover,CoTTA-ALL,SAR, and ROID attain their optimal
performance at specific learning rate values, excluding the
lowest one, underscoring the continued relevance of study-
ing learning rates to optimize adaptation performance.

4.4.5 Impact of Scheduler

We examine the effectiveness of three different learning rate
schedulers to ascertain their influence on performance. Com-
pared with the default learning rate setup of 0.001 (Def) and
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Fig. 14 Impact of varying
learning rates on ImageNet-C
severity level 5

Table 7 Variations of learning rate schedulers on ImageNet-C severity
level 5 with batch size 16

Method Exp Cos Cyc Def Min

Tent 57.01 72.07 69.30 77.66 55.10

CoTTA-ALL 77.23 82.99 77.48 85.16 72.08

SAR 58.47 52.43 53.99 52.70 54.77

Conj-CE 52.64 54.98 53.03 61.00 50.58

MEMO-LN 61.03 92.59 92.99 90.32 66.22

RoTTA 62.97 62.91 62.91 62.80 62.82

TAST 69.79 69.79 69.79 69.79 69.76

ROID 59.93 48.13 47.87 46.70 55.98

Bold values indicate the lowest error rate

a minimum learning rate of 0.0001 (Min) for the Adam opti-
mizer, they are:

– ExponentialLR (Exp): divides the learning rate every iter-
ation by the decay rate of 0.9, adjusting from the first
domain to the last.

– CosineAnnealingWarmRestarts (Cos): periodically resets
the learning rate to a higher value and then decreases it
following a part of the cosine curve. Here, we gradually
decrease the learning rate to 0.0001 for each domain,
with the cycle length matching the number of iterations
per domain.

– CycleLR (Cyc): cyclically varying the learning rate
between two boundary values over a set number of train-
ing iterations. Here, we put it to begin with a maximum

learning rate of 0.001 in each domain and decay to 0.0001
by the final iteration of the domain.

As shown in Table 7, cyclical adjustments such as Cos
and Cyc of Tent and Conj-CE can surpass the default
setup (Def) but do not perform as well as the minimum
learning rate (Min), indicating the need for a lower learning
rate from the outset of the adaptation process. Meanwhile,
RoTTA and TAST demonstrate very stable performance
across different learning rate strategies, showcasing their
robustness. Notably, RoTTA exceeds the source-only per-
formance (i.e. 63.24%) under any condition. Additionally,
ROID demonstrates superior performance when utilizing the
default learning rate without a scheduler.

One exception is MEMO-LN, where only ExponentialLR
(Exp) can compete with the minimum learning rate. Further-
more, as illustrated inFig. 14,MEMO-LNproduces significant
differences in performance among the schedulers and learn-
ing rates, indicating its high sensitivity to the learning rate.

4.5 Is OTTA Effective with Other Vision Transformer
Variants?

We further evaluate the effectiveness of selectedOTTAmeth-
ods on the SwinTransformer5 as a point of comparison
to the foundational ViT, as shown in Table 8. Switching
the backbone architecture to SwinTransformer can greatly

5 swin_base_patch4_window7_224.ms_in22k_ft_in1k.

Table 8 Impact of backbone on
ImageNet-C

SO Tent CoTTA-ALL SAR Conj-CE MEMO-LN RoTTA TAST ROID

Batch size = 16

ViT 63.24 77.66 85.16 52.70 61.00 90.32 62.80 69.79 46.70

Swin 54.61 78.48 88.80 55.44 83.77 85.21 54.38 65.53 31.75

Batch size = 1

ViT 63.24 98.16 98.72 67.49 97.26 99.32 62.81 69.93 99.91

Swin 54.61 96.98 99.35 56.18 95.61 99.02 54.39 65.84 99.90

Bold values indicate the lowest error rate
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improve performance. This is evidenced by the direct infer-
ence of SwinTransformer, which outperforms all ViT outputs
except for SAR and ROID. This emphasizes the crucial
role of backbone architecture in achieving high performance
and suggests that improvements in backbone designs can
sometimes overshadow the enhancements brought about by
advancedOTTAmethodologies. Transitioning to a newback-
bone requires reassessing the effectiveness of individual
OTTA methods. Specifically, architecture-agnostic methods
like RoTTA (without the RBN module) and ROID outper-
form the source-only performance with a batch size of 16
using SwinTransformer. Additionally, RoTTA remains sta-
ble with a batch size of 1, demonstrating its robustness and
adaptability across various architectures.

These findings highlight a dynamic interplay between
backbone architectures and OTTA methods. Consequently,
evaluating OTTA strategies in the context of evolving trans-
former models is essential.

5 Future Directions

Our initial evaluations of the Vision Transformer revealed
that many Online Test-Time Adaptation methods are not
fully optimized for this architecture, resulting in suboptimal
outcomes. Based on these findings, we propose several key
attributes for an ideal OTTA approach, suitable for future
research and tailored to advanced architectures like ViT:

– Refining OTTA in realistic settings: Future OTTA meth-
ods should undergo testing in realistic environments
such as practical TTA (Marsden et al., 2024), weaken
the domain boundaries, employing advanced architec-
tures, practical testbeds, and reasonable batch sizes. This
approach aims to gain deeper and more relevant insights.

– Addressingmultimodal challenges andexploringprompt-
ing techniques: With the evolution towards foundation
models like CLIP (Radford et al., 2021), OTTA is con-
fronted with new challenges. These models may face
shifts across various modalities, necessitating innovative
OTTA strategies that extend beyond reliance on images
alone. Exploring prompt-based methods could offer sig-
nificant breakthroughs in OTTA.

– Hot-swappable OTTA: Keeping pace with the rapid evo-
lution of backbone architectures is crucial. Future OTTA
methods should focus on adaptability and generalizabil-
ity to seamlessly integrate with evolving architectures.

– Stable and robust optimization for OTTA: Stability and
robustness in optimization remain paramount. Given that
larger batch sizes demonstrate limited effectiveness in
ViT, future research should investigate more universal
optimization improvements. Such advancements aim to

consistently enhancemodel performance, independent of
external factors like batch size.

6 Conclusion

In this survey, we comprehensively examine Online Test-
Time Adaptation (OTTA), covering existing methods, rele-
vant datasets, evaluation benchmarks, and their implementa-
tions. We conduct extensive experiments to assess the effec-
tiveness and efficiency of current OTTA methods applied
to vision transformers. Our findings suggest that noise-
synthesized domain shifts often pose greater challenges than
other shifts, such as those encountered in real-world or diffu-
sion environments. Additionally, a large number of classes in
a dataset can lead to noticeable batch discrepancies, poten-
tially affecting OTTA models’ ability to maintain consistent
knowledge and increasing the risk of severe forgetting. To
address these challenges, we find that updating the normal-
ization layer with a memory bank or optimization flatness,
along with appropriate batch size selection, can effectively
stabilize the adaptation process and reduce forgetting. We
hope this survey serves as a foundational reference, offering
valuable insights for researchers and practitioners interested
in the evolving field of OTTA.

Appendix A

This appendix offers tables about the categorization of OTTA
methods and experiments conducted on the eight selected
methods across the chosen datasets.

– Table 9: The summary of existing OTTA methods.
– Table 10: Experiments on theCIFAR-10→CIFAR-10-C
task.

– Table 11:Experiments on the ImageNet-1k→ ImageNet-
C task.

– Table 12: Experiments on the CIFAR-10 → CIFAR-10-
Warehouse Google split task.

– Fig. 15: Ablation study on LayerNorm update strategy.
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Table 9 The summary of existing OTTA published in the top-tier conferences before Dec-2023

Year Method Model-based Data-based Optimization-based
Add. Subst. Prompt Mem. Aug. Loss. Pl. T-s. Norm. Other

2021 Tent (Wang et al., 2021a) � �
2021 MixNorm (Hu et al., 2021) � �
2021 PAD (Wu et al., 2021) � � �
2021 TTPR (Sivaprasad & Fleuret, 2021) � �
2021 Core (You et al., 2021) �
2021 SLR (Mummadi et al., 2021) � � �
2021 T3A (Iwasawa and Matsuo, 2021) � �
2022 NOTE (Gong et al., 2022) � �
2022 CoTTA (Wang et al., 2022a) � �
2022 Conj-PL (Goyal et al., 2022) � � �
2022 GpreBN (Yang et al., 2022) � �
2022 CFA (Kojima et al., 2022) �
2022 DUA (Mirza et al., 2022) � � �
2022 MEMO (Zhang et al., 2022) � � �
2022 AdaContrast (Chen et al., 2022) � � � �
2022 TPT (Shu et al., 2022) �
2022 DePT (Gao et al., 2022) �
2022 LAME (Boudiaf et al., 2022) �
2023 DN (Gan et al., 2023) �
2023 TAST (Jang et al., 2023) � � � �
2023 MECTA (Hong et al., 2023) � �
2023 DELTA (Zhao et al., 2023a) � �
2023 TeSLA (Tomar et al., 2023) � � � �
2023 RoTTA (Yuan et al., 2023b) � � � � �
2023 EcoTTA (Song et al., 2023) � �
2023 TIPI (Nguyen et al., 2023) � �
2023 TSD (Wang et al., 2023a) � � �
2023 SAR (Niu et al., 2023) � �
2023 ECL (Han et al., 2023) � �
2023 REALM (Seto et al., 2023) � �
2023 TTC (Lin et al., 2023) � �
2023 SoTTA (Gong et al., 2023) � � �
2023 ViDA (Liu et al., 2023b) � � �
2023 ERSK (Niloy et al., 2023) � �
2023 ROID (Marsden et al., 2024) � � � �
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Table 12 Classification error rate (%) for the CIFAR-10 → CIFAR-10-Warehouse online test-time adaptation task

Google G-01 G-02 G-03 G-04 G-05 G-06 G-07 G-08 G-09 G-10 G-11 G-12 Mean
SO 20.41 12.42 13.39 11.53 19.80 17.74 26.51 26.4 23.12 17.36 15.61 11.37 17.97

Batch size = 16

Tent 19.23 11.08 13.59 11.07 18.70 17.07 27.25 26.63 25.17 16.80 15.35 9.80 17.65

CoTTA-LN 20.52 12.50 13.56 11.43 20.09 18.02 27.29 26.87 23.36 17.93 15.73 11.43 18.23

CoTTA-ALL 22.28 21.89 29.76 10.55 22.47 20.96 40.86 44.11 41.56 26.07 31.80 24.21 28.04

CoTTA∗-LN 20.55 12.48 13.54 11.47 20.04 17.93 27.25 26.71 23.30 17.81 15.88 11.41 18.20

CoTTA∗-ALL 40.13 60.93 61.92 33.15 50.54 48.50 56.21 58.46 61.05 61.48 59.86 63.37 54.63

SAR 20.41 12.42 13.39 11.53 19.80 17.74 26.51 26.40 23.15 17.36 15.61 11.37 17.97

Conj-CE 17.91 9.87 11.51 10.11 20.18 16.41 27.22 26.40 24.96 14.89 13.57 9.30 16.86

MEMO-LN 20.70 10.84 12.61 10.88 19.08 16.46 28.11 26.87 20.91 17.21 14.99 10.83 17.46

MEMO-ALL 74.62 90.31 91.95 89.39 92.81 92.49 90.51 92.71 87.48 92.28 89.94 90.07 89.55

RoTTA 20.29 12.37 13.39 11.51 19.73 17.58 26.40 26.40 23.09 17.30 15.52 11.35 17.91

TAST 21.30 16.37 14.26 13.71 23.24 20.89 28.11 28.50 27.30 23.21 18.90 16.13 20.99

ROID 18.02 10.76 12.06 10.55 17.70 15.11 24.55 25.56 19.81 15.41 13.93 9.90 16.11

Batch size = 1

Tent 25.90 44.81 15.22 12.77 21.57 65.91 26.55 32.14 60.05 59.22 33.68 18.70 34.71

CoTTA-LN 20.44 12.99 13.76 11.78 21.07 19.05 27.22 27.27 24.20 18.30 15.90 11.83 18.65

CoTTA-ALL 84.36 74.83 71.15 83.16 78.50 87.64 81.61 80.46 84.98 85.87 83.04 82.22 81.49

CoTTA∗-LN 20.70 13.50 14.11 11.97 21.35 19.31 27.29 28.18 24.57 18.49 15.73 12.33 18.96

CoTTA∗-ALL 86.81 85.35 86.21 87.08 88.44 87.41 72.75 90.88 84.03 89.93 85.44 85.36 85.81

SAR 20.29 12.40 13.46 11.45 19.82 17.70 26.66 26.24 23.17 17.30 15.64 11.33 17.95

Conj-CE 24.63 11.08 14.94 9.37 19.58 47.47 23.47 43.52 52.68 19.84 32.57 12.52 25.97

MEMO-LN 15.35 9.53 11.48 8.18 27.78 21.33 21.99 43.48 70.91 12.14 20.35 8.06 22.55

MEMO-ALL 74.62 90.96 91.95 89.39 92.81 92.49 97.44 92.75 87.48 92.28 89.94 90.07 90.18

RoTTA 20.29 12.37 13.36 11.51 19.73 17.56 26.44 26.40 23.09 17.30 15.52 11.37 17.91

TAST 21.41 16.34 14.21 13.67 23.24 20.84 28.11 29.09 27.49 23.32 18.90 16.08 21.06

ROID 96.87 97.85 95.11 96.92 92.81 94.33 97.48 92.87 91.85 94.17 96.16 95.94 95.20

Bold values indicate the lowest error rate
Results are evaluated on ViT-base-patch16-224 with the Google split and diffusion split. Here, SO means source only

Fig. 15 Fully update versus
LayerNorm updates on
ImageNet-C severity level 5
with batch size 16
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