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Abstract
Deep neural networks are vulnerable to adversarial examples. Adversarial training (AT) is an effective defense against adver-
sarial examples. However, AT is prone to overfitting which degrades robustness substantially. Recently, data augmentation
(DA) was shown to be effective in mitigating robust overfitting if appropriately designed and optimized for AT. This work
proposes a new method to automatically learn online, instance-wise, DA policies to improve robust generalization for AT.
This is the first automated DA method specific for robustness. A novel policy learning objective, consisting of Vulnerability,
Affinity and Diversity, is proposed and shown to be sufficiently effective and efficient to be practical for automatic DA gener-
ation during AT. Importantly, our method dramatically reduces the cost of policy search from the 5000h of AutoAugment and
the 412h of IDBH to 9h, making automated DA more practical to use for adversarial robustness. This allows our method to
efficiently explore a large search space for amore effectiveDApolicy and evolve the policy as training progresses. Empirically,
our method is shown to outperform all competitive DA methods across various model architectures and datasets. Our DA
policy reinforced vanilla AT to surpass several state-of-the-art AT methods regarding both accuracy and robustness. It can
also be combined with those advanced AT methods to further boost robustness. Code and pre-trained models are available at:
https://github.com/TreeLLi/AROID.

Keywords Adversarial robustness · Adversarial training · Data augmentation · Automated data augmentation

1 Introduction

Deep neural networks (DNNs) are well known to be vulner-
able to infinitesimal yet highly malicious artificial perturba-
tions in their input, i.e., adversarial examples (Szegedy et
al., 2014). The lack of robustness cause a crisis of security
and trustworthiness for applications built on DNNs and thus
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hinders their further deployment in real world applications
especially in the critical domains like healthcare (Qiu et al.,
2023). Thus far, adversarial training (AT) has been the most
effective defense against adversarial attacks (Athalye et al.,
2018). AT is typically formulated as a min-max optimization
problem:

argmin
θ

E[argmax
δ

L(x + δ; θ)] (1)

where the inner maximization searches for the perturbation δ

to maximize the loss, while the outer minimization searches
for the model parameters θ to minimize the loss on the per-
turbed examples.

One major issue of AT is that it is prone to overfitting
(Rice et al., 2020; Wong et al., 2020). Unlike in standard
training (ST), overfitting in AT, a.k.a. robust overfitting (Rice
et al., 2020), significantly impairs adversarial robustness.
Many efforts (Li & Spratling, 2023b; Wu et al., 2020; Dong
et al., 2022; Liu et al., 2023; Liu & Satoh, 2023) have
been made to understand robust overfitting and mitigate its
effect. One promising solution is data augmentation (DA),
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which is a common technique to prevent ST from overfit-
ting. However, many studies (Rice et al., 2020; Wu et al.,
2020; Gowal et al., 2021; Rebuffi et al., 2021) have revealed
that advanced DAmethods, originally proposed for ST, often
fail to improve adversarial robustness. Therefore, DA is usu-
ally combined with other regularization techniques such as
Stochastic Weight Averaging (SWA) (Rebuffi et al., 2021),
Consistency regularization (Tack et al., 2022) and Separate
Batch Normalization (Addepalli, Jain, and Radhakrishnan,
2022) to improve its effectiveness. However, recent work (Li
& Spratling, 2023c) demonstrated that DA alone can signifi-
cantly improveAT if it has strong diversity andwell-balanced
hardness. This suggests that ST and AT may require differ-
ent DA strategies, especially in terms of hardness. It is thus
necessary to design DA schemes dedicated to AT.

IDBH (Li & Spratling, 2023c) is the latest DA scheme
specifically designed for AT. Despite its impressive robust
performance, IDBH employs a heuristic search method to
manually optimize the DA. This search process requires a
complete AT for every sampled policy, which induces pro-
hibitive computational cost and scales poorly to large datasets
and models. Hence, when the computational budget is lim-
ited, the hyperparameters for IDBH might be found using a
reduced search space1 and by employing a smaller model,
leading to compromised performance.

Another issue is that IDBH, in common with other con-
ventional DA methods such as AutoAugment (Cubuk et al.,
2019) and TrivialAugment (Müller & Hutter, 2021), applies
the same strategy to all samples in the dataset throughout
training. The distinctions between different training samples,
and between the model checkpoints at different stages of
training, are neglected. We hypothesize that different data
samples at the same stage of training, as well as the same
sample at the different stages of training, demand different
DAs. Hence, we conjecture that an improvement in robust-
ness could be realized by customizing DA for data samples
and training stages.

To address the above issues, this work proposes a bi-
level optimization framework (see Fig. 1) to automatically
learnAdversarialRobustness byOnline Instance-wiseData-
augmentation (AROID). To the best of our knowledge,
AROID is the first automated DA method specific to
adversarial robustness. AROID employs a multi-head
DNN-based policy model to map a data sample to a DA
policy (see Fig. 2). This DA policy is defined as a sequence
of pre-defined transformations applied with strength deter-
mined by the output of the policymodel. This policymodel is

1 Search space refers to the collection of all possible data augmentation
policies. Each policy consists of a set of a set of sub-policies, a data
augmentation method associated with a magnitude, and a probability
distribution for sampling each sub-policy to apply for data augmentation
(see Fig. 2 for an illustration).

optimized, alongside the training of the targetmodel, towards
three novel objectives to achieve a target level of hardness
and diversity. DA policies, therefore, are customized for each
data instance and evolve with the target network as train-
ing progresses. This in practice produces a more globally
optimal DA policy and thus benefits robustness. Impor-
tantly, the proposed policy learning objectives, in contrast
to the conventional ones like validation accuracy (Cubuk
et al., 2019), do not reserve a subset of the training data
for validation and do not rely on prohibitively expensive
inner loops for training the target model to evaluate the
rewards of the sampled policies. The former ensures the
entire training set is available for training to avoid poten-
tial data scarcity. The latter enables policy optimization to
be much more efficient and scalable so that it is more prac-
tical for AT. Compared to IDBH in particular, this allows
our approach to explore a larger space of DAs. Taking an
example of optimizing the DA for CIFAR10 and PRN18,
AROID took 9h using an A100 GPU, IDBH took 412h
using an A100 GPU, and AutoAugment took 5000h using a
P100 GPU (Hataya et al., 2020).

Extensive experiments show that AROID outperforms
all competitive DA methods across various datasets and
model architectures while being more efficient than the
previous best method (IDBH). AROID achieves state-
of-the-art robustness for DA methods on the standard
benchmarks. Besides, AROID outperforms, regarding accu-
racy and robustness, state-of-the-art AT methods. It also
complements such robust training methods and can be com-
bined with them to improve robustness further.

2 RelatedWork

Robust training. To mitigate overfitting in AT, many meth-
ods other than DA, have been previously proposed. One
line of works, IGR (Ross & Doshi-Velez, 2018), CURE
(Moosavi-Dezfooli et al., 2019), AdvLC (Li & Spratling,
2023b), discovered a connection between adversarial vul-
nerability and the smoothness of input loss landscape, and
promoted robustness by smoothing the input loss landscape.
Meanwhile, Wu et al. (2020) and Chen et al. (2021) found
that robust generalization can be improved by a flat weight
loss landscape and proposed AWP and SWA, respectively,
to smooth the weight loss landscape during AT. RWP (Yu
et al., 2022) and SEAT (Wang & Wang, 2022) were later
proposed to further refine AWP and SWA, respectively, to
increase robustness. SCARL (Kuang et al., 2023) incorpo-
rated semantic information into adversarial training. IBD
(Kuang et al., 2023) distilled prior knowledge from a robust
pre-trained model to enhance adversarial robustness. Many
works, including MART (Wang et al., 2020), LAS-AT (Jia et
al., 2022), ISEAT (Li&Spratling, 2023a), considered the dif-
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Fig. 1 An overview of the proposed method (legend in the right col-
umn). The top part shows the pipeline for training the policy model,
f plc, while the bottom illustrates the pipeline for training the target

model, ftgt . fa f t is a model pre-trained on clean data without any aug-
mentation, which is used to measure the distribution shift caused by
data augmentation. Please refer to Sect. 3 for a detailed explanation

Fig. 2 An example of the proposed augmentation sampling procedure.
The policy model takes an image as input and outputs logit values
defining multiple, multinomial, probability distributions correspond-
ing to different sub-policies. A sub-policy code is created by sampling

from each of these distributions, and decoded into a sub-policy, i.e., a
transformation and its magnitude. These transformations are applied,
in sequence, to augment the image

ference between individual training instances and improved
AT through regularizing in an instance-wisemanner.Our pro-
posed approach is also instance-wise, but contrary to existing
methods tackles robust overfitting via DA instead of robust
regularization. As shown in Sect. 4.5, it workswell alone and,
more importantly, complements the above techniques.

Data augmentation for ST. Although DA has been a
common practice in many fields, we only review vision-
based DA in this section as it is most related to our work.
In computer vision, DA can be generally categorized as:
basic, composite and mixup. Basic augmentations refer to
a series of image transformations that can be applied inde-
pendently. They mainly include crop-based (Random Crop
(He et al., 2016a), Cropshift (Li & Spratling, 2023c), etc.),
color-based (Brightness, Contrast, etc.), geometric-based
(Rotation, Shear, etc.) and dropout-based (Cutout (DeVries
& Taylor, 2017), Random Erasing (Zhong et al., 2020),

etc.) transformations. Composite augmentations denote the
composition of basic augmentations. Augmentations are
composed into a single policy/schedule usually through two
ways: interpolation (Hendrycks et al., 2020; Wang et al.,
2021) and sequencing (Cubuk et al., 2019, 2020; Müller &
Hutter, 2021). MixUp (Zhang et al., 2017), and analogous
works like CutMix (Yun et al., 2019), can be considered as a
special case of interpolation-based composition, which com-
bines a pair of different images, instead of augmentations, as
well as their labels to create a new image and its label.

Composite augmentations by design have many hyperpa-
rameters to optimize. Most previous works, as well as the
pioneering AutoAugment (Cubuk et al., 2019), tackled this
issue using automatedmachine learning (AutoML). DApoli-
cieswere optimized towardsmaximizing validation accuracy
(Cubuk et al., 2019; Lin et al., 2019; Li et al., 2020; Liu
et al., 2021), maximizing training loss (Zhang et al., 2020)
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or matching the distribution density between the original
and augmented data (Lim et al., 2019; Hataya et al., 2020).
Optimization here is particularly challenging since DA oper-
ations are usually non-differentiable. Major solutions seek to
estimate the gradient of DA learning objective w.r.t. the pol-
icy generator or DA operations using, e.g., policy gradient
methods (Cubuk et al., 2019; Zhang et al., 2020; Lin et al.,
2019) or reparameterization trick (Li et al., 2020; Hataya
et al., 2020). Alternative optimization techniques include
Bayesian optimization (Lim et al., 2019) and population-
based training (Ho et al., 2019). Noticeably, several works
like RandAugment (Cubuk et al., 2020) and TrivialAug-
ment (Müller & Hutter, 2021) found that if the augmentation
space and schedule were appropriately designed, competi-
tive results could be achieved using a simple hyperparameter
grid search or fixed hyperparameters. This implies that in ST
these advanced yet complicated methods may not be neces-
sary. However, it remains an open question if simple search
can still match these advanced optimization methods in AT.
Besides, instance-wiseDAstrategywas also explored inChe-
ung andYeung (2022);Miao et al. (2023) for ST. Ourmethod
is the first automated DA approach specific for AT. We fol-
low the line of policy gradient methods to enable learning
DA policies. A key distinction here is that our policy learn-
ing objective is designed to guide the learning of DA policies
towards improved robustness for AT, while the objective of
the above methods is to increase accuracy for ST.

3 Method

Wepropose amethod to automatically learnDAalongsideAT
to improve robust generalization. An instance-wise DA pol-
icy is produced by a policy model and learned by optimizing
the policy model towards three novel objectives. Updating
of the policy model and the target model (the one being
adversarially trained for the target task) alternates throughout
training (the policy model is updated every K updates of the
target model), yielding an online DA strategy. This online,
instance-adaptive, strategy produces different augmentations
for different data instances at different stages of training.

The following notation is used. x ∈ R
d is a d-dimensional

sample whose ground truth label is y. xi refers to i-th sample
in a dataset. The model is parameterized by θ . L(x, y; θ)

or L(x; θ) for short denotes the predictive loss evaluated
with x w.r.t. the model θ (Cross-Entropy loss was used in
all experiments). ρ(x; θ) computes the adversarial example
of x w.r.t. the model θ . pi (x; θ) or pi for short refers to the
output of the Softmax function applied to the final layer of
the model, i.e., the probability at i-th logit given the input x.

3.1 Modeling the DA Policy

Following the design of IDBH (Li & Spratling, 2023c) and
TrivialAugment (Müller&Hutter, 2021),DA is implemented
using four types of transformations: flip, crop, color/shape
and dropout applied in order. We implement flip using Hor-
izontalFlip, crop using Cropshift (Li & Spratling, 2023c),
dropout using Erasing2 (Zhong et al., 2020), and color/shape
using a set of operations including Color, Sharpness, Bright-
ness, Contrast, Autocontrast, Equalize, Shear (X and Y),
Rotate, Translate (X and Y), Solarize and Posterize. A
dummy operation, Identity, is included in each augmentation
group to allow data to pass through unchanged. More details
including the complete augmentation space are described in
Section A.

To customize the DA applied to each data instance indi-
vidually, a policy model parameterized by θ plc, is used to
produce a DA policy conditioned on the input data (see
Fig. 2). The policy model employs a DNN backbone to
extract features from the data, and multiple, parallel, lin-
ear prediction heads on the top of the extracted features to
predict the policy. The policy model used in this work has
four heads corresponding to the four types of DA described
above. The output of a head is converted into a multino-
mial distribution where each logit represents a pre-defined
sub-policy, i.e., an augmentation operation associated with a
strength/magnitude (e.g. ShearX, 0.1). Different magnitudes
of the same operation are represented by different logits, so
that each has its own chance of being sampled. A particu-
lar sequence of sub-policies to apply to the input image are
selected based on the probabilities encoded in the four heads
of the policy network.

3.2 Objectives for Learning the Data Augmentation
Policy

The policy model is trained using three novel objectives:
(adversarial) Vulnerability, Affinity and Diversity. These
objectives are designed to learn data augmentations with
strong diversity and appropriate hardness: requirements that
have been shown to be effective for adversarial training (Li
& Spratling, 2023c).

3.2.1 Motivation

Intuitively, enhancing the diversity and hardness of data
augmentation should help mitigate robust overfitting by
increasing the complexity of the training data. Specifically,
enhanced diversity increases the number of distinct data aug-

2 Different from the original version applied at half chance, here erasing
is always applied but the location and aspect ratio are randomly sampled
from the given range.

123



International Journal of Computer Vision

mentations applied during training and expands the effective
training set size (Gontijo-Lopes et al., 2021). Increasinghard-
ness raises the difficulty level of the augmented data for
the model to learn (adversarially), thereby reducing (robust)
overfitting. However, if the hardness exceeds the level that
the training model can fit, accuracy and even robustness will
decline, despite the reduction in robust overfitting. There-
fore, to maximize performance, hardness should be carefully
adjusted to balance between reducing robust overfitting and
improving overall performance. The optimal level of hard-
ness should therefore be tailored to different models and
training settings.

Understandingwhat kind of data augmentation is effective
for adversarial training is not the focus of the current work
so we refer the reader to (Li & Spratling, 2023c) for a for-
mal quantitative definition of diversity and hardness, along
with extensive experimental evidence supporting the above
reasoning.

3.2.2 Objectives

Vulnerability measures the loss variation caused by adver-
sarial perturbation on the augmented data w.r.t. the target
model:

Lvul(x; θ plc) = L(ρ(x̂; θ tgt ); θ tgt ) − L(x̂; θ tgt )

where x̂ = �(x; S(θ plc(x))) (2)

�(x; S(θ plc(x))) augments x by S(θ plc(x)), the augmenta-
tions sampled from the output distribution of policy model
conditioned on x, so x̂ is the augmented data. A larger
Vulnerability indicates that x becomes more vulnerable to
adversarial attack after DA. A common belief about the rela-
tionship between training data and robustness is that AT
benefits from adversarially hard samples.3 (Madry et al.,
2018; Li & Spratling, 2023c). From a geometric perspec-
tive, maximizing Vulnerability encourages the policy model
to project data into the previously less-robustified space.

3 “Adversarially hard samples” refer to samples that are difficult to
classify correctly after being adversarially perturbed. The difficulty,
or hardness, generally increases with the adversarial vulnerability of
the original sample and the strength of the adversarial attack. From
the perspective of attack strength, adversarially hard samples are those
perturbed by stronger attacks. The statement “AT benefits from adver-
sarially hard samples” can, therefore, be understood more broadly as
meaning that training with stronger attacks will lead to more effective
adversarial training and thus higher robustness. For example, multi-
step AT is generally considered more effective than single-step AT
(Madry et al., 2018) From the perspective of adversarial vulnerabil-
ity, adversarially hard samples are those with higher vulnerability to
attacks. Hard data augmentation can make data more susceptible to
attacks, thereby producing adversarially hard samples. Empirical evi-
dence (Li & Spratling, 2023c) suggests that adversarial training benefits
from increasing the hardness of data augmentationwithin an appropriate
range, as this helpsmitigate robust overfitting and enhance performance.

Nevertheless, the maximization of Vulnerability, if not
constrained, would likely favor those augmentations produc-
ing samples far away from the original distribution. Training
with such augmentations was observed to degrade accuracy
and even robustness when accuracy is overly reduced (Li &
Spratling, 2023c). Therefore, Vulnerability should be maxi-
mized while the distribution shift caused by augmentation is
constrained:

argmax
θ plc

Lvul(x; θ plc) s.t. ds(x, x̂) ≤ D (3)

where ds(·) measures the distribution shift between two
samples and D is a constant. Directly solving Eq. (3) is
intractable, so we convert it into an unconstrained optimiza-
tion problem by adding a penalty on the distribution shift
as:

argmax
θ plc

Lvul(x; θ plc) − λ · ds(x, x̂) (4)

where λ is a hyperparameter and a larger λ corresponds to a
tighter constraint on distribution shift, i.e., smaller D. Distri-
bution shift is measured using a variant of the Affinity metric
(Gontijo-Lopes et al., 2021):

ds(x, x̂) = La f t (x; θ plc) = L(x̂; θa f t ) − L(x; θa f t ) (5)

Affinity captures the loss variation caused by DA w.r.t. a
model θa f t (called the affinity model): a model pre-trained
on the original data (i.e., without any data augmentation).
Affinity increases as the augmentation proposed by the policy
network makes data harder for the affinity model to correctly
classify. By substituting Eq. (5) into Eq. (4), we obtain an
adjustable Hardness objective:

Lhrd(x; θ plc) = Lvul(x; θ plc) − λ · La f t (x; θ plc) (6)

This encourages the DA produced by the policy model to
be at a level of hardness defined by λ (larger values of λ

corresponding to lower hardness). Ideally, λ should be tuned
to ensure the distribution shift caused by DA is sufficient
to benefit robustness while not being so severe as to harm
accuracy.

Last,we introduce aDiversity objective to promote diverse
DA. Diversity enforces a relaxed uniform distribution prior
over the logits of the policy model, i.e., the output augmen-
tation distribution:

Lh
div(x) = 1

C

⎡
⎢⎣−

phi <l∑
i

log(phi ) +
phj >u∑

j

log(phj )

⎤
⎥⎦ (7)

C is the total count of logits violating either lower (l), or
upper (u) limits and h is the index of the prediction head.
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Intuitively speaking, theDiversity loss penalizes overly small
and large probabilities, helping to constrain the distribution
to lie in a pre-defined range (l, u). As l and u approach the
mean probability, the enforced prior becomes closer to a uni-
form distribution, which corresponds to a highly diverse DA
policy. Diversity encourages the policy model to avoid the
over-exploitation of certain augmentations and to explore
other candidate augmentations. Note that Diversity is applied
to the color/shape head in a hierarchical way: type-wise and
strength-wise inside each type of augmentation.

Combining the above three objectives together, the policy
model is trained to optimize:

argmin
θ plc

−Ei∈BLhrd(xi ) + β · Eh∈HLh
div(x; θ plc) (8)

where B is the batch size and β trades-off hardness against
diversity.Lh

div is calculated across instances in a batch, so no
need for averaging over B like Lhrd .

3.2.3 Mechanism

The Vulnerability objective is computed using feedback on
adversarial vulnerability, measured by the variation in loss
caused by adversarial perturbations, from the target model.
The policy model learns from this feedback to determine
which types and magnitudes of data augmentation (DA) ele-
vates the adversarial vulnerability of augmented data. This
learning raises the likelihood of applying such augmenta-
tions to the training data, thereby resulting in increased
hardness. Meanwhile, the Affinity objective is employed to
limit DA’s hardness to a level that does not compromise
performance. Additionally, the Diversity objective prevents
the over-reliance on specific DA methods, promoting explo-
ration across a diverse spectrum of augmentation techniques.
Together, these three objectives dictate the appropriate DA
for each training sample.

3.3 Optimization

The entire training is a bi-level optimization process (Algo-
rithm 1): the target and policymodels are updated alternately.
This online training strategy adapts the policy model to the
varying demands for DA from the target model at the differ-
ent stages of training. The target model is optimized using
AT with the augmentation sampled from the policy model:

argmin
θ tgt

L(ρ(�(x; S(θ plc(x))); θ tgt ); θ tgt ) (9)

After every K updates of the target model, the policy model
is updated using the gradients of the policy learning loss as

follows:

(8)

∂θ plc
= −∂Ei∈BLhrd(xi )

∂θ plc
+ β

Eh∈HLh
div(x)

∂θ plc
(10)

The latter can be derived directly, while the former ∂Lhrd
∂θ plc

cannot because the involved augmentation operations are
non-differentiable. To estimate these gradients, we apply the
REINFORCE algorithm (Williams, 1992) with baseline trick
to reduce the variance of gradient estimation. It first samples
T augmentations, named trajectories, in parallel from the pol-
icy model and then computes the real Hardness value, L(t)

hrd ,
using Eq. (6) independently on each trajectory t . The gradi-
ents are estimated (see Section B for derivation) as follows:

1

B · T
B∑

i=1

T∑
t=1

H∑
h=1

∂ log(ph(t)(xi ))

∂θ plc
[L(t)

hrd(xi ) − ˜Lhrd ] (11)

ph(t) is the probability of the sampled sub-policy at the h-

th head and ˜Lhrd = 1
T

∑T
t=1 L(t)

hrd(xi ) is the mean Lhrd

(the baseline used in the baseline trick) averaged over the
trajectories. Algorithm 2 illustrates one iteration of updat-
ing the policy model. Note that, when one model is being
updated, backpropagation is blocked through the other. The
affinitymodel, used in calculating theAffinitymetric, is fixed
throughout training.

Algorithm 1. High-level training procedures of the proposed
method. α is the learning rate. M is the number of iterations.

for i = 1 to M do
// for every K iterations
if i %K == 0 then

// update the policy model by Algo. 2
end
// the policy distribution
d = θ plc(xi )
// sample & apply augmentations
x̂i = �(xi ; S(d))

L = L(ρ(x̂i ; θ tgt ); θ tgt )

// update the target model
θ tgt = θ tgt − αtgt · ∇θ tgt L

end

3.4 Modes of Application

AROID can be used in two modes: online and offline. In the
online mode, the policy and target models are jointly trained
so that the policy model has to be retrained every time a
new target model is trained. This adapts the DA policy to
the target model on-the-fly which improves effectiveness but
adds the extra cost of policy learning to that of adversarial
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Algorithm 2. Pseudo code of training the policy model for one
iteration. x is randomly sampled from the entire dataset.

d = θ plc(x)

// same x used by all traj.
for t = 1 to T do

x̂(t) = �(x, S(d))

P(t) = ∏H
h=1 ph(t) // prob of traj t

L(t)
hrd // computed by Eq. (6)

end
˜Lhrd = 1

T

∑T
t=1 L(t)

hrd // mean L(t)
hrd

L = 1
T

∑T
t=1 log(P(t))[L(t)

hrd − ˜Lhrd ]
L(h)
div // computed using Eq. (7)

L = −L + β 1
H

∑H
h=1 L(h)

div
θ plc = θ plc − αplc · ∇θ plc L

training. In the offline mode, the training of policy and tar-
get models are separate phases. A policy model is trained
in advance (using online AROID), a step that is analogous
to the hyperparameter optimization of other DA methods.
This pre-trained policy model is then subsequently used to
train a new target model. Specifically, at each epoch of train-
ing the target network a policy network checkpoint, saved at
the corresponding epoch when using online AROID, is used
to sample DA policies for training the target model. When
AROID is deployed in this offline mode, we refer to it as
AROID-T, as it involves the transfer of the policy model.
The standard mode of application is online, which we refer
to simply as AROID.

3.5 Efficiency

The efficiency of AROID is dependent on the mode. The
cost of AROID is composed of two parts: policy learning
and DA sampling. Policy learning can be one-time expense
if AROID is used in offlinemode. DA sampling requires only
one forward pass of the policymodel,which can be negligible
because the policy model can bemuch smaller than the target
model without hurting the performance. Therefore, AROID
in offline mode is roughly as efficient as other regular DA
methods.

In online mode, in the worst case, AROID adds about
43.6% extra computation to baseline AT (see calculation in
Section C) when T = 8 and K = 5. This is less than the
overhead 52.5% of the state-of-the-art AT method LAS-AT
(Jia et al., 2022) and substantially less than the search cost of
IDBH and AutoAugment (compared in Sect. 4.4). Further-
more, we observed that AROID can still achieve robustness
higher than other competitors with a much smaller policy
model (Sect. 4.13.3), reduced T and increased K (Sect. 4.4)
for improved efficiency. For example, setting T = 4 and
K = 20, the overhead is only about 10% compared to base-
line AT.

Another efficiency concern, as for all other deep learning
methods, is hyperparameter optimization. We discuss below
how this can be done efficiently so that AROID can be eas-
ily adapted to a new setting. First, as shown in Sect. 4.13.1,
most of our hyperparameters can transfer well among dif-
ferent training settings, so that only a light tuning is needed
to achieve reasonably good performance for new setting. In
most cases, only λ needs to be tuned. Second, hyperparam-
eter optimization can be accelerated by first searching with
a cheap setting, such as K = 20 and T = 4, and then trans-
ferring the found values to the final setting, i.e., K = 5 and
T = 8. Note that our hyperparameter tuning process is not
different from others.

4 Experiments

The experiments in this section were based on the following
setup unless otherwise specified.

General set-ups. We used model architectures Vision
Transformer (ViT-B/16 and ViT-B/4) (Dosovitskiy et al.,
2020), WideResNet34-10 (WRN34-10) (Zagoruyko & Ko-
modakis 2016) and PreAct ResNet-18 (PRN18) (He et al.,
2016b).WeevaluatedondatasetsCIFAR10/100 (Krizhevsky,
2009), Imagenette4 and ImageNet (Deng et al., 2009).

For CIFAR10/100, models were trained by stochastic gra-
dient descent (SGD) for 200 epochs with an initial learning
rate 0.1 divided by 10 at 50% and 75% of epochs. The
momentum was 0.9, the weight decay was 5e-4 and the
batch size was 128. The experiments on Imagenette and
ImageNet followed a similar protocol as those on CIFAR10
except the following changes. For Imagenette, the weight
decay was 1e-4, the total number of epochs was 40, and
the learning rate was decayed at 36th and 38th epoch. The
ViT-B/16 was pre-trained on ImageNet-1K. Gradient clip-
ping was applied throughout training. Note that CIFAR10
with ViT-B/4 is trained using the same setting as Imagenette
with ViT-B/16. For ImageNet, models were trained for 50
epochs with an initial learning rate 0.01 divided by 10 at 20th
and 40th epoch. Models were pre-trained on ImageNet-1K.
The weight decay was 0. Experiments were run on Nvidia
Tesla V100 and A100. All results reported by us were aver-
aged over 3 runs except for ImageNet due to the limit of
computational resource.

Adversarial set-ups. By default, we used �∞ PGD AT
(Madry et al., 2018) with a perturbation budget, ε, of 8/255.
The number of steps was 10 and the step size was 2/255. For
ImageNet, the perturbation budget, ε, was 4/255, the num-
ber of steps was 2 and the step size was 2ε/3. Following

4 Imagenette is a subset of ImageNet consisting of 10 classes.We adopt
a previous version (v1), https://s3.amazonaws.com/fast-ai-imageclas/
imagenette.tgz, as suggested by Mo et al. (2022).
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Table 1 The performance of
various DA methods

DA method CIFAR10 CIFAR100 Imagenette

WRN34-10 ViT-B/4 WRN34-10 PRN18 ViT-B/16

Acc. Rob. Acc. Rob. Acc. Rob. Acc. Rob. Acc. Rob.

RandomCrop 85.83 52.26 83.04 46.72 61.44 27.98 55.04 24.83 92.73 66.47

Cutout 86.95 52.89 83.61 48.67 59.04 27.51 57.37 24.51 93.27 67.20

CutMix 86.88 53.38 80.83 47.24 58.57 27.49 57.32 25.54 93.87 70.20

AutoAugment 87.71 54.60 81.96 47.47 64.10 29.08 58.51 25.28 95.13 67.60

TrivialAugment 87.35 53.86 80.55 46.39 62.55 28.97 57.24 24.82 95.25 69.00

IDBH 88.61 55.29 85.09 49.63 60.93 29.03 59.38 26.24 95.20 69.93

AROID (ours) 88.99 55.91 87.34 51.25 64.44 29.75 60.17 26.56 94.88 71.32

Bold value indicates the best performance, and Underline value indicates the second best performance
RandomCrop is the baseline DA consists of horizontal flip and random crop with 4 padding

Rice et al. (2020), we tracked PGD10 robustness on the test
set at the end of each epoch during training and selected
the checkpoint with the highest PGD10 robustness, i.e., the
“best” checkpoint to report robustness. Robustness was eval-
uated by AutoAttack (Croce & Hein, 2020).

Configuration of AROID. Hyperparameters are opti-
mized using grid search. By default, T = 5, K = 8 and
β = 0.8 were used. The diversity limits l and u were
0.9 (0.8)5 and 4.0 respectively for CNNs (ViTs). λ was
0.4-0.2-0.1 (decayed with the learning rate for better perfor-
mance), 0.4 and 0.3 for WRN34-10, ViT-B/4 and PRN18 on
CIFAR10, 0.3-0.1-0.01 and 0.2 for WRN34-10 and PRN18
on CIFAR100, and 0.3 for ViT-B/16 on Imagenette. The
default backbone of the policy model was PRN18 except
that ViT-B/16 (pre-trained on ImageNet-1K) was used for
Imagenette.6

Section D describes more implementation details of
AROID and the competitive methods to be compared below.

4.1 Benchmarking DA on Adversarial Robustness

Table 1 compares our proposed method against existing
DA methods. AROID outperforms all existing meth-
ods regarding robustness across all five tested settings.
The improvement over the previous best method is par-
ticularly significant for ViT-B on CIFAR10 (+1.62%) and
Imagenette (+1.12%). Note that in most cases IDBH is the
only method whose robustness is close to ours. However,
our method is much more efficient than IDBH in terms of
policy search (shown in Sect. 4.4). If our method is com-

5 The value of l and u is a factor relative to the arithmetic mean chance,
p̃, of sampling an augmentation in each group (prediction head), so the
real absolute threshold value will be, e.g., l · p̃. Taking an example of the
Crop prediction head with 16 (1+15) magnitudes in total, p̃ = 1/16.
6 it was observed to be difficult for PRN18 to quickly fit Imagenette
data to a reasonable degree in ST. Note that this ability is especially
important when training on Imagenette because the total number of
epochs (40) is much less than for the other datasets (200).

pared only to those methods with a computational cost
the same or less than AROID’s, i.e., excluding IDBH and
AutoAugment, the improvement over the secondbestmethod
is +2.05%/2.58%/0.78%/1.12%/1.02% for the five experi-
ments. Furthermore, we highlight the substantial improve-
ment over the baseline of ourmethod, +3.65%/4.53%/1.77%/
4.85%/1.73%, in these five settings.

In addition, AROID also achieves the highest accuracy
in four of the five tested settings, and in the setting of Ima-
genette the accuracy gap between the best method and ours is
marginal (0.37%).Overall, our method significantly improves
both accuracy and robustness, achieving a much better trade-
off between accuracy and robustness. The consistent supe-
rior performance of our method, across various datasets (low
and high resolution, simple and complex) and model archi-
tectures (CNNs andViTs, small and large capacity), suggests
that it has a good generalization ability.

4.2 Offline Versus Online AROID

This section evaluates the transferability of the learned policy
models. It uses AROID in the offline mode (i.e. AROID-T
as described in Sect. 3.4), across three scenarios: (1) with
the same dataset and model architecture; (2) across different
datasets; (3) across different model architectures. In scenario
1, a policy model is pre-trained on CIFAR10 for a WRN34-
10 model and is applied to train a WRN34-10 model on
CIFAR10. In scenario 2, a policy model is pre-trained on
CIFAR10 for a WRN34-10 model and is applied to train
a WRN34-10 model on CIFAR100. In scenario 3, a policy
model is pre-trained on CIFAR10 for a PRN18 model and is
applied to train a ViT-B/4 model on CIFAR10.

As shown in Table 2, AROID-T achieved accuracy and
robustness comparable to its online counterpart, AROID.
Importantly, AROID-T still outperforms previous data aug-
mentation methods (Table 1) in terms of both accuracy
and robustness. Notably, the cost of applying AROID-T is
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Table 2 The performance of
AROID-T, our method in offline
mode

Policy source CIFAR10→CIFAR10 CIFAR10→CIFAR10 CIFAR10→CIFAR100

WRN34-10→WRN34-10 PRN18→WRN34-10 WRN34-10→WRN34-10

Acc. Rob. Acc. Rob. Acc. Rob.

AROID-T 88.76 55.61 86.17 50.70 64.97 29.67

AROID 88.99 55.91 87.34 51.25 64.44 29.75

Bold value indicates the best performance
Results compare the different settings of transferring pre-trained policy models with results obtained using
AROID in online mode when trained in the transfer destination setting

Table 3 Evaluation of robust
overfitting for models trained
with various data augmentation
methods on CIFAR10/100 with
WRN34-10

DA Method CIFAR10 CIFAR100

Accuracy (%) Robustness (%) Accuracy (%) Robustness (%)

Best End Diff. Best End Diff. Best End Diff. Best End Diff.

baseline 85.8 86.2 −0.3 52.2 46.6 5.6 61.4 59.7 1.7 27.9 24.2 3.6

Cutout 86.9 87.4 −0.4 52.8 51.0 1.8 59.0 61.3 −2.2 27.5 25.0 2.4

CutMix 86.8 87.5 −0.6 53.3 49.8 3.5 58.5 62.8 −4.3 27.4 26.2 1.2

AutoAugment 87.7 88.7 −1.0 54.6 54.0 0.5 64.1 64.6 −0.5 29.0 27.1 1.9

TrivialAugment 87.3 87.7 −0.4 53.8 53.1 0.6 62.5 64.2 −1.6 28.9 27.3 1.6

IDBH 88.6 88.9 −0.3 55.2 53.4 1.8 60.9 64.4 −3.5 29.0 26.2 2.8

AROID (ours) 88.9 89.2 −0.3 55.9 55.0 0.9 64.4 65.9 −1.5 29.7 28.9 0.8

Bold value indicates the best performance, and Underline value indicates the second best performance

roughly the same as that of other data augmentationmethods.
Overall, these results demonstrate that AROID-T transfers
well across various settings.

4.3 Mitigating Robust Overfitting

This section evaluates the effectiveness of our proposed
method in mitigating robust overfitting. Robust overfitting
is measured, using the standard convention, as the differ-
ence between the best and end robustness. The results in
Table 3 demonstrate that compared to the baseline, AROID
substantially reduces the degree of robust overfitting from
5.64 to 0.91% on CIFAR10 and from 3.69 to 0.83% on
CIFAR100. AROID achieves the smallest robustness gap
among all competitive methods on CIFAR100. Additionally,
AROID achieves a robustness gap of 0.91%, close to the
minimum record of 0.52% achieved by AutoAugment, while
exhibiting significantly higher best and end robustness rates
of +1.31% and +0.92%, respectively. Overall, these results
suggest that our method effectively mitigates robust over-
fitting.

4.4 Comparison of Policy Search Costs

We compare here the cost of policy search of AROID against
other automated DAmethods, i.e., AutoAugment and IDBH.
Before comparison, it is important to be aware that the search
cost for IDBH increases linearly with the size of search
space, while the cost of AROID stays approximately con-

stant. IDBH thus uses a reduced search space that is much
smaller than the search space of AROID. However, reduc-
ing the search space depends on prior knowledge about
the training datasets, which may not generalize to other
datasets. Moreover, scaling IDBH to our larger search space
is intractable, and it would be even more intractable if IDBH
was applied to find DAs for each data instance at each stage
of training, as is done by AROID.

Even in the most expensive configuration (K = 5 and
T = 8), AROID is substantially cheaper than IDBH and
AutoAugment regarding the cost of policy search as shown
in Table 4. The computational efficiency of AROID can be
further increased by reducing the policy update frequency
(increasing K ) and/or decreasing the number of trajectories
T , while still matching the robustness of IDBH. If IDBH and
AutoAugment were restricted to use the same, much lower,
budget for searching for a DA policy, given the huge gap, we
suspect that they may find nothing useful.

4.5 Comparison with State-of-the-Art Robust
TrainingMethods

Table 5 compares our method against state-of-the-art robust
training methods. It can be seen that AROID substantially
improves vanilla AT in terms of accuracy (by 3.16%) and
robustness (by 3.65%). This improvement is sufficient to
boost the performance of vanilla AT to surpass the state-
of-the-art robust training methods like SEAT and LAS-AWP
in terms of both accuracy and robustness. This suggests that
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Table 4 The cost of policy
search for automated DA
methods using PRN18 on
CIFAR10

Method K T Acc. Rob. Search space Time

Prior Probability Magnitude Size

AutoAugment – – 83.27 49.20 No Discrete Discrete 2.9 × 1032 5000

IDBH – – 84.23 50.47 Yes Discrete Discrete 80 412.83

AROID 5 8 84.68 50.57 No Continuous Discrete Uncountable 9.51

AROID 20 8 84.11 50.45 No Continuous Discrete Uncountable 6.85

AROID 20 4 83.63 50.52 No Continuous Discrete Uncountable 6.24

Bold value indicates the best performance, and Underline value indicates the second best performance
AROID is used in online mode. The size of search space counts the possible combinations of probabilities and
magnitudes. Our search space is uncountable due to its continuous range of probability, and is much larger
than that of IDBH as it covers a much wider range of probabilities and magnitudes. Time denotes the total
hours required for one search over the search space using an Nvidia A100 GPU for IDBH and AROID and a
P100 GPU for AutoAugment (data is copied from Hataya et al. (2020))

Table 5 The performance of various robust training (RT) methods with
baseline and our augmentations for WRN34-10 on CIFAR10

RT method DA method Acc. Rob.

AT RandomCrop 85.83 52.26

AT-SWA RandomCrop 84.30 54.29

AT-AWP RandomCrop 85.93 54.34

AT-RWP RandomCrop 86.86 54.61

MART RandomCrop 84.17 51.10

MART-AWP RandomCrop 84.43 54.23

SEAT RandomCrop 86.44 55.67

LAS-AT RandomCrop 86.23 53.58

LAS-AWP RandomCrop 87.74 55.52

AT-SWA CutMix 87.65 56.03

AT AROID (ours) 88.99 55.91

AT-SWA AROID (ours) 87.84 56.67

AT-AWP AROID (ours) 87.94 56.98

AT-AWP-SWA AROID (ours) 88.39 57.03

Bold value indicates the best performance, and Underline value indi-
cates the second best performance

our method achieved a better trade-off between accuracy and
robustness while boosting robustness.

More importantly, our method, as it is based on DA, can
be easily integrated into the pipeline of existing robust train-
ing methods and, as our results show, is complementary to
them. Our method was combined with other AT methods
in the same way as any other data augmentation method:
simply by using the sampled data augmentation policy to
augment the data before generating adversarial examples.
The update of the policy model is independent of the train-
ing method used. By combining with SWA and/or AWP, our
method substantially improves robustness even further while
still maintaining an accuracy higher than that achieved by
others methods. It is worth noting that CutMix combined
with SWA is widely recognized as a strong baseline for data
augmentation. Our approach surpasses this baseline when
combined with SWA as well.

Table 6 Comparison of various DA methods when trained by alterna-
tive AT methods like TRADES and SCORE for PRN18 on CIFAR10

DA Method TRADES SCORE

Acc. Rob. Acc. Rob.

RandomCrop 83.01 49.10 80.15 48.88

Cutout 81.74 48.98 82.02 50.08

AutoAugment 80.76 48.64 81.68 49.93

TrivialAugment 80.91 48.04 80.39 49.24

IDBH 82.24 50.86 82.35 50.97

AROID (ours) 84.04 51.33 82.69 51.18

Bold value indicates the best performance, and Underline value indi-
cates the second best performance
λ is 0.6 for TRADES and 0.3 for SCORE. The other hyperparameters
are configured by default as specified in Section D

4.6 Generalization to Alternative ATMethods

To further test the generalizability of AROID to alternative
AT methods, we integrate AROID with two more superior
AT methods: TRADES (Zhang et al., 2019) and SCORE
(Pang et al., 2022). Results are shown in Table 6. AROID
achieves highest accuracy and robustness amongall the tested
DAmethods with both advanced ATmethods. Overall, these
results together with those in Sect. 4.5, show that AROID
generalizes well to various AT methods (PGD, TRADES,
SCORE, AWP, SWA).

4.7 Combining with Extra Data

The leadingmethodson the robustness benchmarkRobust-
Bench (Croce et al., 2021) heavily use extra data to augment
adversarial training. We incorporate AROID with extra real
data following Carmon et al. (2019) and compare it against
PORT (Sehwag et al., 2022) and HAT (Rade & Moosavi-
Dezfooli, 2022) which are ranked, to date, first and second
respectively in RobustBench for the model architecture
WRN34-10. As shown in Table 7, our method significantly

123



International Journal of Computer Vision

Table 7 The performance of
our methods when trained with
extra data for WRN34-10 on
CIFAR10

Method AT Activation Extra data DA Epochs Batch Acc. Rob.

baseline PGD10 ReLU 0.5M Real RandomCrop 200 128 88.78 57.95

PORT PGD10 ReLU 10M Synthetic RandomCrop 200 128 86.68 60.27

ours PGD10 ReLU 0.5M Real AROID 200 128 92.38 61.49

baseline PGD10 ReLU 0.5M Real RandomCrop 400 512 89.66 58.73

HAT HAT SiLU 0.5M Real RandomCrop 400 512 91.47 62.83

ours PGD10 ReLU 0.5M Real AROID 400 512 92.48 62.60

BDM PGD10 ReLU 50M Synthetic RandomCrop 400 512 92.06 63.39

ours PGD10 ReLU 50M Synthetic AROID 400 512 92.28 63.56

Bold value indicates the best performance, and Underline value indicates the second best performance
All compared methods use 0.5M extra real data except for PORT and BDMwhich use 10M and 50M synthetic
data, respectively. “Activation” refers to the activation function in the model architecture. “Batch” denotes
the batch size. The results of PORT and HAT are copied from RobustBench

improves both accuracy and robustness over the baseline
methods. Our method also surpasses PORT regarding both
accuracy and robustness. Our method, compared to HAT,
achieves a comparable robustness and a clearly higher accu-
racy exhibiting a better trade-off between accuracy and
robustness. Note that HAT employs a more effective AT
method, HAT, and a different activation function, SiLU, both
of which are known to boost performance.

Next, we test whether AROID can be applied to enhance
the state-of-the-art method BDM (Wang et al., 2023), which
utilizes 50M synthetic data samples. As shown in Table 7,
AROID achieves a marginal improvement over this baseline
in terms of accuracy and robustness, indicating that AROID
remains effective even in data-rich settings. However, it is
observed that the performance improvement provided by
AROID diminishes when compared to results without the
additional 50M data. This reduction occurs because the
robust overfitting in the baseline is largely mitigated by the
additional data, and sinceAROID enhances adversarial train-
ing by alleviating robust overfitting, the scope for further
improvement by AROID is consequently reduced.

Although the benefit of data augmentation diminishes
when a large amount of synthetic data is incorporated
for training on CIFAR10, this approach may not be as
effective on more complex datasets such as ImageNet. As
observed in Azizi et al. (2023), increasing synthetic Ima-
geNet data beyond a certain limit (around 1.2M synthetic
images) degrades model performance in high-resolution set-
tings (256×256 and1024×1024pixels),while it consistently
provides benefits in low-resolution setting (64 × 64 pixels).
This degradation at high resolutions may be due to greater
bias in themodel and/or lower quality in the generated images
at higher resolutions.

4.8 Generalization to ImageNet

To further test the generalizability and scalability of our
method to a large-scale dataset, we train AROID on Ima-

Table 8 The result of AROID on ImageNet with ConvNeXt-T

DA method Accuracy Robustness

RandomCrop 71.22 36.22

AutoAugment 70.42 37.80

AROID (ours) 71.62 40.40

Bold value indicates the best performance, and Underline value indi-
cates the second best performance

geNet (Deng et al., 2009)withConvNeXt-T (Liu et al., 2022).
SomeDAmethods aremissing in this comparison due to lim-
ited computational resources (explained in Section D.2). As
shown in Table 8, AROID significantly improves robustness
over the baseline by 4.18% and AutoAugment by 2.6%. It
also achieves the highest accuracy among the testedmethods.
Overall, AROID is able to scale and generalize to ImageNet.

The AROID hyperparameters were set to λ = 0.7, β = 2,
(l, u) = (0.8, 4.0), T = 20 and K = 4. As we did not
have sufficient computational resources to fully optimize
these hyperparameters on ImageNet performance is likely
to be suboptimal and falls-short of the state-of-the-art result
(Singh et al., 2023). It has been observed in Singh et al. (2023)
that adversarial training on ImageNet prefers heavy data aug-
mentation that is composed of RandAugment (Cubuk et al.,
2020), CutMix, MixUp and Random Erasing. DA operations
like CutMix and MixUp are not included in our DA search
space. Incorporating these operations into our search space
is thus expected to boost the performance of our method on
ImageNet. We leave the exploration of this enhancement to
the future.

4.9 Performance on Common Corruption Datasets

This section assesses the generalization capability of the pro-
posed method under input data distribution shifts, known
as Out-Of-Distribution (OOD) testing. Following Kireev et
al. (2022), we trained models on the CIFAR10 training set
and evaluated themonCIFAR10-C (Hendrycks&Dietterich,
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Table 9 The performance of various DA methods on the common cor-
ruption dataset CIFAR10-C for WRN34-10

Method CIFAR10 CIFAR10-C

Acc. Rob. Acc. Rob.

RandomCrop 85.83 52.26 76.70 36.69

Cutout 86.95 52.89 76.46 35.97

CutMix 86.88 53.38 77.48 36.91

AutoAugment 87.71 54.60 78.30 36.68

TrivialAugment 87.35 53.86 78.42 37.99

IDBH 88.61 55.29 79.37 38.15

AROID (ours) 88.99 55.91 80.61 39.72

Bold value indicates the best performance, and Underline value indi-
cates the second best performance
Models were trained on CIFAR10 training set

2019). CIFAR10-C is created by applying 15 types of com-
mon visual corruptions to the CIFAR10 test set, representing
visual corruption shifts encountered in the wild.

In Kireev et al. (2022), only clean accuracy was evaluated
on CIFAR10-C, focusing on the efficacy of adversarial train-
ing in improving robustness against common corruptions.
However, this study emphasizes adversarial robustness. A
recent study suggested that adversarial robustness is highly
vulnerable to input distribution shifts (Li et al., 2024). There-
fore,we also evaluated adversarial robustness onCIFAR10-C
by conducting AutoAttack on the CIFAR10-C data.

As shown in Table 9, our proposed method achieves the
highest accuracy and robustness among all competitive data
augmentation methods, indicating excellent OOD general-
ization ability for both clean and robust performance under
common corruption distribution shifts.

4.10 Robustness Evaluation with More Attacks

To further ensure our robustness evaluation is reliable, we
additionally evaluate AROID and other related works using
threemore adversarial attacks PGD (Madry et al., 2018), CW
(Carlini&Wagner, 2017) and JITTER (Schwinn et al., 2023).

From the results shown in Table 10 it can be seen that AROID
is consistently superior under various adversarial attacks.

4.11 Data ScalingVersus Model Scaling

This section compares the effectiveness of scaling up data
(ourmethod) versus scaling up themodel in enhancing adver-
sarial training. To test this, we trained AROID using the
WRN34-10 model architecture (depth of 34 and widening
factor of 10) and compared it to WRN34-12 and WRN46-
10 architectures trained with RandomCrop DA. WRN34-12
and WRN46-10 were chosen because they have approxi-
mately 44% and 42% more parameters, respectively, than
WRN34-10, which is comparable to the worst-case extra
computational overhead, 43.6%, caused by AROID.

As shown in Table 11, AROID with WRN34-10 achieved
the highest accuracy and robustness, greatly outperform-
ing RandomCrop even when larger models were used. This
suggests that optimizing data augmentation, when imple-
mented correctly, can be more effective than merely
scaling up themodel to boost performance. The issue with
RandomCrop and larger models is that, as indicated by the
large gap between best and end robustness, scaling up mod-
els cannot effectively mitigate robust overfitting, resulting in
poor generalization of robustness.

4.12 Enlarging Policy Search Space

This section assesses if enlarging policy search space can
enhance AROID. We conducted tests by adding CutMix to
our policy search space as an additional transformation to be
sampled and applied after the dropout transformation (please
refer to Sect. 3.1 for the specification of data augmentation
policy structure). CutMix was chosen due to its effectiveness
in adversarial training when combined with SWA (Rebuffi et
al., 2021).

As shown in Table 12, the inclusion of CutMix, com-
pared to the original data augmentation space, results in

Table 10 Robustness evaluation
against more adversarial attacks

DA methods CIFAR10+WRN34-10 Imagenette+ViT-B/16

Clean AA PGD CW JITTER Clean AA PGD CW JITTER

RandomCrop 85.8 52.2 55.5 54.2 53.5 92.7 66.4 68.1 68.4 68.8

Cutout 86.9 52.8 55.3 55.0 54.6 93.2 67.2 68.4 68.6 69.4

CutMix 86.8 53.3 60.1 56.9 56.4 93.8 70.2 73.1 71.8 72.2

AutoAugment 87.7 54.6 58.8 56.3 55.6 95.1 67.6 68.9 69.8 70.6

TrivialAugment 87.3 53.8 57.4 55.2 55.4 95.2 69.0 70.9 70.6 71.5

IDBH 88.6 55.2 58.2 57.3 56.9 95.2 69.9 70.2 70.8 71.6

AROID (ours) 88.9 55.9 59.6 58.1 57.6 94.8 71.3 71.8 72.8 73.1

Bold value indicates the best performance, and Underline value indicates the second best performance
PGD uses 50 steps and 10 restarts. CW and JITTER use 100 steps. Note that the abnormally superior PGD
robustness but worse against other attacks of CutMix suggest a false security caused by obfuscated gradients
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Table 11 The performance of
baseline RandomCrop with
larger models on CIFAR10

Data augmentation Model Model size (M) Accuracy (%) Robustness (%)

Best End Diff. Best End Diff.

AROID WRN34-10 46.2 88.99 89.29 -0.30 55.91 55.00 0.91

RandomCrop WRN34-10 46.2 85.83 86.21 -0.38 52.26 46.63 5.63

RandomCrop WRN34-12 66.5 86.65 86.45 0.20 52.46 48.34 4.12

RandomCrop WRN46-10 65.5 86.61 86.38 0.23 52.98 47.63 5.35

Bold value indicates the best performance, and Underline value indicates the second best performance

Table 12 The performance of
AROID with the original and
the enlarged (with CutMix
added) data augmentation space
with and without SWA for
WRN34-10 on CIFAR10

AT method DA space Accuracy (%) Robustness (%)

Best End Diff. Best End Diff.

AT Original 89.50 89.59 −0.09 55.56 53.33 2.23

Original+CutMix 88.93 89.46 −0.53 56.44 55.83 0.62

AT-SWA Original 88.71 90.40 −1.69 57.31 55.05 2.26

Original+CutMix 89.52 90.02 −0.50 57.32 57.14 0.18

Bold value indicates the best performance, and Underline value indicates the second best performance
Models were trained for 400 epochs, in contrast to 200 epochs used in Table 3, to better demonstrate the effect
of adding CutMix in reducing robust overfitting

reduced robust overfitting and improved best and end
robustness, regardless of whether it is combined with
SWA or not. Additionally, incorporating CutMix even leads
to a boost in best accuracy when combined with SWA. One
possible account for this improvement is that the addition
of CutMix increases the diversity of data augmentation in
the learned policy, thereby mitigating robust overfitting and
enhancing robust generalization (the reasons why diverse
data augmentation mitigates robust overfitting are explained
in Sect. 3.2.1).

However, it is important to note that not all data augmenta-
tionmethods yield such benefits. The impact of incorporating
additional data augmentation methods into the policy search
space is specific to the nature of the augmentation techniques
themselves. Toxic data augmentation methods, as observed
in Cubuk et al. (2020), may not enhance, and in some cases,
may even impair the performance of AROID if added to the
search space. Overall, AROID can indeed benefit from an
enlarged search space if implemented appropriately.

4.13 Ablation Study

This section verifies the sensitivity of ourmethod to its hyper-
parameters and several design choices. The experimentswere
conducted on CIFAR10 with PRN18 and Imagenette with
ViT-B/16. The default values of hyperparameters are the ones
marked in green in Fig. 3.

4.13.1 Hyperparameters

Policy update frequency K . Figures 3j and l show that the
highest accuracy and robustness were achieved when K = 5,
i.e., the lowest frequency under the test. This implies that

AT benefits from a more “up-to-date” DA. Furthermore, it
seems possible to trade accuracy for efficiency by choosing
a larger value of K (up to 20) while maintaining similarly
high robustness. In general, the accuracy and robustness of
our method declines with lower policy update frequency.

Number of trajectories T . Figure 3i and k show that
high accuracy and robustness are achieved around T = 8.
This suggests that (1) there is a minimum requirement on the
amount of trajectories for our policy gradient estimator to be
accurate and, (2) our methodmay not benefit from increasing
T beyond 8.

Strength of Affinity λ. As shown in Fig. 3a and c, robust-
ness first increases and then decreases within the tested range
of value. This is consistent with the prior that AT benefits
from appropriate hardness but degrade if data augmentations
are overly hard (Li & Spratling, 2023c).

Strength of Diversity β. The performance within the
tested range of value is close in Fig. 3b and d, suggesting that
the performance of AROID is not sensitive to the value of
β. Nevertheless, this does not imply that Diversity is unnec-
essary in our policy learning. On the contrary, it plays an
important role in policy learning as shown in Sect. 4.13.2.

Summary.We observe that, within the tested value range,
hyper-parameters likeλ,β, T and K have a quite similar trend
in both settings, while the lower limit l (Fig. 3e, g) and upper
limit u (Fig. 3f, h) in the diversity objective shows slightly
different trends between the two settings. Despite the slightly
different behaviors of a few hyper-parameters, the optimal
value of hyper-parameters is observed to transfer across these
two settings, i.e., they achieve reasonably good performance
with a similar set of hyper-parameter values T = 8, K =
5, l = 0.8/0.9, u = 4, λ = 0.3, β = 0.8. We also find
this setting transfers well across different AT methods of
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Fig. 3 Ablation study of hyper-parameters λ, β, l, u, T and K for CIFAR10 with PRN18 (even rows) and Imagenette with ViT-B/16 (odd rows).
The selected value for each hyper-parameter is marked green color

PGD, SCORE andTRADES sincewe can only tune the value
of λ while keep the rest unchanged to achieve reasonably
good performance and outperform the other compared data
augmentations.

4.13.2 Policy Learning Objectives

This section conducts an ablation study to evaluate the effect
of each proposed policy learning objective on the perfor-
mance of AROID. As shown in Table 13, removing any
single policy learning objective leads to a considerable
drop in both accuracy and robustness, indicating that
each objective is crucial for learning an effective data
augmentation policy. Particularly, we observed that when
Diversity is removed by setting β = 0, accuracy drops from
84.68 to 73.88%, and robustness drops from50.57 to 22.24%.
Without Diversity constraint, the policy network’s training
failed because the output policy distribution became con-
centrated on a few sub-policies, assigning zero probabilities
to the remaining ones. The REINFORCE method could not
recover from this situationbecause it no longer exploredother
options. This underscores the importance of maintaining a
certain level of Diversity constraint in our policy learning.

Table 13 The impact of removing each policy learning objective on the
performance of AROID for PRN18 on CIFAR10

Policy objectives Accuracy (%) Robustness (%)

AROID 84.68 50.57

- Vulnerability 83.50 (−1.18) 49.95 (−0.62)

- Affinity 82.03 (−2.65) 49.41 (−1.16)

- Diversity 73.88 (−10.8) 22.47 (−28.1)

Bold value indicates the best performance
The performance drop is given in the bracket

However, no clear benefit is observed as this constraint is
further strengthened by raising β, as shown in Fig. 3b and d.

4.13.3 Policy Model Architecture

Interestingly,we observed inTable 14 that forCIFAR10 a rel-
atively small model WideResNet10-1 (a WideResNets with
depth 10 and widening factor 1) with 0.08M parameters is
sufficient for learning the DA policy for a relatively large
target model PRN18 with 11.17M parameters and further
increasing capacity beyond this scale, even 100x, does not
benefit either accuracy or robustness. Therefore, the policy
model can be much smaller than the target model.
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Table 14 Comparison of the various policy model backbone architec-
tures on CIFAR10 with a target model of PRN18

Model Size (M) Clean AA

WRN10-1 0.08 84.16 50.25

WRN22-1 0.27 84.32 50.57

WRN34-1 0.47 84.73 50.38

WRN70-1 1.05 84.04 50.28

PRN18 11.17 84.68 50.57

Bold value indicates the best performance, and Underline value indi-
cates the second best performance

Table 15 Comparison of
uniform sampling from AROID
DA space on CIFAR10 with
PRN18

DA Clean AA

RandomCrop 82.50 48.21

Uniform 81.00 49.18

AROID 84.68 50.57

Bold value indicates the best per-
formance, and Underline value
indicates the second best perfor-
mance

4.13.4 Uniform Sampling

We performed AT using data augmentations uniformly sam-
pled from AROID’s data augmentation space. The results
are labeled Uniform in Table 15. As shown in the table,
AROID significantly improves accuracy and robustness over
its uniformly sampled counterpart suggesting the necessity
of optimizing the data augmentation policy.

4.14 Analysis of Learned DA Policies

This section first analyzes the dynamics of the proposed pol-
icy learning objectives during training (Sect. 4.14.1). It then
visualizes the learned data augmentation policies sampled
over a course of training (Sect. 4.14.2). Last, it visualizes
some image samples transformed by the learned data aug-
mentation policies (Sect. 4.14.3).

4.14.1 Progression of Policy Learning Objectives

To understand the dynamics of the learned data augmentation
policy, Fig. 4 visualizes the progression of the three proposed
policy learning objectives throughout the AROID training
process. Generally, Vulnerability represents the adversarial
vulnerability of the augmented data, Affinity reflects the dis-
tribution shift caused by data augmentation, and Diversity
is negatively correlated with the diversity of data augmenta-
tion (lower Diversity implies greater diversity). It is observed
that during training, Vulnerability and Affinity increase
while Diversity decreases. These trends suggest that the data
augmentation sampled from the learned policies becomes
progressively harder, in terms of both adversarial vulner-
ability and distribution shift, and more diverse throughout
the training process. This aligns with the goal of our pol-
icy learning as described in Eq. (8) to encourage an increase
in Vulnerability while regularizing Affinity and Diversity to
decrease. It is important to note that an increase, rather than
a decrease, is observed in the Affinity loss because Affinity
was regularized with a decaying strength (in this case 0.4,
0.2, 0.1).

4.14.2 Visualization of Learned DA Policies

Figure5 visualizes the learned distribution of DAs for differ-
ent, randomly sampled, data instances. Instance-wise varia-
tion of the learned DA policy is visible for the Color/Shape
augmentations (Fig. 5c) and evident for theDropout augmen-
tations (Fig. 5d), but subtle in the rest (Fig. 5a, b). Note that
even for the different data instances from the same class (e.g.,
instances 4, 7, 10 from the class “frog”), the learned DA dis-
tributions can still differ considerably (Fig. 5d). This confirms
that (1)AROID is able to capture andmeet the varied demand
of augmentations from different data instances, and (2) such
demand exists for some, but not all, augmentations. These
observations may explain why many instance-agnostic DA

Fig. 4 The progression of the three proposed policy learning objectives throughout the AROID training process on CIFAR10 forWRN34-10. Lines
are smoothed with a moving average over 5 epochs for improved clarity
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Fig. 5 Visualization of the learned DA policies, applied to ten images
randomly sampled from CIFAR10 training set, for the Flip, Crop,
Color/Shape and Dropout types of augmentations. The policy model
is resumed from a checkpoint saved at the end of 110th epoch when
training a WRN34-10 model on CIFAR10 (following the training set-
ting as specified in Section D). The sampled ten images are visualized
at the bottom in the order of the x-axis in the above bar-charts. The
chance of applying no transformation (Identity) is the gap between the
colored bar and the top (i.e., score of 1.0). In the Color/Shape group,
the probabilities of different magnitudes are not shown separately, but
are summed to get the overall probability of a transformation

methods such as IDBH, despite being inferior to ours, still
work reasonably well (see Table 1).

It was also observed in Fig. 6 that the learnedDApolicy for
the same data instance evolved as training progressed. In the
Color/Shape group (Fig. 6c), augmentations like Sharpness
became observably more likely to be selected while others
such as ShearY became less probable as training continued.
Dropout (i.e. Erasing; Fig. 6d) particularly with large mag-
nitudes was rarely applied prior to 100th epoch, i.e., the first
decay of learning rate. The possibility of applying Crop (i.e.
Cropshift; Fig. 6b) and Flip (i.e. HorizontalFlip; Fig. 6a) first
dropped until the first decay of learning rate and then stayed
nearly constant afterwards.

Consistent to the previous findings on ST (Cubuk et al.,
2019) and harmful augmentations (Rebuffi et al., 2021), we
observed that AT on CIFAR10 favored mostly color-based
augmentations like Equalize and Sharpness and disfavored
geometric augmentations like Rotate and harmful augmenta-

Fig. 6 Visualization of how the learned DA policies evolve as training
progresses. The same, randomly sampled, image (visualized at the bot-
tom) was used across epochs (5, 25, 50, 75, 100, 125, 150, 175, 200) to
produce the policies. The first bar in each sub-figure corresponds to the
epoch 5 and describes the initial state of the policy model (training of
policy model starts from epoch 5). For each bar in the figures, the pol-
icy model was resumed from the checkpoint saved at the corresponding
epoch (x-axis) in the same course of training. The chance of applying
no transformation (Identity) is the gap between the colored bar and the
top (i.e., the score of 1.0). In the Color/Shape group, the probabilities of
different magnitudes are not shown separately, but are summed to get
the overall probability of a transformation

tions like Solarize and Posterize (see both Figs. 5c, 6c). This
verifies the effectiveness of ourDApolicy learning algorithm.

4.14.3 Visualization of Augmented Data Samples

Figure7 depicts 20 pairs of original and augmented data sam-
ples fromCIFAR10. The visualization demonstrates that our
method effectively enhances the diversity of augmented
data samples. While the original and augmented data sam-
ples are paired here in a one-to-onemanner, the learnedpolicy
enables the generation of a much larger variety of distinct
augmented data.

5 Conclusions

This work introduces an approach, dubbed AROID, to effi-
ciently learn online, instance-wise, DA policies for improved
robust generalization in AT. AROID is the first automated
DA method specifically for AT. Extensive experiments show
its superiority over both alternative DA methods and con-
temporary AT methods in terms of accuracy and robustness.
AROID has also significantly reduces the cost of policy
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Fig. 7 Visualization of 20 randomly-sampled pairs of original (odd rows) and augmented (even rows) samples from CIFAR10. The policy model
is the same as that used for Fig. 5

search making automated data augmentation practical to use
for adversarial training, even for large datasets. AROID can
be also used in an offline mode to further save on compu-
tation. The learned DA policies are visualized to verify the
effectiveness of AROID and understand the preference of AT
for DA.

However, AROID has some limitations as well. First,
despite being more efficient than IDBH, it still adds extra
computational burden to training, unless AROID-T is used.
This could harm its scalability to larger datasets and model
architectures. Second, the Diversity objective enforces a
minimal chance (set by the lower limit) of applying harm-
ful transformations and/or harmful magnitudes if they are
included in the search space. This constrains the ability of
AROID to explore a wider (less filtered) search space. Future
works could investigate more efficient AutoML algorithms
for learning DA policies for AT, and design new policy learn-
ing objectives to reduce the number of hyperparameters and
alleviate the side-effect of Diversity.

Appendix A DA Search Space

Table 16 shows the complete DA search space used by
AROID. For Color/Shape group, we adopted the same
operations as RandAugment’s, but discretize the range of
magnitudes for each operation into 10 even values if possible.
For Erasing in Dropout group, the magnitude corresponds to
the scale (the proportion of erased area against input image),
while the aspect ratio (of erased area) is uniformly sam-

pled from range (0.3, 3.3). The search space only defines
the operations and their magnitudes, while the probabilities
of applying these operations are learned by AROID.

Appendix B Derivation

This section discusses how we derive the gradients of Hard-
ness metric w.r.t. the parameters of the policy model:

∂Ei∈BLhrd(xi )
∂θ plc

(B1)

First, we rewrite Eq. (B1) as below, so that we can focus on
the gradient derivation part.

1

B

B∑
i=1

∂Lhrd(xi )
∂θ plc

(B2)

Next, to apply the REINFORCE algorithm, we substitute the
gradient of the Lhrd for a sampled trajectory in Eq. (B2)
with the gradient of the expected Lhrd for multiple sampled
trajectories as

1

B

B∑
i=1

∂Et∈TL(t)
hrd(xi )

∂θ plc
(B3)
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By applying the REINFORCE algorithm, we have (batch
averaging is omitted for simplicity)

∂Et∈TL(t)
hrd(xi )

∂θ plc

= ∂
∑T

t=1 P(t)(xi )L(t)
hrd(xi )

∂θ plc
(B4)

=
T∑
t=1

∂P(t)(xi )
∂θ plc

L(t)
hrd(xi ) (B5)

=
T∑
t=1

P(t)(xi )
∂ log(P(t)(xi ))

∂θ plc
L(t)
hrd(xi ) (B6)

= Ei∈T
∂ log(P(t)(xi ))

∂θ plc
L(t)
hrd(xi ) (B7)

P(t)(xi ) is the probability of sampled trajectory. Following
the previous practices (Zhang et al., 2020; Lin et al., 2019;
Jia et al., 2022), we approximate Eq. (B7) as

1

T

T∑
t=1

∂ log(P(t)(xi ))
∂θ plc

L(t)
hrd(xi ) (B8)

Next, by expanding P(t) = ∏H
h=1 p

h
(t), we have

1

T

T∑
t=1

∂ log(
∏H

h=1 p
h
(t)(xi ; θ plc))

∂θ plc
L(t)
hrd(xi ) (B9)

≈ 1

T

T∑
t=1

∂
∑H

h=1 log(p
h
(t)(xi ; θ plc))

∂θ plc
L(t)
hrd(xi ) (B10)

≈ 1

T

T∑
t=1

H∑
h=1

∂ log(ph(t)(xi ; θ plc))

∂θ plc
L(t)
hrd(xi ) (B11)

To reduce the variance of gradient estimation, we apply
the baseline trick by subtracting mean value, ˜Lhrd =
1
T

∑T
t=1 L(t)

hrd(xi ), from L(t)
hrd as

1

T

T∑
t=1

H∑
h=1

∂ log(ph(t)(xi ; θ plc))

∂θ plc
[L(t)

hrd(xi ) − ˜Lhrd ] (B12)

Eventually, by adding back the batch averaging, we have our
ultimate form of gradients as

1

B · T
B∑

i=1

T∑
t=1

H∑
h=1

∂ log(ph(t)(xi ))

∂θ plc
[L(t)

hrd(xi ) − ˜Lhrd ] (B13)

Appendix C Efficiency Analysis

The efficiency of AROID is analyzed here. Ft /Fp/Fa and
Bt /Bp/Ba denote the cost of forward and backward pass on
target/policy/affinity model respectively. For each iteration
of updating policy model, the major overhead is

• Predict DA distribution: 1 Fp

• Vulnerability: for each of T trajectories, 2 (Ft + Bt ) to
generate adversarial examples and 1 Ft to calculate loss.
Overall, (3Ft + 2Bt )T

• Affinity: 1 Fa to calculate the loss of original data which
is shared by all T trajectories. 1 Fa to calculate the loss
of augmented data for each of T trajectories. Overall,
(FaT + Fa)

• Diversity: the calculation of diversity loss adds negligible
overhead and does not require F or B

• Update policy model: 1 Bp

To sum up, one iteration of policy update costs

(3Ft + 2Bt )T + (FaT + Fa) + Fp + Bp (C14)

Policy model is updated every K iterations of target model,
so the averaged policy learning cost per iteration of target
model training is

[(3Ft + 2Bt )T + (FaT + Fa) + Fp + Bp]/K (C15)

The overall overhead of AROID is learning cost plus 1 Fp

for every iteration of target model to sample DA, so

[(3Ft + 2Bt )T + (FaT + Fa) + Fp + Bp]/K + Fp (C16)

In worst case, policy and affinity models use the same archi-
tecture as target model, so the cost is

[(4T + 2)/K + 1]Ft + (2T + 1)Bt/K (C17)

The most expensive setting we use is T = 8 and K = 5,
so it costs 7.8Ft + 3.4Bt roughly, assuming 2Ft = 1Bt ,
4.8(Ft +Bt ) in addition to 11(Ft +Bt ) of underlying PGD10
AT. Overall, in worst case, AROID adds about 43.6% extra
computation to baseline AT. For a cheaper setting T = 4 and
K = 20, the overhead is roughly 1.9Ft + 0.45Bt about 10%
more than baseline AT.
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Appendix D Experimental Set-ups

D.1 Configuration of AROID

Vulnerability objective was calculated based on PGD2with a
step size of 2/255 except that PGD1 with a step size of 4/255
for ImageNet. The affinity models used the same architec-
ture as the target model. The affinity models were pre-trained
using ST with the same settings as their AT trained counter-
parts yet with no augmentation. Early stopping was used if
training accuracy was close to 100%. The policy model was
trained using SGD with a constant learning rate (0.001 by
default while 0.1 for Imagenette due to the reduced number
of training epochs) and the same momentum as the target
optimizer’s. Gradient clipping was applied to stabilize the
training of the policy model. In the initial five epochs of
training, we did not train the policy model nor apply it to
augment the data (no augmentation at all was applied) since
the target model changed rapidly.

D.2 Configuration of Compared DAMethods

AutoAugment was parameterized as in Cubuk et al. (2019)
since we did not have sufficient resource to optimize. For
AutoAugment, augmentations were applied in the order of
HorizontalFlip-RandomCrop-AutoAugment-Cutout (16 ×
16) as in Cubuk et al. (2019). TrivialAugment is parameter-
free so no tuning was needed. For TrivialAugment, aug-
mentations were applied in the order of HorizontalFlip-
RandomCrop-TrivialAugment-Cutout (16 × 16) ) as in
Müller and Hutter (2021). For CutMix, α = 0.25 and β = 1
on CIFAR10 as optimized in Li and Spratling (2023c); α = 1
and β = 1 on Imagenette as suggested in Yun et al. (2019).
For Cutout, the size of cut-out area was 20 × 20 on all
three datasets as in Li and Spratling (2023c). Cutout and
CutMix were applied with the default (baseline) augmen-
tations in the order of HorizontalFlip-RandomCrop-Cutout
and -CutMix respectively on CIFAR10 and Imagenette. For
IDBH, IDBH[strong]-CIFAR10 was used.

We only compare our method against the baseline and
AutoAugment on ImageNet.AutoAugment is selectedbecause
it is one of the two methods closest to AROID and has a pre-
optimized version for ImageNet while the other closest work
IDBH doesn’t. Due to the tremendous cost of conducting AT
on ImageNet and the limit of our computational resource,
we can’t optimize other DA methods for AT on ImageNet
so they are not included to avoid unfair comparison. In fact,
like most other researchers, we don’t have enough time and
resource to train all competitive DA methods even without
re-optimization of hyperparameters.

D.3 Configuration of Compared State-of-the-art
Robust TrainingMethods

We only re-implemented the algorithms of SWA and AWP
to report the result based on our runs, while the result of the
others including MART, MART-AWP, SEAT, LAT-AT and
LAS-AWP were copied directly from their original works
except that the result of MART was copied from (Wu et
al., 2020) for a better aligned training setting. SWA was
implemented as in Rebuffi et al. (2021) with a decay rate
of τ = 0.999. AWP was configured as in (Wu et al., 2020)
with β = 0.005. Note that the same configurations of SWA
and AWP were used to train with baseline DA and AROID.
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