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Abstract
Existing video instance segmentation (VIS) approaches generally follow a closed-world assumption, where only seen category
instances are identified and spatio-temporally segmented at inference. Open-world formulation relaxes the close-world static-
learning assumption as follows: (a) first, it distinguishes a set of known categories as well as labels an unknown object as
‘unknown’ and then (b) it incrementally learns the class of an unknown as andwhen the corresponding semantic labels become
available. We propose the first open-world VIS approach, named OW-VISFormer, that introduces a novel feature enrichment
mechanism and a spatio-temporal objectness (STO) module. The feature enrichment mechanism based on a light-weight
auxiliary network aims at accurate pixel-level (unknown) object delineation from the background as well as distinguishing
category-specific known semantic classes. The STOmodule strives to generate instance-level pseudo-labels by enhancing the
foreground activations through a contrastive loss. Moreover, we also introduce an extensive experimental protocol to measure
the characteristics of OW-VIS. Our OW-VISFormer performs favorably against a solid baseline in OW-VIS setting. Further,
we evaluate our contributions in the standard fully-supervised VIS setting by integrating them into the recent SeqFormer,
achieving an absolute gain of 1.6%AP on Youtube-VIS 2019 val. set. Lastly, we show the generalizability of our contributions
for the open-world detection (OWOD) setting, outperforming the best existing OWODmethod in the literature. Code, models
along with OW-VIS splits are available at https://github.com/OmkarThawakar/OWVISFormer.

Keywords Open-world segmentation ·Video instance segmentation ·Object-detection ·Video object detection ·Transformers

1 Introduction

Video instance segmentation (VIS) strives to simultaneously
classify, segment and track all object instances from a set of
semantic classes in a given video. The problem is challeng-
ing since a diverse set of objects are desired to be accurately
tracked and segmented despite real-world issues such as, fast
motion, large intra-class variation and background clutter.
Most existing VIS approaches (Wu et al., 2022; Wang et
al., 2021; Yang et al., 2021; Ke et al., 2021) typically fol-
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low a close-world assumption, i.e., all object categories to be
detected are provided during the training and only seen object
classes are spatio-temporally segmented at inference. E.g.,
existing VIS methods evaluated on the popular Youtube-VIS
benchmark (Yang et al., 2019; Xu et al., 2021) assume that
annotated (known) instances of all 40 semantic categories
to be segmented and tracked are available during training.
Here, such a training scheme treats unannotated (unknown)
objects as background. Therefore, the closed-world assump-
tion poses issues to existing VIS methods when recognizing
novel (unknown) object class instances.

The open-world problem formulation (Joseph et al., 2021;
Gupta et al., 2022) relaxes the closed-world assumption
by enabling the VIS model at each training episode to
identify unknown object category instances as belonging
to the ‘unknown’ class while simultaneously learning to
spatio-temporally segment a given set of ‘known’ objects.
Afterwards, these identified unknowns can be passed to an
oracle, which annotates a set of object categories of interest.
Then, the VIS model takes into account these new knowns
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to incrementally update its knowledge without requiring to
be retrained from scratch using the previous known object
categories. However, such an open-world formulation poses
additional issues over the standard VIS problem challenges
by requiring the model to also (i) distinguish unknown
objects and (ii) recognize them later with the arrival of pro-
gressive training data, in a unified manner. Although the
open-world setting has been explored recently for detec-
tion (Joseph et al., 2021; Gupta et al., 2022) and image
segmentation (Kuniaki et al., 2022; Wang et al., 2022), to
the best of our knowledge, we are the first to investigate
the problem and introduce a novel approach for open-world
video instance segmentation (OW-VIS).

When designing an OW-VIS framework, one plausible
way is to extend a fully-supervisedVISapproachby introduc-
ing a pseudo-labeling scheme to identify potential unknown
objects. These potential pseudo-unknowns along with the
ground-truth known instances can then be utilized to learn a
foreground-background class-agnostic separation as well as
performing class-specificknownvs.unknown instance classi-
fication. Existing fully-supervised VIS approaches typically
employ an ImageNet (Russakovsky et al., 2015) pre-trained
classification backbone for multi-scale feature extraction to
be used in the encoder. The same features can also be uti-
lized in a bottom-up pseudo-labeling scheme in OW-VIS.
However, such a pre-trained classification-based framework
is likely to struggle in the OW-VIS paradigm (see Fig. 1),
where the aim is to accurately distinguish a class-agnostic
unknownobject from thebackground aswell as class-specific
known categories at the pixel-level. To achieve such an
accurate pixel-level (unknown) object delineation from the
background, we argue that dedicated shallow features are
especially desired to complement the high-level semantic
pre-trained features.Moreover, since the selection of pseudo-
unknowns relies on the activation’s in the selected feature
map, it is further desired to enhance their strengths in the
foreground regions (known and unknown) for learning bet-
ter objectness priors.

Expanding on the motivation for extending OWOD
(Joseph et al., 2021; Gupta et al., 2022) to OW-VIS, our
novel approach addresses several key challenges and direc-
tions inherent in the open-world video instance segmentation
domain. First, we aim to develop algorithm capable of effec-
tively handling the dynamic nature of video data, including
object motion, occlusions, and varying perspectives over
time, while simultaneously accommodating unknown object
categories. Secondly, by introducing OW-VIS as a new
benchmark, we seek to foster research and development
efforts focused on advancing the state-of-the-art in video
instance segmentation under open-world conditions. More-
over, we anticipate that OW-VIS will serve as a testbed
for evaluating the scalability, generalization, and adaptabil-
ity of existing video instance segmentation models across

diverse datasets and real-world scenarios. By highlighting
these potential problems and directions, our work aims to
stimulate further innovation and collaboration within the
research community, ultimately leading to the development
of more robust and versatile video instance segmentation
solutions.

1.1 Contributions

We propose an OW-VIS approach, named OW-VISFormer,
that introduces (i) a feature enrichment mechanism, which
aims to better differentiate class-agnostic foreground vs.
backgroundaswell as aid in class-specificknownvs.unknown
instance classification and (ii) a spatio-temporal objectness
(STO) module that strives to identify candidate pseudo-
unknowns. The feature enrichment mechanism is based on
a light-weight auxiliary network that is trained from scratch
and generates dedicated shallow features to complement the
high-level semantic standardpre-trained features. The result-
ing extended features are enriched by the encoder and then
use in the STO module. Our STO module employs a con-
trastive loss that distinguishes candidate pseudo-unknowns
from the background by enhancing the foreground activa-
tions. As a result, improved video instance mask predictions
are obtained for both the known and unknown classes (see
Fig. 1). Furthermore, we introduce carefully curated open-
world splits of Youtube-VIS dataset for a rigorous evaluation
of OW-VIS problem.

Our extensive quantitative and qualitative evaluations
demonstrate the effectiveness of theproposedOW-VISFormer
leading to consistent improvement in performance, compared
to the baseline. In addition, we also validate our proposed
contributions in the standard fully-supervised VIS problem
setting by introducing them into the recent SeqFormer (Wu et
al., 2022), achieving an absolute gain of 1.6% in overall AP
on the Youtube-VIS 2019 val. set. Lastly, we demonstrate the
generalizability of our two contributions for the open-world
detection (OWOD) problem setting by integrating them into
the recent OW-DETR (Gupta et al., 2022). On the challeng-
ing MS COCO OWOD split, our approach outperforms the
recent OW-DETR on all the tasks for both the ‘known’ and
‘unknown’.

2 Open-World Video Instance Segmentation

2.1 Problem Formulation

LetDt = {V t ,Y t } be a progressive dataset at time t contain-
ing Nt videosV t = {V1, · · · , VNt }with corresponding labels
Y t = {Y1, · · · ,Y Nt }. Here, Vi ∈ RLi×3×H×W denotes a
video of length Li frames with spatial resolution H × W ,
while Y i = { y1, · · · , yK } denotes the ground-truth mask
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Fig. 1 Video instance segmentation in an open-world (OW-VIS) setting
illustrating the first step of identifying ‘known’ and ‘unknown’ objects.
For each example video frame, we show the corresponding objectness
map obtained from backbone features in the case of the baseline (col
2 and 7) and the spatio-temporal objectness (STO) module output map
for our OW-VISFormer (col 3 and 8). Moreover, we show the respec-
tive output segmentation mask for each frame in case of the baseline

(col 4 and 9) and OW-VISFormer (col 5 and 10). In these example
videos, the unknown (in red dashed line) objects are three elephants
(on the left), and the duck (on the right). The known objects in these
videos are person (on the left) and dog (on the right). Compared to the
baseline, OW-VISFormer accurately segments all the ‘unknown’ and
‘known’ object instances. Best viewed zoomed in. Additional results
are presented in the supplementary

annotations of a set of K object instances present in the
video. Here, y j ∈ RLi×h×w denotes the set of masks pre-
dicted for an object instance j in Li frames of a video Vi .
Let Kt = {1, 2, · · · ,C} denote the known object categories
at time t and U t = {C+1, · · · } be a set of unknown classes
that are likely to be encountered at test time.

As discussed earlier, our OW-VIS first learns a modelMt

that can spatio-temporally segment an unseen class instance
at time t as belonging to the unknown class (denoted by
label 0) in addition to segmenting the instances of previ-
ously encountered known classes Kt . Next, a set of these
unknown instances U t identified by Mt are then taken as
input to an oracle, which labels n novel classes of interest
and provides new training examples for the corresponding
n classes. Then, these n classes are considered as known
and added to the previously known C classes, such that
Kt+1 = Kt + {C + 1, · · · ,C + n}. Then, Mt is incre-
mentally trained to obtain an updated model Mt+1, which
can spatio-temporally segment all object instances belonging
to classes in Kt+1 without forgetting the previously learned
classes in Kt . This cycle of spatio-temporally segmenting
unknown instances and incremental learning of new knowl-
edge continues over the model’s life-time.

2.2 Baseline OW-VIS Framework

We base our approach on the recent fully-supervised (FS)
SeqFormer (Wu et al., 2022). It utilizes a standard pre-trained
backbone network formulti-scale feature extraction followed
by a deformable transformer (Zhu et al., 2021) and a seg-
mentation block for video instance mask prediction. Here,

an M-frame video clip v ⊂ Vi is input to a pre-trained back-
bonenetwork.Then, the resultingmulti-scale features of each
frame are input to an encoder that outputs feature maps of the
same size as the input. The encoder output features together
with q learnable instance query embeddings Q I are input to
the decoder. Consequently, the decoder outputs q instance
features F I that are then used for video mask prediction.

A straightforward way to extend the above FS SeqFormer
to OW-VIS (Sect. 2.1) is to introduce a pseudo-labeling
scheme for selecting potential unknown objects followed by
learning to categorize these identified pseudo-unknowns into
a single unknown class. One way to design such a pseudo-
labeling scheme is to utilize object proposals1 having high
activations in their corresponding regions of the backbone
feature maps as candidates for unknown class, as in Gupta et
al. (2022). These pseudo-unknowns can be then used along
with ground-truth known instances to learn a foreground-
background class-agnostic separation as well as perform
class-specific known vs.unknown instance classification. We
refer to this as our baseline OW-VIS framework.

3 Proposed OW-VIS Framework

Overall Architecture: Fig. 2a shows the overall OW-
VISFormer framework with a standard pre-trained back-
bone. To circumvent using a fully-supervised ImageNet

1 Proposals are obtained from the instance features Q I and only those
remaining after selecting the ground-truth class instances through Hun-
garian matching are considered.
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Fig. 2 a Overall architecture of the proposed OW-VISFormer frame-
work. It comprises a standard pre-trained backbone, a light-weight
Scratch-Net, an encoder-decoder followed by class-specific, class-
agnostic and regression branches along with a spatio-temporal object-
ness (STO) module. Different from the pre-trained backbone, b the
Scratch-Net is trained from scratch with random weight initialization
during the OW-VIS training. Its light-weight architecture comprises
two 3D convolution and normalization layers. The resulting feature
maps are then integrated with the standard backbone features to con-
struct extended multi-scale features which are then input to the encoder
that outputs enriched features. Within the decoder, the instance queries

cross-attend to the enriched features. The instance and box features
output by the decoder are input to the class-specific (multi-class), class-
agnostic and regression branches. To effectively learn the class-agnostic
and class-specific branches with the unknown instances in the OW-VIS
setting, we introduce a c spatio-temporal objectness (STO) module
trained with a contrastive loss (Lcontr ) for generating instance-level
pseudo-labels. Consequently, the instance features from the decoder
along with the encoder features are used within the segmentation block
for the video instance mask prediction of known and unknown classes
in the proposed OW-VISFormer framework

pre-trained network, we use the popular self-supervised
ResNet50 DINO (Caron et al., 2021) ImageNet-1K back-
bone. For accurate pixel-level object delineation from the
background, we introduce a feature enrichment mechanism
that utilizes a novel light-weight ScratchNet Fig. 2b which
is trained from scratch through random weight initializa-
tion. Our ScratchNet, comprising two 3D convolution and
normalization layers, takes the same input frames as the
standard pre-trained backbone stream. The resulting shal-
low features from ScratchNet are integrated with high-level
semantic features from the standard pre-trained backbone
to produce extended multi-scale features. These extended
features are then input to the encoder to obtain enriched
multi-scale features. The decoderwithin ourOW-VISFormer
framework aggregates the enriched features from all encoder
layers, which are then cross-attended with the instance
queries Q I . The decoder then outputs the instance and
box features (F I and FB), which are input to the three
branches: class-specific, class-agnostic and regression. As
discussed earlier, in the OW-VIS setting both the class-
specific as well as the class-agnostic branches are required
to be learned with the unknown instances. To this end, we
propose a spatio-temporal objectness (STO) module, shown
in Fig. 2c, comprising a 3D convolution layer for spatio-

temporally aggregating the objectness information of video
instances across multiple frames M . The STO module is
trained with a contrastive loss (Lcontr ) and enables improved
foreground-background separability resulting in a better
unknown instance mask prediction. Finally, the instance fea-
tures from the decoder and enrichedmulti-scale features from
the encoder are utilizedwithin the segmentation block to pro-
duce video instance mask predictions for both the known and
unknown classes. Unlike OW-DETR (Gupta et al., 2022),
which is tailored for static image processing, our proposed
OW-VISFormer is specifically designed for the videos based
on Wu et al. (2022), addressing both spatial and temporal
aspects of video instance segmentation. In contrast to OW-
DETR (Gupta et al., 2022), our OW-VISFormer contains the
ScratchNet, a lightweight auxiliary network, generates ded-
icated shallow features designed to enhance the delineation
of moving objects across frames. Additionally, our approach
employs a spatio-temporal objectness (STO) module that
integrates 3D convolution to aggregate objectness informa-
tion over time, further distinguishing it from OW-DETR’s
focus on spatial processing. These enhancements make OW-
VISFormer particularly adept at handling the complexities of
video instance segmentation in open-world settings, offer-
ing significant improvements over OW-DETR in tracking
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and segmenting objects with high temporal fidelity. Next,
we describe our feature enrichment mechanism.

3.1 Feature Enrichment Mechanism

Light-weight ScratchNet: the OW-VIS setting requires
accurate pixel-level (unknown) object delineation from the
backgroundaswell as distinguishing category-specificknown
classes. Therefore, shallow features capturing distinct edge
and boundary information are desired to complement the
high-level semantic features. A straightforward strategy to
integrate the shallow feature information is to re-use the
initial layer features from the standard pre-trained back-
bone. However, we empirically observe this to achieve
inferior performance compared to the features generated
using the proposed ScratchNet. We conjecture that the low-
/mid-level shallow features from the initial layers of the
standard pre-trained backbone are better adapted for the task
of image classification, which prefers translation invariance.
In contrast, the proposed light-weight ScratchNet produces
dedicated shallow features that aid in accurate video instance
mask prediction for both unknown as well as known cate-
gories. The light-weight ScratchNet is trained from scratch
through random weights initialization. It comprises two
layers of 3Dconvolution, each followedby a layer normaliza-
tion, as shown in Fig. 2b. Both convolutional layers perform a
non-overlapping convolution operation on their inputs with
a kernel size of 4 × 4 × 4 and a stride of 4. ScratchNet
produces complementary shallow features, which are then
integrated as an additional feature scale along with multi-
scale pre-trained backbone features, resulting in extended
multi-scale features.
Enriched Multi-scale Encoder Features: The extended
multi-scale features are combined with positional encod-
ings and input to a deformable encoder (Zhu et al., 2021)
consisting of six layers of multi-scale deformable attention.
The standard deformable encoder in our OW-VIS baseline
(Sect. 2.2) outputs the attended multi-scale features from its
final layer alone, which are tailored for known categorymask
prediction. This can likely lead to deterioration in some of
the relevant features for accuratemaskprediction of unknown
instances in our OW-VIS setting. To alleviate this issue, we
combine features from all encoder layers in order to learn
enriched features for predicting accurate video masks for
both known and unknown instances. To this end, multi-scale
features from all but the final encoder layer are scale-wise
fused through a convolution operation and added with the
features of the final encoder layer, resulting in enriched
multi-scale features. Such a feature fusion enables improving
unknown video instance mask prediction while preserving
the known category predictions. Consequently, the encoder
outputs enriched multi-scale features that are better suited
for the OW-VIS task. These enriched multi-scale features

are then input to the decoder as well as our spatio-temporal
objectness (STO) module described next.

3.2 Spatio-Temporal Objectness Module

In the OW-VIS setting, both category-specific as well as
class-agnostic branches require learning with the unknown
instances. To this end, we introduce a spatio-temporal object-
ness (STO) module (Fig. 2c) that generates instance-level
pseudo-labels and is trained using a contrastive loss. The
STO module GST O(·) consists of a 3D convolutional layer
with output channels equal to one. It takes the d-dimensional
enriched encoder features Ek corresponding to theM frames
at spatial scale k = 1/16 as input and outputs an objectness
map Omap ∈ RM×H/16×W/16.
Pseudo-labeling Unknown Instances:Given the q instance
features F I output by the decoder, we employ the Hungarian
matching loss (Kuhn, 1955) that identifies the best matching
queries for the K known instances in the input video. For each
of the remaining q − K instance predictions, their object-
ness scores si (where i ∈ {K + 1, · · · , q}) are computed by
spatio-temporally aggregating the activation strengths of the
objectness maps Omap = GST O(Ek)within the correspond-
ing predicted box regions across m = [1, · · · , M] frames,
given by

si =
M∑

m=1

1

hmi · wm
i

xmi +0.5wm
i∑

xmi −0.5wm
i

ymi +0.5hmi∑

ymi −0.5hmi

GST O(Ek), (1)

where bmi = [xmi , ymi , wm
i , hmi ] denotes the box proposal

predicted in the regression branch for the i th instance in
mth frame. Here, (xmi , ymi ), wm

i and hmi denote the center,
width and height, respectively. The resulting q − K scores
(si ) are sorted in decreasing order and the top-pu instances
are employed as pseudo-unknown during training. Further-
more, the remaining q − (K + pu) instances are considered
as background instances.

Given that the selection of pseudo-unknowns depends on
the activations in the objectness map Omap, we introduce a
contrastive loss that aims to better separate the class-agnostic
foreground regions from the background in the objectness
map. The foreground score S f g is computed by aggregating
the objectness scores si of the foreground video instances,
i.e., i ∈ [1, · · · , K+pu] (both known and pseudo-unknown).
Similarly, the background score Sbg is obtained by aggre-
gating the objectness scores si of the background video
instances, i.e., i ∈ [K + pu + 1, · · · , q]. The constrastive
loss is then given by

Lcontr
(
S f g, Sbg

) = e−(S f g−Sbg), (2)
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Fig. 3 The proposed task composition in our OW-VIS evaluation
setting based on the Youtube-VIS dataset. Here, for each task in the cor-
responding split we show the number of videos and instances (objects).

We construct five splitsA–E each having two tasks (Task-1 and Task-2).
The super-categories for each task within the splits are shows

where S f g =
K+pu∑

i=1

si and Sbg =
q∑

i=K+pu+1

si . (3)

The resulting pseudo-unknown and background instances
along with the ground-truth known instances are employed
for training the class-specific and class-agnostic branches.
Furthermore, as in Wu et al. (2022), the instance and box
features (F I and FB) output by the decoder, along with the
enriched multi-scale features E are utilized as input to the
segmentation block for predicting the video masks of both
known and unknown instances.

3.3 Training and Inference

Training: Our proposed OW-VISFormer framework is
trained with the loss formulation given by

L = Lc + Lr + αL f + Lcontr , (4)

where Lc, L f , Lr and Lcontr , respectively denote the
classification (class-specific branch), foreground objectness
(class-agnostic branch), regression (box and mask) and con-
strastive (STO module) loss terms. While Lc and L f are
computed using the focal loss (Lin et al., 2017), Lr is the
standard l1 loss. Furthermore, a balanced set of exemplars is
utilized to finetune the model after the incremental step in
each task for alleviating catastrophic forgetting, as in Gupta
et al. (2022); Joseph et al. (2021).
Inference: At test time, the class-specific branch predic-
tions of the C known classes are utilized and top-k instances
are selected as known instances. Furthermore, among the
remaining q − k instances, top-k with high unknown class
probability are selected as unknown instances. Finally, the
box and instance features from the decoder for the corre-
sponding known and unknown instances predicted, along
with the enriched multi-scale encoder features are input to
the segmentation block for predicting the video masks.

4 Experiments

4.1 Experiment 1: OW-VIS Setting

Datasets: We adapt the popular Youtube-VIS (Xu et al.,
2021) dataset to construct open-world VIS (OW-VIS) data
splits. we For each split, we group the 40 categories into two
mutually exclusive sets, thereby constructing tasks with non-
overlapping classes {T1, T2} such that, the T2 categories are
not known during task T1. Then, during the learning of task
Tt , all the category labels belonging in {Tα : α ≤ t} are con-
sidered as known. Similarly, labels belonging to {Tα : α > t}
are considered as unknown during evaluation. To construct
a test set at time t , we consider 20% of videos in tasks
{Tα : α ≤ t} for known evaluation and 20% of videos in
tasks {Tα : α > t} for unknown evaluation. By grouping
super-categories of all 40Youtube-VIS categories in different
ways,we created 5 such splits as shown inFig. 3.AsYoutube-
VIS validation annotations are not available, we split training
set further into train and test set for ll the splits explained.
Additional details are provided in the supplementary.
Evaluation Metric: We adapt the standard VIS evaluation
metrics for evaluating the OW-VIS setting. For the known
classes as well as the unknown class, the standard overall
average precision (AP) and average recall (AR) are used.
Implementation Details: We employ the self-supervised
DINO (Caron et al., 2021) ResNet50 Imagenet-1k pre-
trained backbone to extract multi-scale features using the
conv3, conv4 and conv5 stages. The resulting multi-scale
features are mapped to the same feature dimension of 256
through convolution, as in Wu et al. (2022); Zhu et al.
(2021). The two convolution layers in ScratchNet employ
kernel size 4 × 4 and stride 4 along with the output chan-
nels set to 256. The encoder and decoder are six layers each
with latent dimension being 256. The number of instance
queries q is set to 300. Our OW-VISFormer is implemented
in PyTorch−1.8 (Paszke et al., 2019) and learned using the
Adam optimizer with learning rate set to 10−4. The model is
trained on Task-1 data for 18 epochs. In our training strategy,
we prioritize the seamless transition from Task-1 to Task-2
by employing an incremental learning approach enhanced
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Table 1 Comparison between the baseline and our OW-VISFormer on the five splits (A-E) introduced for OW-VIS setting

Task-1 Task-2

Known Unknown Previously Known Current Known Both

AP AR-1 AP AR-1 AP AR-1 AP AR-1 AP AR-1

Split A Baseline 35.3 34.8 6.7 9.5 30.6 31.2 30.3 30.7 30.4 31.0

Ours 36.7 37.3 10.0 11.9 32.5 33.9 34.1 34.9 33.3 34.4

Split B Baseline 31.0 31.4 2.7 5.1 28.9 30.5 31.7 32.6 30.3 31.6

Ours 32.2 33.1 6.5 8.9 30.4 32.2 35.1 35.7 32.7 33.9

Split C Baseline 33.9 33.3 4 7.2 28.7 32.6 32.1 32.6 30.4 28.7

Ours 36.4 35.2 7.1 9.6 30.6 33.2 35.0 35.1 32.8 34.1

Split D Baseline 31.4 34.5 3.3 6.4 29.7 30.9 30.2 32.2 30.0 31.6

Ours 33.6 35.0 6.9 9.7 31.7 32.2 33.5 34.2 32.6 33.2

Split E Baseline 32.0 35.1 3.5 6.5 29.7 31.2 30.4 31.7 30.1 29.7

Ours 35.1 36.3 5.6 8.9 31.3 32.1 33.9 36.0 32.6 34.0

For the Task-1 evaluation, the results are reported in terms of overall AP and recall (AR-1) for both ‘Known’ classes and the ‘Unknown’ category.
For the Task-2, which involves the incremental learning step, we report the OW-VIS setting results for ‘Previously Known’, ‘Current Known’ along
with ’Both’. Note that the ‘Unknown’ class performance is not reported for Task-2 since all 40 classes are ‘Known’. Our proposed OW-VISFormer
achieves consistent gains over the baseline on all splits across all tasks for both ’Known’ and ‘Unknown’ classes

with memory replay techniques. Following the initial train-
ing on Task-1, we proceed to incrementally train our model
on Task-2, devoting 12 epochs to this phase using newly
introduced Task-2 data samples. Tomitigate the risk of catas-
trophic forgetting, we incorporate a memory replay training
step, where a subset comprising 20% of previously encoun-
tered Task-1 data samples is randomly selected and utilized
for an additional 2 epochs. This careful methodology ensures
that our model retains knowledge from Task-1 while effec-
tively adapting to the demands of Task-2, thus bolstering its
overall performance and robustness.
Quantitative Comparison: We compare the performance
of the baseline ( 2.2) and our OW-VISFormer ( 3) on the
OW-VIS splits (see Fig. 3). Table 1 shows the comparison
on all five splits and the corresponding two tasks in each
split. We report the performance in terms of AP and recall
for both known and unknown. For the Task-1 in split A,
the baseline achieves a known class AP of 35.3% and AR-
1 score of 34.8%. Our OW-VISFormer achieves consistent
improvement in performance in terms of both AP and AR-1
by achieving 36.7% and 37.3%, respectively. Notably, OW-
VISFormer obtains a considerable gain in performance in
the case of unknown class, in terms of both AP and AR-1,
owing to the proposed feature enrichment mechanism and
the STO module. When the unknown class labels are pro-
gressively labeled in Task-2, we observe OW-VISFormer to
better maintain both objectives of (i) spatio-temporally seg-
menting the new known categories and (ii) not forgetting
the previously known classes. Moreover, we observe a con-
sistent improvement in performance from OW-VISFormer
over the baseline for other splits. We further analyzed the
computational complexity of OW-VISFormer in comparison

with the baseline where baseline shows the 292 GFLOPS
whereas OW-VISFormer has 296 GFLOPS. Similarly, we
have computed FPS for bothe models on A100 GPU where
baseline shows 10.1 FPS whereas our model shows 9.7 FPS.
This minor trade-off is outweighed by the significant gains
in segmentation accuracy delivered by OW-VISFormer.
Ablation Study:We also conduct an experiment by progres-
sively integrating our contributions into the baseline ononeof
the difficult splits (split B) in Table 3. For the known classes,
the baseline achieves a AP score of 31.0%. The performance
on the known classes is improved by the introduction of
our proposed feature enrichment mechanism (Sect. 3.1) with
an AP score of 31.5%. Furthermore, the integration of our
STOmodule (Sect. 3.2) that generates instance-level pseudo-
labels improves theAP score to 32.2%, leading to an absolute
overall gain of 1.2%over the baseline. For the unknown class,
the baseline achieves AP and AR-1 scores of 2.7% and 5.1%.
Integrating the proposed feature enrichment mechanism sig-
nificantly improves the performance to 4.5% and 6.1%, in
terms of AP and AR-1. The introduction of the STO mod-
ule leads to a consistent improvement in both AP and AR-1,
achieving absolute final gains of 3.8% and 3.6% over the
baseline. We further perform an experiment to validate the
impact of the dedicated shallow features generated from the
proposed ScratchNet. To this end, we use the shallow fea-
tures conv2 from the standard pre-trained backbone instead
in ourOW-VISFormer. The reduces the performance in terms
of both known and unknown AP from 32.2% and 6.5% to
31.2% and 3.8%. This inferior performance likely suggests
that the shallow features from standard pre-trained backbone
are more suited for image classification task. In contrast, the
shallow features obtained through our ScratchNet are trained
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Fig. 4 Qualitative OW-VIS results on example video frames from the
the test sets of different splits.Here, for each example video,we show the
segmentation masks obtained from our OW-VISFormer when trained
only on Task-1 categories (row 1 and 2). The instance mask predic-
tions for the same video frames are shown after incrementally learning
with Task-2 categories (row 3 and 4). From left to right: the unknown

objects are encircled by red dashed lines in the input video frames
during the Task-1 evaluation. The unknown objects are accurately seg-
mented first as ‘unknown’ in Task-1 and then later correctly classified
and spatio-temporally segmented into their respective ‘known’ classes
during Task-2 evaluation. Best viewed zoomed in. Additional results
are in the supplementary

Table 2 State-of-the-art comparison on YouTube-VIS 2019 val set

Method AP AP50 AP75 AR1 AR10

MaskTrack R-CNN 30.3 51.1 32.6 31.0 35.5

SipMask-VISCao et al. (2020) 32.5 53.0 33.3 33.5 38.9

VisTRWang et al. (2021) 36.2 59.8 36.9 37.2 42.4

CrossVISYang et al. (2021) 36.6 57.3 39.7 36.0 42.0

IFCHwang et al. (2021) 42.8 65.8 46.8 43.8 51.2

DeVISCaelles et al. (2022) 44.4 66.7 48.6 42.4 51.6

SeqFormerWu et al. (2022) 45.1 66.9 50.5 45.6 54.1

Our Approach 46.7 69.1 51.7 46.1 54.9

All results are reported using the same ResNet-50 backbone. Our approach outperforms the recent SeqFormer (Wu et al., 2022) with an absolute
gain of 1.6% in terms of overall AP. Best results are in bold

from scratch on OW-VIS data and therefore dedicated to aid
in accurate video mask prediction for both unknown as well
as known classes.
Qualitative Analysis: Fig. 4 shows the qualitative results
from our OW-VISFormer on example test video frames
of different OW-VIS splits. The first two rows shows the
segmentation results obtained on the corresponding video
frames in the Task-1 evaluation (‘known’ and ‘unknown’
objects). The last two rows show the results from Task-2
evaluation which involves incrementally training with Task-
2 categories. In the Task-1, OW-VISFormer is able to first
accurately segment the different ‘known’ and ‘unknown’
instances. Then, in the Task-2 evaluation, OW-VISFormer
successfully identifies the correct categories for the same
unknown instances that were introduced in the Task-2 learn-
ing while still accurately predicting the instance masks for
the previously known categories from Task-1.

Table 3 Performance comparison of baseline and progressively inte-
grated Ow-VISFormer components on split B

Method Known AP Unknown AP Unknown AR1

Baseline 31.0 2.7 5.1

+ ScratchNet 31.5 4.5 6.1

+ STO Module 32.2 6.5 8.9

The table presents the Average Precision (AP) scores for known and
unknown classes, along with the Average Recall@1 score for unknown
classes. The improvements achieved by integrating ScratchNet, STO
module are demonstrated relative to the baseline

Results with additional baseline: Table 5 shows the effec-
tiveness of our proposed method OW-VISFormer when
integrated with different baselines. We consider recently
introduced VITA (Heo et al., 2022) and DVIS (Zhang et
al., 2023) and adopted it to open-world instance segmen-
tation task by adding DINO (Caron et al., 2021) backbone
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Table 4 State-of-the-art comparison for the open-world object detection (OWOD) problem on MS COCO split of Gupta et al. (2022)

Task IDs Task-1 Task-2 Task-3 Task-4

U-Recall mAP U-Recall mAP U-Recall mAP mAP
Current Previously Current Both Previously Current Both Previously Current Both
Known Known Known Known Known Known Known

ORE-EBUI Joseph et al. (2021) 1.5 61.4 3.9 56.5 26.1 40.6 3.6 38.7 23.7 33.7 33.6 26.3 31.8

OW-DETR Gupta et al. (2022) 5.7 71.5 6.2 62.8 27.5 43.8 6.9 45.2 24.9 38.5 38.2 28.1 33.1

Our Approach 8.8 72.1 8.4 63.3 28.1 44.5 9.1 45.4 25.5 38.9 38.7 29.3 34.0

The comparison is presented in terms of unknown category recall (U-Recall) and the known class mAP for the Task-1. For the remaining tasks
(2-4) involving incremental learning steps, we report the mAP scores for ‘Previously Known’, ‘Current Known’ along with ‘Both’. Furthermore,
the U-Recall is only reported for tasks 1-3 since all classes are known in the final task 4. When using the same backbone, our approach outperforms
the recent OW-DETR on all tasks for both the ‘Known‘ classes and the ‘Unknown’ class. Best results are in bold

and pseudo-labelling scheme as described in Sect. 2.2.
OW-VISFormer enhances these baselines by integrating
Scratch-Net and the STO module. Notably, our approach
consistently outperforms thebaselines across all tasks, partic-
ularly demonstrating significant improvements in the AP and
AR metrics for unknown classes on both splits. This under-
scores the effectiveness of OW-VISFormer in addressing the
challenges of open-world video instance segmentation.

4.2 Experiment 2: Fully-SupervisedVIS Setting

We further evaluate the effectiveness of our proposed contri-
butions (feature enrichment mechanism and STOmodule) in
the standard full-supervised (FS) VIS problem setting. Our
main intuition is that the proposed contributions can likely
aid in reducing the confusion of an object region (both known
and unknown) being called as a background. Hence, this can
serve as an additional learning step for better object iden-
tification. To this end, we integrate the feature enrichment
mechanism (Sect. 3.1) and our STO module (Sect. 3.2) into
the recent SeqFormer (Wu et al., 2022). Table 2 shows the
results in the standard FS setting on the Youtube-VIS 2019
val. set. Our approach obtained by integrating the feature
enrichment and the STO module within the standard Seq-
Former obtains overall AP of 46.7%, leading to an absolute
gain of 1.6% in AP over recent best (Wu et al., 2022).

4.3 Experiment 3: Open-World Detection Setting

Lastly, we also validate the generalizability of our feature
enrichment and the STOmodule for open-world object detec-
tion (OWOD) in images. The OWOD problem has recently
gained popularity with evaluations being performed on the
challengingMSCOCO dataset (Lin et al., 2014). To this end,
we integrate our feature enrichment andSTOmodule (replac-
ing 3D convolutions with 2D) into the recent transformers-
based OWOD framework, named OW-DETR (Gupta et al.,
2022). Table 4 shows the results on the challenging MS
COCO split introduced in Gupta et al. (2022). For a fair

comparison, we employ the same self-supervised ResNet50
backbone as in the standard OW-DETR (Gupta et al., 2022).
We report the results of ORE-EBUI (Joseph et al., 2021) and
our baseline OW-DETR fromGupta et al. (2022). In the case
of Task-1, our approach achieves an impressive performance
particularly on the ‘Unknown’ object class by increasing the
U-Recall from 5.7% to 8.8%,while also improving the detec-
tion performance on the ‘Current Known’ classes. Further,
the performance on both ‘Unknown‘ and ‘Known’ are con-
sistently improved in the subsequent tasks as well. For the
final task (task-4) involving all 80 classes fromMSCOCO as
‘Known‘, our approach improves the performance over the
recent OW-DETR in the case of ‘Both’ previously known
and unknown classes from 33.1% to 34.0% mAP.

5 Relation to Prior Art

Video Instance Segmentation: Existing video instance seg-
mentation (VIS) methods can be categorized based on the
underlined detection architecture such as, two-stage (Yang
et al., 2019; Lin et al., 2020; Bertasius & Torresani, 2020),
single-stage (Ke et al., 2021; Cao et al., 2020; Athar et al.,
2020; Fu et al., 2021) and transformer-based approaches
(Wang et al., 2021; Wu et al., 2022; Yang et al., 2021;
Hwang et al., 2021; Caelles et al., 2022; Thawakar et al.,
2022). Most two-stage VIS approaches extend a two-stage
detector such as, Mask R-CNN He et al. (2017) by inte-
grating a tracking branch. Most single-stage VIS methods
adapt the one-stage pipeline, where the final mask predic-
tion is obtained through a linear combination of mask bases.
Recently, several works explored transformers-based detec-
tion architecture (Zhu et al., 2021; Carion et al., 2020) to for-
mulateVIS as a direct end-to-end sequence prediction. These
approaches predominantly solve the problem following a
closed-world assumption, where the annotated instances
of all (known) semantic classes to be spatio-temporally
segmented are available during instance. This assumption
posses issues to most existing VIS approaches when classi-
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Table 5 Comparison between the baselines and our OW-VISFormer on the two splits (A-B) introduced for OW-VIS setting

Task-1 Task-2

Known Unknown Previously Known Current Known Both

AP AR-1 AP AR-1 AP AR-1 AP AR-1 AP AR-1

Split A Baseline(VITA Heo et al. (2022)) 38.7 37.5 7.8 11.3 32.8 33.3 33.1 32.4 33.1 33.5

Ours(VITA6 Heo et al. (2022)) 39.2 39.1 12.2 14.6 34.9 35.3 35.9 36.7 35.3 36.2

Split B Baseline(VITA Heo et al. (2022)) 33.1 33.5 4.3 7.2 31.2 32.7 33.9 34.2 32.6 33.1

Ours(VITA Heo et al. (2022)) 35.1 35.3 8.3 10.2 32.7 34.2 37.4 37.8 34.6 36.2

Split A Baseline(DVIS Zhang et al. (2023)) 39.2 38.6 8.4 12.7 33.6 34.5 34.2 33.8 34.6 34.4

Ours(DVIS Zhang et al. (2023)) 40.3 30.8 13.6 15.9 36.1 36.5 37.4 37.9 6.8 37.5

Split B Baseline(DVIS Zhang et al. (2023)) 34.6 34.8 5.9 8.5 32.4 33.9 35.2 35.8 33.9 34.7

Ours(DVIS Zhang et al. (2023)) 36.3 36.7 9.5 11.3 34.1 35.7 38.8 39.3 35.1 37.7

Here, the baselines (VITA Heo et al. (2022) and DVIS Zhang et al. (2023)) were adopted according to the our proposed open-world setting as
discussed in Sect. 2.2. Our proposed OW-VISFormer built on top of two respective baselines (VITAHeo et al. (2022) and DVIS Zhang et al. (2023))
achieves consistent gains on splits (A-B) across all tasks for both ’Known’ and ‘Unknown’ classes

fying a novel (unknown) object class instance. Furthermore,
recent progress in video instance segmentation (VIS) has
demonstrated notable enhancements in both model preci-
sion and computational efficiency. Mask2former (Cheng et
al., 2022) adeptly captures temporal coherence and spatial
intricacies through the utilization of a mask transformer.
SG-Net (Liu et al., 2021) introduces a pioneering one-stage
Spatial Granularity Network, dynamically adjusting instance
mask resolutions to optimize both speed and accuracy. Wu
et al. (2022) underscore the benefits of online models for
real-time VIS applications. Additionally, Heo et al. (2023)
present a versatile approach aimed at addressing a wide array
of video segmentation tasks. Other noteworthy contributions
include DVIS (Zhang et al., 2023) and Tube-link (Li et al.,
2023), each contributing unique insights into video instance
segmentation methodologies. Furthermore, recent works (Li
et al., 2023; Naseer et al., 2021; Ranasinghe et al., 2022;
Awais et al., 2023; Dudhane et al., 2023; Thawakar et al.,
2023; Dudhane et al., 2024) offer valuable perspectives on
the evolving landscape of transformer-based techniques in
visual segmentation tasks.
Video Object Segmentation: In the field of video object
detection, recent research has focused on integrating spatial-
temporal transformers to enhance detection performance.
Zhou et al. (2022) introduces a comprehensive framework
TransVOD for end-to-end video object detection, while
PTSEFormer (Han et al., 2022) proposes a progressive
approach to improve temporal and spatial modeling in video
object detection. Similarly, Geng et al. (2022) introduced
the RSTT for real-time video super-resolution, utilizing a
transformer architecture to process both spatial and tempo-
ral dimensions efficiently. These developments underscore
the integration of advanced spatial-temporal processing in
VIS, pointing towards sophisticated solutions for handling
complex video scenarios in real-time.

Open Vocabulary Detection and Segmentation: Several
recent works have explored the open-world problem set-
ting, where a model learns to distinguish an unknown object
instance as ‘unknown’ while also identifying the given set
of ‘known’ semantic object classes. Such an open-world set-
ting has been investigated in detection (Joseph et al., 2021;
Gupta et al., 2022), image instance segmentation (Kuniaki et
al., 2022;Wang et al., 2022), and object tracking and segmen-
tation (Liu et al., 2021; Wang et al., 2021). The emergence
of open vocabulary segmentation and detection techniques
presents new opportunities for handling diverse and evolv-
ing object classes (Rasheed et al., 2023). Gu et al. (2021)
explores knowledge distillation techniques to enable open-
vocabulary object detection. Additionally, Wu et al. (2024)
provides a comprehensive overview of methodologies and
challenges in open-vocabulary learning. Notably, Wu et al.
(2024) and OpenVIS (Guo et al., 2023) present pioneering
efforts in extending the capabilities of video instance seg-
mentation models to accommodate an open vocabulary of
object classes.

6 Conclusions

Weproposed an approach, namedOW-VISFormer, to address
open-world VIS (OW-VIS). OW-VISFormer introduces a
feature enrichment mechanism to produce enriched fea-
tures and a spatio-temporal objectness module that generates
instance-level pseudo-labels. Based on a light-weight auxil-
iary network that generates shallow features, which are com-
bined with pre-trained high-level features. The resulting fea-
tures are then input to encoder to obtain enriched multi-scale
features. We further propose a spatio-temporal objectness
(STO) module that produces instance-level pseudo-labels
and is trained using a contrastive loss. Moreover, we pro-
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poseOW-VIS splits to identify unknown, segment knownand
unknown alongwith progressively segmenting new semantic
classes. OW-VISFormer achieves competitive performance
in three settings: OW-VIS, FS-VIS and OWOD.
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