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Abstract
The realm of computer vision has witnessed a paradigm shift with the advent of foundational models, mirroring the transfor-
mative influence of large languagemodels in the domain of natural language processing. This paper delves into the exploration
of open-world segmentation, presenting a novel approach called Image Prompt Segmentation (IPSeg) that harnesses the power
of vision foundational models. IPSeg lies the principle of a training-free paradigm, which capitalizes on image prompt tech-
niques. Specifically, IPSeg utilizes a single image containing a subjective visual concept as a flexible prompt to query vision
foundation models like DINOv2 and Stable Diffusion. Our approach extracts robust features for the prompt image and input
image, then matches the input representations to the prompt representations via a novel feature interaction module to generate
point prompts highlighting target objects in the input image. The generated point prompts are further utilized to guide the
Segment Anything Model to segment the target object in the input image. The proposed method stands out by eliminating
the need for exhaustive training sessions, thereby offering a more efficient and scalable solution. Experiments on COCO,
PASCAL VOC, and other datasets demonstrate IPSeg’s efficacy for flexible open-world segmentation using intuitive image
prompts. This work pioneers tapping foundation models for open-world understanding through visual concepts conveyed in
images.

Keywords Open-world Segmentation · Vision Foundations models · Image Prompt

1 Introduction

In recent years, large language models (LLMs) (Chowdh-
ery et al, 2023; Touvron et al, 2023; Zhang et al, 2022)
have sparked a revolution in natural language processing
(NLP). These foundational models exhibit remarkable trans-
fer capabilities, extending far beyond their initial training
objectives. LLMs showcase robust generalization abilities
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and excel in a multitude of open-world language tasks,
including language comprehension, generation, interaction,
and reasoning. Inspired by the success of LLMs, vision
foundational models such as CLIP (Radford et al, 2021),
DINOv2 (Oquab et al, 2023), BLIP (Li et al, 2022), and
SAM (Kirillov et al, 2023) have also emerged. Thesemodels,
once trained, can seamlessly apply their knowledge to var-
ious downstream tasks. Such a trend has further motivated
researchers to exploreways of open-world visual understand-
ing.

Pioneering works (Liu et al, 2023a; Dai et al, 2023; Zhu
et al, 2023a) have mainly focused on how to understand
images as a whole in the open world. Herein, we project our
viewpoint to open-world understanding at the object level,
specifically for the task of open-world segmentation (Qi et al,
2022). When approaching open-world segmentation tasks,
there are three primary strategies for leveraging foundational
models. Themostwidely studied approach (Liang et al, 2023;
Oin et al, 2023; Ghiasi et al, 2022) is to utilize a vision foun-
dation model like CLIP or DINOv2 and cooperate it with
a specific segmentation header or adapter to complete the
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Fig. 1 Comparison of different open-world segmentation frameworks based on foundation models. From left to right, they are foundation model
adaptions, task-specific foundation models training from scratch, and training-free foundation models

open-world segmentation task. Such methods (Fig. 1a) often
require fine-tuning or training the segmentation header or
adapter. In addition to the above methods combining foun-
dation model with adapter, some researchers have tried to
draw on the successful experience in NLP and directly train a
foundation model for generic dense-prediction vision prob-
lems, as demonstrated in works like Painter (Wang et al,
2023a). Such models (Fig. 1b) can complete open-world
segmentation simply with a task-specific prompt. Lately,
the Segment Anything Model (SAM) (Kirillov et al, 2023)
has attained remarkable zero-shot segmentation results. It
presents researchers with the prospect of devising an alter-
native way to accomplish open-world segmentation without
the need for training (Fig. 1c). For example, PerSAM (Zhang
et al, 2023b) effectively transfers SAM to open-world object
segmentation tasks in a training-free manner through the
design of the cross-attention layer in SAM’s decoder, thereby
tapping into the potential of vision foundational models to
a significant extent. While these approaches have achieved
excellent performance, incorporatingmore vision foundation
models to improve the generalization capability and seg-
mentation quality for open-world segmentation remains an
avenue for further inspection.

In addition to the architectural design of the foundation
model for open-world segmentation tasks, another criti-
cal aspect is the development of flexible and user-friendly
prompts. This ensures that the model accurately grasps the
visual concepts users desire. As shown in Fig. 2a, b exist-
ing works typically rely on predefined textual descriptions
or high-quality annotations for a given image as the seg-
mentation prompt, which lacks flexibility. Yet, in the context
of open-world scenarios, we not only expect the network to
perform well on various open-set datasets but also need it to
handle object segmentation tasks with more versatile prompt
information. Therefore, a fundamental question emerges:
Could we prompt the foundational models, such as SAM,
to segment specific objects based on the prompt of the user-
given image that contains objects with a clear subjective
concept?

Motivated by this question, we present a novel open-world
segmentation framework, which utilizes image prompts
to instruct the training-free vision foundational models to

segment open-world objects. The proposed Image Prompt
Segmentation (IPSeg) network is a straightforward yet highly
effective framework, comprising three main components,
i.e., feature extraction, feature interaction, and segmentation.
For the feature extraction, we design two branches, includ-
ing the prompt and the input branches. The prompt branch
is dedicated to capturing general representations of subjec-
tive objects belonging to a specific category from the prompt
image, and the extracted representations are employed to
identify the objects in the input image.

The input branch is designed to capture the feature repre-
sentation of the input image to be segmented, following the
same architecture proposed in the prompt branch. For the
feature interaction, we’ve devised a feature interaction mod-
ule to facilitate interaction between the input image features
and the given image prompt features, thereby accentuating
the pixel points of the target objects. Finally, the gener-
ated pixel points serve as the prompt information for SAM
(Kirillov et al, 2023), guiding SAM in predicting the final
segmentation map.

In summary, the key contributions are listed as follows:

• We propose a training-free open-world object segmen-
tation framework based on foundational models. We
take the pioneering step of utilizing image prompts with
clear target objects to query generic object representa-
tions from foundational models. Such a framework can
potentially inspire researchers to address open-world seg-
mentation from a fresh perspective.

• We introduce a simple but effective framework, coined as
IPSeg, which contains three effective components. They
are utilized to extract discriminative features of target
objects identified in the given image prompt and generate
accurate points to prompt SAMmodels to generate object
masks.

• We validate the proposed IPSeg framework on widely
used segmentationdatasets, includingCOCO-20i (Nguyen
and Todorovic, 2019), FSS-1000 (Li et al, 2020) and
PerSeg (Zhang et al, 2023b). Compared to methods Per-
SAM and Painter, our proposed method can achieve a
30.6% and 42.8% improvement in the mIoU metric with
flexible prompts under a training-free mechanism.
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Fig. 2 Different prompt forms in existing open-world segmentation
methods. The left is the prompt of predefined textual descriptions or
categories. The middle is the prompt form used in existing one-shot

object segmentation works (Liu et al, 2023b; Zhang et al, 2023b). The
right is the prompt form used in this paper, which only uses one image
containing a salient object with specific visual concepts

2 RelatedWorks

2.1 Large VisionModels (LVMs)

Prompted by the powerful generalized ability of large lan-
guage models (Devlin et al, 2018; Lu et al, 2019; Brown
et al, 2020; Radford et al, 2018, 2019; Zhang et al, 2023a) in
nature language processing, large visionmodels (Oquab et al,
2023; Kirillov et al, 2023; Radford et al, 2021) have emerged.
Among these large visionmodels, CLIP (Radford et al, 2021)
align the image and text feature spaces through contrastive
learning on the huge number of image-text pairs, whosemod-
els show powerful zero-shot generalization ability on various
downstream vision tasks (Xu et al, 2023), such as open-world
segmentation (Qi et al, 2022; Cen et al, 2021). SAM (Kirillov
et al, 2023) train a prompt-based large segmentationmodel on
1 billion masks. The prompt-based segmentation model can
accurately segment objects in images fromdifferent domains.
Such ability has facilitated different applications, such as
object tracking (Yang et al, 2023; Cheng et al, 2023; Zhu
et al, 2023b), image segmentation (Zhang and Liu, 2023;
Chen et al, 2023; Tang et al, 2023; Jiang and Yang, 2023), 3D
reconstruction (Cen et al, 2023; Shen et al, 2023) etc.Besides,
DINOv2 (Oquab et al, 2023) learn powerful object-level
representations in an unsupervised manner. Such powerful
representations facilitate downstream dense scene parsing
tasks, such as semantic segmentation (Chen et al, 2017; Long
et al, 2015), and depth estimation (Ranftl et al, 2021).

2.2 Open-World Segmentation

Open-world segmentation aims to extend traditional close-
set segmentation models (Long et al, 2015; Chen et al, 2017)
to enable open-set pixel classification, making them more
versatile and capable of generalization. The models of open-
world segmentation (Cui et al, 2020; Cen et al, 2021; Qi et al,
2022) need to be able to handle unknown classes. There exist
several kinds of open-world segmentation methods. The first
line of works attempts (Xia et al, 2020; Cen et al, 2021;
Angus et al, 2019; Hammam et al, 2023) to classify the pixels
of objects out of the training set’s distribution to ‘anomaly’.
They do not distinguish different novel classes in “anomaly",
in detail. The second line of works (Xian et al, 2019; Bucher
et al, 2019) usually trains segmentation models on datasets
with a fixed number of seen classes and utilizes the mod-
els to segment images with unseen classes. They strive to
improve the generalization of segmentation embedding to
unseen classes.

Recently, owing to LVMs, such as CLIP (Radford et al,
2021) have shown significant zero-shot classification ability,
researchers attempt to transfer their image-level classifica-
tion ability to region-level classification. Thesemethods (Luo
et al, 2023; Xu et al, 2023; Ma et al, 2022; Liang et al,
2023; Xu et al, 2022b; Zhou et al, 2023c; Liu et al, 2022)
adapt CLIP models to the open-world segmentation models
by training on the datasets with seen classes to align the pre-
dicted region features and text features. Among the methods
using LVMs, some works (Zhou et al, 2022; Liu et al, 2023b;
Zhang et al, 2023b) also attempt to utilize training-free LVMs
and design prompts to conduct open-world segmentation.
Without fine-tuning LVMs, they directly extract object seg-
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Fig. 3 The framework of our
proposed IPSeg framework.
Importantly, all parameters in
the network remain frozen,
eliminating the need for
additional training. The green
point in PG represents the
positive point prompts sent to
SAM, while the red point
represents the negative point
prompts sent to SAM (Color
figure online)

mentation masks from them. Zhou et al. Zhou et al (2022)
conduct minimal modification of the CLIP model to extract
segmentation masks of open-world categories. Liu et al. Liu
et al (2023b) and Zhang et al. Zhang et al (2023b) utilize an
image with an object mask to extract prompts. Then, the
prompts are used to instruct the SAM model to segment
objects of the target category indicated in the provided image.

Our proposed method also falls into the training-free
LVMs categories. Different from previous works using
image-mask pairs, we only utilize an image containing the
objects of the target concept as prompts to conduct open-
world segmentation. Image prompts are more flexible than
image-mask pairs, as humans do not need to annotate the
objects of the target class. Besides, we also utilize off-of-
the-shelf LVMs, such as DINOv2, to extract discriminative
feature representations of image prompts. Then, discrimi-
native feature representations are used to prompt LVMs to
segment target objects in test images.

3 Method

We first introduce the preliminaries about the Segmentation
Anything Models (SAM) (Kirillov et al, 2023), used in this
paper. Then, we introduce the proposed IPSeg framework,
which is shown in Fig. 3. Given an image prompt with a clear
concept, IPSeg is capable of segmenting any semantically
identical object under the open-world setting.

3.1 Preliminaries

SAM consists of three components: a prompt encoder EncP ,
an image encoder EncI, and a lightweight mask decoder

DecM. As a prompt-based framework, SAM takes as input
an imageI, and promptsP (like specific points). Specifically,
SAM initially utilizes EncI to extract features from the input
image and employs EncP to encode the provided prompts
into prompt tokens:

FI = EncI(I), TP = EncP(P). (1)

Afterwards, the encoded image FI and prompts TP are input
into the decoderDecM for feature interaction. It’s worth not-
ing that SAMconstructs the decoder’s input by concatenating
several learnable mask tokens TM as prefixes to the prompt
tokens TP . These mask tokens are responsible for generating
the mask output, formulated as:

M = DecM(FI ,Concat(TM, TP )), (2)

whereM denotes the final segmentation masks predicted by
SAM.

As discussed above, SAM can segment objects in an
image based on the given prompt. Therefore, the core of
this paper lies in how to find semantically matching points in
the image I to be segmented when given an image prompt
IP that contains clear visual concepts. This, in turn, guides
SAM in generating segmentation results. Note we focus
on constructing an image-prompt open-world framework.
Exploring prompts, like bounding boxes, is out of the scope
of this paper.

3.2 Overview

The pipeline of our method is shown in Fig. 3. The pro-
posed IPSeg framework comprises three components: feature
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extraction, feature interaction and SAM. The feature extrac-
tion module is used in the prompt branch and input branch,
which can extract the discriminative feature representations
of both input image I and image prompt IP . Then, the
prompt feature FIP interacts with the input image feature
FI in the feature interaction module, to generate specialized
prompts PG such as points in the input image, which con-
tains the same semantic information with the prompt image.
Finally, the generated prompt PG and the input image I are
sent to SAM, generating the final predictionM. Wewill pro-
vide detailed explanations of the first two components in the
subsequent subsections.

3.3 Feature Extraction

Extracting a robust feature representation from both the
prompt image IP and the input image I, which effectively
captures the visual semantic information in both sets of
images, also ensures that the network can find a consistent
semantic object between these two sets of images. Gener-
ally, the feature representation of an image can be divided
into high-level feature representation and low-level feature
representation. In this paper, we explore how to extract a fea-
ture representation of an image from both of these aspects.

In the following, we first introduce the feature extraction
process. Then,we introducehowweutilize the feature extrac-
tion to constitute the prompt and input branch of the IPSeg
framework.

3.3.1 Feature Extraction

High-level Feature Extraction
Previous study (Oquab et al, 2023) has established that

features from Vision Transformers, particularly those from
DINOv2, are rich in explicit information pertinent to seman-
tic segmentation and are highly effective when used as
K-Nearest Neighbors classifiers. DINOv2, in essence, excels
at extracting semantic content with high accuracy from each
image. Consequently, we have chosen to utilize the features
extracted by the foundational model DINOv2 to represent
the semantic information of each image, denoted as FD.

Low-Level Feature Extraction
DINOv2 is proficient in capturing significant high-level

semantic information, yet it has limitations in providing intri-
cate low-level detail information. As illustrated in the second
column of Fig. 4, the visual features generated exclusively
through DINOv2 might miss out on fine-grained low-level
details. Notably, there is a discernible research gap in aug-
menting features extracted by DINOv2 with low-level detail
information without necessitating additional training.

In our proposed IPSeg, integrating a pre-trainedmodel that
specializes in capturing low-level detail informationbecomes
vital. Such a model is capable of effectively compensat-
ing for the detailed information that might be overlooked
by DINOv2. Notably, Stable Diffusion (SD) (Rombach
et al, 2022) has recently been recognized for its exceptional
prowess in generating high-quality images, underscoring its
ability to robustly represent images with comprehensive con-
tent and detailed information. Consequently, our primary
focus is to explore the potential benefits of combining SD
features with DINOv2 in enhancing the overall quality of
feature representations.

The architecture of SD consists of three key components:
an encoder Enc, a decoder Dec, and a denoising U-Net Unet

operating within the latent space. We initiate the process by
projecting an input image I0 into the latent space using the
encoder Enc, resulting in a latent code x0 = Enc(I0). Sub-
sequently, we introduce Gaussian noise ε to the latent code,
following a predefined time step t . Finally, utilizing the latent
code xt at time step t , we extract the SD featuresFS through
the denoising U-Net:

FS = Unet (xt , t), xt = √
āt x0 + √

1 − ātε. (3)

āt is utilized to determine the noise schedule (Ho et al, 2020).

Feature Fusion
Building upon the discussions mentioned earlier, we

present a straightforward yet notably effective fusion strat-
egy. This strategy is designed to capitalize on the strengths
of both SD and DINOv2 features:

FF = Cat(FS ,FD), (4)

where Cat(, ) denotes feature concatenation along the chan-
nel dimension. In the third and sixth columns of Fig. 4, the
fused feature aids in generating a smoother andmore resilient
visual feature, which helps for featurematching. Specifically,
the addition of SD enhances the internal features of fore-
ground objects, making them smoother and more consistent,
thereby assisting the network in extracting target objects from
segmented images.

3.3.2 Input and Prompt Branches

After introducing the pipeline of the feature extraction, we
utilize the visual encoder to extract features for the input
image (input branch) and image prompt (prompt branch),
respectively.

Input Branch
For the input image I, we use the above process to extract

the feature FI ∈ R
H×W×C , where H ,W mean the spatial
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Fig. 4 Visualization results of features extracted from different models. The second and fifth columns indicate the use of only the DINOv2 model
for feature extraction, while the third and sixth columns denote the use of both DINOv2 and SD models for this purpose

resolution of the feature and C means the channel number.
Then, we reshape the FI to RHW×C , where HW means the
total number in the feature and the representation of each
pixel is RC .

Prompt Branch
For the image prompt IP , we also extract its feature

FIP ∈ R
H×W×C through the above process. Since we

do not care about the background information of this fea-
ture, we use an unsupervised salient object detection method
TSDN (Zhou et al, 2023b) to filter these pixels belong to the
background, then use the average pooling (Avgpool) opera-
tion to generate the prompt embedding:

FI P = Avgpool(FI P � MS), (5)

where � denotes pixel-wise multiplication. The object map
MS is directly obtained by the unsupervised method TSDN.

3.4 Feature Interaction and Segment

After generating input image feature FI and input prompt
feature vector FIP , we can obtain specific point prompt for
the input image I by performing interaction betweenFI and
FIP .

Concretely, for input image feature which contains HW
pixels, the feature representation of each pixel is denoted as
F l
I , where l ∈ [1, HW ]. Firstly, we calculate the correlation

score between FIP and F l
I through cosine similarity. Sec-

ondly, we utilize a TopK algorithm to select the points in the
input image that are most semantically similar to the prompt

image, which are at position Pcoord :

S = FI P ⊗ FI , Pcoord = TopK(S) ∈ R
K , (6)

where ⊗ means matrix multiplication. As shown in Fig. 5,
The foreground object in the prompt image and the object to
be segmented in the input imagemaintain good semantic con-
sistency, ensuring the effectiveness of our TopK algorithm.

Finally, we further refine the Pcoord into c clustering cen-
ters as the positive point prompts for SAM. In addition, using
the same pipeline, we also selected K points that are the least
similar to the prompt image feature and clustered them into
c cluster centers as negative point prompts for SAM. We
set K = 32 and c = 4 in this paper. The generated posi-
tive/negative point prompts and the input image FI are sent
to SAM to predict final segmentation resultsM.

4 Experiment

4.1 Experimental Setup

We employ the Stable Diffusion v1.5 and DINOv2models as
our feature extractors. The DDIM timestep in the denoising
process is set to 50 by default. All experiments are conducted
on a single RTX A6000 GPU with only 13G GPU memory.
This means that our proposed training-free framework can
run on cheaper graphics cards such as RTX3090, providing
a good perspective for researchers with limited computing
power to explore foundational models.
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Fig. 5 Visualizing the features of foreground objects in the prompt image and all objects in input prompt

Table 1 Comparison of the
few-shot semantic segmentation
performance between our
proposed method and five
typical generalist models.
Painter (Wang et al, 2023a),
SegGPT (Wang et al, 2023b)
and DeLVM (Guo et al, 2024)
are three methods which require
the extra training process

COCO-20i

Methods Pub & Year Fold0 Fold1 Fold2 Fold3 Mean FSS PerSeg

Painter CVPR 2023 31.2 35.3 33.5 32.4 33.1 61.7 56.4

SegGPT ICCV 2023 56.3 57.4 58.9 51.7 56.1 85.6 95.5

DeLVM ArXiv 2024 12.6 13.6 10.1 10.5 11.7 36.9 9.8

PerSAM ICLR 2024 23.1 23.6 22.0 23.4 23.0 81.6 89.5

Matcher ICLR 2024 52.7 53.5 52.6 52.1 52.7 87.0 94.9

Matcher-Z ICLR 2024 22.9 23.2 22.2 22.8 22.8 81.2 88.3

Ours Year 2024 40.9 44.9 40.1 46.2 43.0 82.7 92.7

PerSAM (Zhang et al, 2023b) and Matcher (Zhao et al, 2023) are two training-free few-shot works. Matcher-
Z means the performance of Matcher under zero-shot setting. Note that, for IPSeg, we do not utilize the
ground truth corresponding to the prompt image to select its foreground object.We report mIoU (%) in
this table
Bold values indicate the performance of our model

4.2 Evaluation Datasets

Following PerSAM (Zhang et al, 2023b), we conduct
few-shot experiments on three datasets, including COCO-
20i (Nguyen andTodorovic, 2019), FSS-1000 (Li et al, 2020)
and PerSeg (Zhang et al, 2023b) to evaluate the performance
of our proposed IPSeg network in the open-world scene.
Note that PerSeg is a new dataset collected by PerSAM,
which comprises a total of 40 objects from various cate-
gories, including daily necessities, animals, and buildings.
For each object, there are 5 to 7 images and masks, repre-
senting different poses or scenes. We use the same setting in
the paper PerSAM to perform experiments. Unlike previous
few-shot works utilizing the image-mask pair as input, our
method only needs a randomly sampled image as the image
prompt.

Moreover, inspired by the work ViL-Seg (Liu et al, 2022),
we employ three datasets, including COCO-Stuff (Caesar
et al, 2018), PASCAL-VOC (Everingham et al, 2010) and
PASCAL-Context (Mottaghi et al, 2014) to evaluate the per-
formance of our IPSeg network in the zero-shot setting. We

use the same experimental setting of ViL-Seg to perform
the experiments. For the above datasets, 15 classes (fris-
bee, skateboard, cardboard, carrot, scissors, suitcase, giraffe,
cow, road, wall concrete, tree, grass, river, clouds, playing-
field) is out of the 183 object categories in COCO-Stuff; 5
classes (potted plant, sheep, sofa, train, tv-monitor) is out of
the 20 object categories in PASCAL-VOC; 4 classes (cow,
motorbike, sofa, cat) is out of the 59 object categories in
PASCAL-Context.

4.3 Quantitative Evaluation

Herein, we do not utilize the ground-truth mask correspond-
ing to the prompt image to select its foreground object for
IPSeg.

4.3.1 Compared to Generalist Models

We select five representative open-world object segmenta-
tion methods that employ foundational models in distinct
ways: Painter (Wang et al, 2023a), SegGPT (Wang et al,
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Table 2 Comparison of the
zero-shot segmentation
performance between our
proposed methods and seven
typical specialist models

Methods Pub &Year NT COCO-Stuff PASCAL-VOC PASCAL-Context

SPNet CVPR 2019 � 8.7 15.6 4.0

ZS3 NeurIPS 2019 � 9.5 17.7 7.7

CaGNet MM 2020 � 13.9 29.9 15.0

SIGN ICCV 2021 � 15.5 28.9 14.9

ViL-Seg ECCV 2022 � 16.4 34.4 16.3

GroupVit CVPR 2022 � 16.1 79.0 49.2

TCL CVPR 2023 � 27.6 84.5 62.0

Ours Year 2024 ✗ 32.7 57.9 67.7

We report mIoU (%) in this table
NT Need Training
Bold values indicate the performance of our model

2023b), DeLVM (Guo et al, 2024), PerSAM (Zhang et al,
2023b) andMatcher (Zhao et al, 2023). Painter, SegGPT and
DeLVM are based on a generalized foundation model that is
directly trained for various tasks, allowing the use of image-
mask pairs for open-world object segmentation. In contrast,
PerSAM and Matcher efficiently adapt SAM for open-world
object segmentation tasks without the need for additional
training. The comparative results are in Table. 1.

As indicated inTable. 1, our proposedmethod consistently
outperforms Painter, DeLVM and PerSAM. This demon-
strates the efficacy of our IPSeg network. Specifically, our
approach shows significant mIoU performance improve-
ments over PerSAM on the COCO-20i , FSS, and PerSeg
datasets, with improvements of 87.0%, 1.3%, and 3.6%,
respectively. A noteworthy point is that Painter, DeLVM
and PerSAM rely on image-mask pair inputs, which are
more stringent and less flexible approaches compared to our
method. This observation suggests that the use of a single
image as a prompt, as proposed in our method, is a promis-
ing avenue for further research. This approach could serve as
an alternative or supplement to the traditional image-mask
pair prompts, potentially broadening the scope of research in
open-world segmentation tasks.

Note that, our proposed IPSeg is designed for the zero-shot
open-world segmentation. Therefore, for fair comparison,we
also evaluate the performance of Matcher under zero-shot
setting. The zero-shot setting means using the unsupervised
salient object detection method TSDN (Zhou et al, 2023b)
to filter the background of image prompts instead of their
corresponding ground truth. As shown in Table. 1, IPSeg
can surpass Matcher’s performance in the zero-shot setting
(Matcher-Z) by a large margin, which further illustrates the
validity of our IPSeg.

4.3.2 Compared to Specialist Models

We have conducted a comparison of our proposed IPSeg
network with several well-known specialist zero-shot seg-

mentation methods, including SPNet (Xian et al, 2019),
ZS3 (Bucher et al, 2019), CaGNet (Gu et al, 2020),
SIGN (Cheng et al, 2021), ViL-Seg (Liu et al, 2022),
GroupVit (Xu et al, 2022a) and TCL (Cha et al, 2023). It is
important to note that these specialist methods are designed
with specific segmentationmodels, each trained on particular
datasets. The comparative results are displayed in Table. 2.
Our IPSeg network demonstrates superior performance com-
pared to these specialist models. Notably, it outperforms the
CLIP-based ViL-Seg method on the COCO-Stuff, Pascal-
VOC, and Pascal-Context datasets, with mIoU performance
improvements of 99.4%, 68.3%, and a remarkable 231%,
respectively. It is worth mentioning that the Pascal-Context
dataset, primarily comprising four common classes, rep-
resents relatively simpler scenarios. This aspect may have
contributed to the substantial superiority of IPSeg over ViL-
Seg in this dataset. Compared to TCL, our method has also
achieved competitive performance.

In conclusion, our training-free IPSeg network consis-
tently surpasses specialist open-world object segmentation
methods. This success underscores the potential of exploring
open-world object segmentation from a novel angle, combin-
ing foundational models in a training-free approach. Such
an endeavor could significantly enhance the efficiency and
applicability of segmentation tasks in diverse real-world sce-
narios.

4.4 Qualitative Evaluation

In Fig. 6, we showcase the visualization results from our
IPSeg network. These visualizations highlight the network’s
capability in effectively segmenting objects within a variety
of complex scenes. This serves as a testament to the effective-
ness of our approach from a visual standpoint. Particularly
noteworthy is the network’s performance in intricate scenar-
ios involvingmultiple objects, such as scenes labelled ‘Dogs’
and ‘Elephants.’ In these cases, our IPSeg network accurately
segments the target objects, underscoring its proficiency in
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Fig. 6 Qualitative segmentation results of the proposed IPSeg frame-
work. It can be seen that the proposed method can effectively segment
the objects contained in the prompt image in the input images from

different scenarios. The green point represents positive point prompts
sent to SAM, while the red point represents negative point prompts sent
to SAM (Color figure online)
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Fig. 7 Qualitative segmentation results of the proposed IPSeg and PerSAM using same image prompts. The green point represents positive point
prompts sent to SAM, while the red point represents negative point prompts sent to SAM (Color figure online)

Table 3 Ablation studies of the
combination of SD and DINOv2
in this paper

COCO-20 i

Methods Fold0 Fold1 Fold2 Fold3 Mean FSS PerSeg

Ours (w/o DINOv2) 21.6 22.0 21.8 22.2 21.9 63.5 72.9

Ours (w/o SD) 39.7 43.5 39.4 44.0 41.7 80.2 90.1

Ours (DINOv2 + SD) 40.9 44.9 40.1 46.2 43.0 82.7 92.7

We report mIoU (%) in this table
w/o means without
Bold values indicate the performance of our model

Fig. 8 Further analysis about why adding SD can help improve the performance. The second and fifth columns indicate the use of only the DINOv2
model for feature extraction, while the third and sixth columns denote the use of both DINOv2 and SD models for this purpose
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Table 4 Hyperparameters
setting in the feature interaction
module

COCO-20i

Methods Fold0 Fold1 Fold2 Fold3 Mean FSS PerSeg

Ours(K=32,c=32) 26.1 27.6 26.7 32.6 28.3 50.6 57.8

Ours(K=32,c=16) 40.6 44.2 40.4 44.0 42.3 81.8 90.5

Ours(K=32,c=8) 40.2 45.0 40.3 45.3 42.7 81.2 90.7

Ours(K=32,c=4) 40.9 44.9 40.1 46.2 43.0 82.7 92.7

Ours(K=32,c=2) 37.2 40.5 37.8 40.9 39.1 74.7 91.3

Ours(K=4,c=4) 37.5 40.7 37.3 44.7 40.1 70.0 82.2

Ours(K=8,c=4) 39.0 43.5 39.4 46.2 42.0 76.1 84.1

Ours(K=16,c=4) 39.9 44.7 39.9 46.3 42.7 78.2 88.3

Ours(K=32,c=4) 40.9 44.9 40.1 46.2 43.0 82.7 92.7

Ours(K=64,c=4) 37.8 42.3 38.2 42.0 40.1 81.6 90.9

We report mIoU (%) in this table
Bold values indicate the performance of our model

correctly identifying objects in the input image that have
semantic correspondence with those in the image prompt.
This ability showcases the robustness and adaptability of
the IPSeg network in dealing with diverse and challenging
segmentation tasks. To further illustrate the validity of our
method, we conduct some visual comparisons with PerSAM
in Fig. 7. It can be seen that in different complex scenes, the
performance of our IPSeg is better than that of PerSAMunder
the same image prompts.

4.5 Ablation Studies

For ablation studies, similar to the experimental setting
above, we do not utilize the ground truth corresponding to
the prompt image to select its foreground object.

4.5.1 Combination of SD and DINOv2

In the process of feature extraction, our IPSeg network con-
siders both high-level and low-level details from the input and
prompt images. Recognizing the limitations of the DINOv2
model in capturing low-level features, we integrate the SD
model to address this gap. As shown in Table. 3, incorpo-
rating SD significantly boosts the performance of our IPSeg
network. This improvement is further evidenced by the visual
results in Fig. 4, where the inclusion of SD is observed to
result in smoother feature representations. Moreover, as
shown in Table. 3, the performance of using solely SD as
the feature extractor is clearly inferior to that of using a com-
bination of DINOv2 and SD. One primary reason is that the
features extracted by SD lack high-level semantic informa-
tion. As illustrated in Fig. 8, incorporating features extracted
by the SD model allows IPSeg to more distinctly differenti-
ate between foreground and background. This enhancement
significantly boosts the performance of IPSeg.

4.5.2 Hyperparameters in Feature Interaction

In feature interaction, we introduce a simple yet effective
approach for generating point prompts to guide SAM in
generating the corresponding segmentation results. In this
module, we compute the similarity between each pixel in the
prompt image and the input image using cosine similarity.
We use the TopK algorithm to select the TopK most/least
similar points, followed by the clustering algorithm to group
these points into c cluster centers. In Table. 4, we investigate
the impact of different values of K and c on performance.
We observe that using the TopK algorithm alone helps the
model achieve initial performance (Ours(K = 32, c = 32)),
and further application of the clustering algorithm improves
performance even more.

4.5.3 Image Prompt Robustness

In this paper, we introduce a more flexible approach to using
image prompts. To further validate the robustness of our
model with different image prompt combinations, we ran-
domly selected three different image prompt combinations.
Specifically, we prepare appropriate prompt images based on
their categories. For all prompt images, we firstly manually
choose different prompt images with clear visual representa-
tions in certain classes. Then, we randomly compose prompt
set-1 to set-3 from these prompt images. Note that, all prompt
images are chosen from the used benchmark based on cate-
gories, such as COCO and FSS, and we make sure that the
selected prompt image and evaluation datasets do not have
the same image. From Table. 5, it can be observed that our
method maintains good robustness across different prompt
inputs. As shown in Fig. 9, when given the same input image
with different image prompts, our proposed IPSeg network
can consistently generate satisfactory results. This experi-
ment further indicates that in future improvement of this
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Table 5 Image prompt
robustness of this paper

COCO-20i

Methods Fold0 Fold1 Fold2 Fold3 Mean FSS PerSeg

Ours(Prompt Set-1) 40.8 42.3 39.4 45.1 41.9 82.6 92.1

Ours(Prompt Set-2) 38.9 45.9 40.3 44.8 42.5 82.5 91.9

Ours(Prompt Set-3) 40.9 44.9 40.1 46.2 43.0 82.7 92.7

We report mIoU (%) in this table

Fig. 9 Qualitative results of the proposed IPSeg framework when using
different image prompts. When given the same input image with dif-
ferent image prompts, our proposed IPSeg network can consistently
generate satisfactory results. This also indicates the robustness of our

method. The green point represents positive point prompts sent to SAM,
while the red point represents negative point prompts sent to SAM
(Color figure online)

Fig. 10 Some failure prediction results of our IPSeg under different image prompts. The green point represents positive point prompts sent to SAM,
while the red point represents negative point prompts sent to SAM (Color figure online)

framework, researchers can have a more flexible choice of
prompts, reaffirming the potential of our IPSeg.

Moreover, in Fig. 10, we share some failed cases. Specif-
ically, we showcase objects that are correctly segmented in
prompt set-1 but failed in prompt set-2 and set-3. This group
of examples indicates that choosing image prompts with only
a single, complete target object can significantly aid IPSeg

in achieving accurate segmentation results. Hence, when
preparing image prompts, we strive to adhere to these two
principles for collecting imageprompts.However,while aim-
ing for optimal performance, we do not want our framework
to be constrained by the reference images. Consequently,
the three prompt sets designed in Table. 5 are not deliber-
ately combined. This design approach ensures that the results
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Table 6 The impact of
background noise on IPSeg

COCO-20i

Methods Fold0 Fold1 Fold2 Fold3 Mean FSS PerSeg

Ours (w/o TSDN) 8.9 10.2 9.1 9.4 9.4 32.8 50.2

Ours (with TSDN) 40.9 44.9 40.1 46.2 43.0 82.7 92.7

Ours (with A2S) 40.1 44.3 39.3 45.9 42.4 82.5 92.0

Ours (with GT) 44.7 48.8 46.9 48.9 47.3 84.7 93.6

We report mIoU (%) in this table
w/o means without operation

Table 7 The performance of
IPSeg using different feature
extractors

COCO-20i

Methods Fold0 Fold1 Fold2 Fold3 Mean FSS PerSeg

Ours (MAE) 9.9 12.2 9.9 11.6 10.7 36.7 53.7

Ours (CLIP) 20.3 26.8 21.6 29.9 24.7 65.0 89.7

Ours (DINOv2) 40.9 44.9 40.1 46.2 43.0 82.7 92.7

We report mIoU (%) in this table

Table 8 Comparison between
IPSeg and PerSAM on other
four datasets, containing
DAVIS2017 (Pont-Tuset et al,
2017), Pascal-Part (Morabia
et al, 2020),
PACO-Part (Ramanathan et al,
2023) and LVIS-92i (Gupta
et al, 2019)

VOS-DAVIS2017 Part Segmentation Semantic Segmentation

Methods Pub & Year J F Pascal-Part PACO-Part LVIS-92i

PerSAM ICLR 2024 71.3 75.1 32.5 22.5 15.6

IPSeg Year 2024 75.3 77.3 34.3 29.0 20.3

For video object segmentation (VOS), we report J and F scores. For part segmentation and semantic segmen-
tation, we report mIoU (%)
Bold values indicate the performance of our model

obtained by IPSeg are reliable and credible and indirectly
shows that our framework does not rely on carefully selected
image prompts that require extensive time investment.

4.5.4 Impact of Background Noise

To investigate the impact of background noise on ourmethod,
we conduct experiments under the following settings: with-
out using the unsupervised salient object detection (USOD)
method TSDN (Zhou et al, 2023b) to filter the background,
using TSDN to filter the background, and using the ground
truth corresponding to the referring image to filter the back-
ground. The results are shown in Table. 6. Initially, it is
evident that not filtering the background significantly affects
our experimental performance. Further improvements are
observed upon utilizing TSDN. Finally, by utilizing the
ground truth to filter the background noise in the referring
image, we can achieve best performance. Moreover, if we
use another USODmethod A2S (Zhou et al, 2023a), IPSeg’s
performancedoes not fluctuate dramatically. This experiment
shows that IPSeg requires the USODmethod to provide a rel-
atively less noisy image prompt, but is not dependent on a
particular USOD method.

4.5.5 Different Feature Extractors

To demonstrate the impact of different feature extractors,
inspired by Matcher (Zhao et al, 2023), we use MAE (He
et al, 2022) and CLIP (Radford et al, 2021) as feature
extractors, and the performance is shown in Table. 7. Using
DINOv2 as feature extractor achieves the best performance
on all datasets. Additionally, this experiment demonstrates
that IPSeg, as a training-free framework, facilitates the inte-
gration of various feature extractors.

4.5.6 Transferability of IPSeg

We conduct experiments on several datasets to further
demonstrate the effectiveness and transferability of our
IPSeg, as shown in Table. 8. These datasets contain video
object segmentation benchmark DAVIS2017 (Pont-Tuset
et al, 2017), semantic segmentation benchmark LVIS-92i

(Gupta et al, 2019), and part segmentation benchmarks
Pascal-Part (Morabia et al, 2020) andPACO-Part (Ramanathan
et al, 2023). As shown in Table. 8, the performance of our
method can outperform PerSAM for all datasets. This point
once again illustrates the validity of our IPSeg.
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5 Conclusion

In this paper, we introduce the IPSeg framework for open-
world segmentation using visual concepts from a single
image. IPSeg is a simple yet highly effective approach
designed to inspire researchers to approach open-world seg-
mentation from two pivotal perspectives: efficient utilization
of foundational models and a flexible setup for prompt
information. Through our exploration of how to optimally
combine diverse foundational models, our method attains
outstanding performance on sixwidely utilized datasets. Fur-
thermore, our research underscores the importance of adapt-
ability in foundational models, emphasizing their potential to
revolutionize the way we approach complex computer vision
challenges. We believe that our contributions will pave the
way for future research endeavors, pushing the boundaries of
what’s possible in open-world segmentation and setting new
standards for efficiency and versatility in the field.

Data Availability Statement All the data used in this study are available
from third-party institutions. Researchers can access the data through
the instructions presented in the original works of the corresponding
datasets. However, researchers should follow specific regulations stated
by these datasets and use them for only academic purposes.

Code Availability The code of this work is released at https://github.
com/luckybird1994/IPSeg.
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