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Abstract
Precisely perceiving the geometric and semantic properties of real-world 3D objects is crucial for the continued evolution
of augmented reality and robotic applications. To this end, we present Foundation Model Embedded Gaussian Splatting
(FMGS), which incorporates vision-language embeddings of foundation models into 3D Gaussian Splatting (GS). The key
contribution of this work is an efficient method to reconstruct and represent 3D vision-language models. This is achieved by
distilling feature maps generated from image-based foundation models into those rendered from our 3D model. To ensure
high-quality rendering and fast training, we introduce a novel scene representation by integrating strengths from both GS
and multi-resolution hash encodings (MHE). Our effective training procedure also introduces a pixel alignment loss that
makes the rendered feature distance of same semantic entities close, following the pixel-level semantic boundaries. Our
results demonstrate remarkable multi-view semantic consistency, facilitating diverse downstream tasks, beating state-of-the-
art methods by 10.2object detection, despite that we are 851× faster for inference. This research explores the intersection of
vision, language, and 3D scene representation, paving the way for enhanced scene understanding in uncontrolled real-world
environments. We plan to release the code on the [project page].

Keywords Gaussian splatting · Vision-language embeddings · Foundation models · Open-vocabulary semantics

1 Introduction

3D scene understanding is a critical task in various computer
vision and robotics applications. Yet, most existing methods
primarily concentrate on either 3D geometry and appearance
estimation (Schonberger & Frahm, 2016; Mildenhall et al.,
2020;Kerbl et al., 2023) or 3Dobject detection and scene seg-
mentation trained on datasets with closed sets of classes (Dai
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et al., 2017; Grinvald et al., 2019; Narita et al., 2019). How-
ever, for an intelligent agent to interact smoothly with the
physical world, merely understanding a subset of the space
characterized by pre-identified labels is insufficient. Inspired
by the latest advancements in foundation models (FMs) with
impressive language and vision semantics (Radford et al.,
2021; Alayrac et al., 2022), this paper endeavors to develop
a more natural 3D scene representation supporting open-
world visual recognition andunderstanding. It integrates both
geometric and open-vocabulary semantic information, facil-
itating easy querying for downstream tasks such as object
detection and semantic segmentation in open-world scenar-
ios..

In this paper, we utilize Gaussian Splatting (Kerbl et al.,
2023) as the backbone for reconstructing 3D geometry and
appearance, which has demonstrated superior performance
in terms of rendering quality for novel-view image synthe-
sis and training efficiency. To assist open-vocabulary 3D
sceneunderstanding,we rely onpre-train 2Dvision-language
CLIP (Radford et al., 2021) and lift the corresponding infor-
mation into 3D by a novel multi-view training procedure.
We note that, in research communities, the system that is
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most similar to us is LEFR (Kerr et al., 2023), which inte-
grates implicit NERF (Mildenhall et al., 2020) based scene
representation and CLIP embeddings. Compared to LERF,
our system develops a different architecture, and offers a
range of technical advancements, including high efficiency
and superior representation of open-vocabulary semantics,
which results in significantly better performance (approxi-
mately 10.2key metrics).

A straightforward approach to enhance 3D Gaussian
Splatting with vision-language FM embeddings is to attach
each Gaussian with a learnable feature vector, which can
be trained through image rasterization to formulate loss
functions. However, maintaining high-quality renderingwith
GS typically requires millions of Gaussians in a nominal
room-scale environment. Employing per-Gaussian feature
vectors inevitably results in excessive memory consumption
and significantly slows down training, limiting the practi-
cal applications of this system. Motivated by iNGP (Müller
et al., 2022), we model our system by using 3D Gaussians
together with multi-resolution hash encoding (MHE) to dis-
till the foundation model embeddings. Specifically, to obtain
the language embedding from the Gaussians, we utilize their
mean values to query the MHE field at corresponding posi-
tions. Subsequently, this queried MHE is processed through
a Multi-Layer Perceptron (MLP) to generate the output lan-
guage embedding.

In the training phase, we employ a supervisionmechanism
on the MHE-based language FM CLIP feature field using a
hybrid feature map. This map is derived from the average of
multi-scale image crops obtained from various viewpoints.
This approach enables the embedding to effectively capture
language features corresponding to each scale ensuring a
comprehensive representation. For instance, the embedding
might represent a ‘red book’ when viewed up close, while
depicting a ‘library’ from a more distant perspective. It is
noteworthy that CLIP embeddings are designed to encapsu-
late the overall concept presented in a 2D image, exhibiting
minimal variation across individual pixels. Additionally,
CLIP embeddings are not perfectly multi-view consistent,
meaning that when a 3D object is observed by a moving
camera from different views, there are differences in the
computed CLIP embeddings across frames. To solve the
above-mentioned problems, we rely on a multi-view con-
sistency training process to ensure that 3D models, when
rendered from different image views, exhibit minimal varia-
tions. Additionally, to allow pixel-aligned query experience,
DINO (Caron et al., 2021) embeddings are used togetherwith
CLIP embeddings similar to LERF (Kerr et al., 2023). By
carefully analyzing the properties in both CLIP and DINO
embeddings, we design an additional pixel alignment loss
to further improve the object localization and scene under-
standing capabilities. This loss is grounded in the dot product
similarity of CLIP/DINO features between the central pixel

and its surroundings, guiding the rendered CLIP feature map
to replicate the same similarity pattern observed in the DINO
feature map.

This research paves the way for enhanced real-world
applications, such as augmented reality experiences where
users can interact with objects using natural language and
robotic systems that can navigate and manipulate environ-
ments based on linguistic commands. By bridging the gap
between language and 3D representation, FMGS opens up
new possibilities for understanding and interacting with our
surroundings.

The overview of this work is shown in Fig. 1. Our key
contributions can be summarized as follows:

• Novel semantic scene representation: We introduce a
novel approach combining 3DGaussians (parameterized
by mean, covariance, opacity, and spherical harmon-
ics) for geometry and appearance representation, with
MHE for efficient semantic embedding. This approach
addresses memory constraints in room-scale scenes
including millions of 3D Gaussians.

• Multi-view consistent language embeddings: Our train-
ing process utilizes Gaussian-splatting based rendering
from multiple views, ensuring consistency across 3D
space in static scenarios. Language embeddings remain
invariant to viewpoints, enforcing local proximity con-
sistency within Gaussian volumes.

• Addressing pixel misalignment: We address pixel align-
ment challenges of CLIP features by extracting and
aggregating them at multiple resolutions for a hybrid
CLIP feature, which is used for supervising the training.
Regularization with pixel-aligned DINO features and a
novel dot-product similarity loss enhances spatial preci-
sion and object differentiation.

• State-of-the-art performance: Our methods demonstrate
superior performance inopen-vocabulary semantic object
localization, outperforming existing state-of-the-art
approaches with quantitative and qualitative results by
a wide margin, despite being hundreds of times faster.

2 RelatedWorks

We review three main areas of related articles: 3D scene rep-
resentation, open-vocabulary object recognition and scene
understanding, and combined 3D scene representation and
semantic understanding.
3D Scene Representation Scene representation in 3D can
be roughly categorized by mesh-based, voxel-based, point-
based, and implicit ones. Voxel-based methods typically
discretize 3D space into regular grid cell elements where
each grid cell corresponds to a voxel. To estimate the dense
3dvoxel cells, probabilistic fusionmethodswerefirstly (Izadi
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Fig. 1 Overview of our proposed FMGS (Foundation Model Embedded
Gaussian Splatting). The semantic scene representation which consists
of 3D Gaussians and MHE is firstly trained using the proposed method
(top-left sub-figure), and subsequently used for rendering the RGB

images and pixel-aligned semantic feature maps from foundational
models (top-right sub-figure). These semantic features enable appli-
cations such as open-vocabulary queries for object detection and
unsupervised semantic segmentation

et al., 2011) used and researchers also developed end-to-
end learn-able methods (Sun et al., 2021), by using either
depth sensors (Izadi et al., 2011) or monocular camera sys-
tems (Yang et al., 2020). To visualize estimated voxel fields,
they are typically converted into a mesh-based representa-
tion. This enables efficient rendering on modern computer
graphics systems. While alternative methods, such as those
using 3D meshes (Schöps et al., 2019; Lin et al., 2021), have
achievednotable success in variousfields, their discrete scene
representation, whether voxel-based ormesh-based, imposes
limitations on the ability to achieve photo-realistic recon-
struction and rendering performance.

Neural implicit representation, e.g., NeRF series (Milden-
hall et al., 2020; Barron et al., 2021, 2022, 2023), represent
3D scenes by fully-connected neural networks, in which vol-
ume density and radiance can be queried by input position
and view direction vectors. To improve the training and ren-
dering efficiency of NeRFs, 3D space can be discretized by
using MHE similar to the concept used in voxel-based meth-
ods (Müller et al., 2022). TensoRF (Chen et al., 2022)models
radiance fields as 4D tensors, factorizing them into com-
pact low-rank tensor components using CP decomposition
and introducing novel vector–matrix (VM) decomposition
for improved rendering quality, reduced memory footprint,
and faster reconstruction.

Finally, point-based methods are originally widely used
for directly processing data from depth sensors, for perform-
ing geometrical and semantic computer vision tasks (Qi et al.,
2017; Karkus et al., 2021). Point-NeRF (Xu et al., 2022) effi-

ciently combines point cloud andNeRF to achieve impressive
fast view synthesis results. Recently, 3D Gaussian Splatting
(GS) has been proposed to model points as 3D Gaussians for
scene representation (Kerbl et al., 2023), and achieved state-
of-the-art novel view synthesis rendering quality. However,
in Kerbl et al. (2023), the number of Gaussians used for
scene representation can easily surpass one million, which
introduces strict memory and computational requirements
for downstream use cases.
Open-Vocabulary Object Detection and Scene Understand-
ing Advancements in open-vocabulary object detection in
2D images have been made by leveraging natural language
prompts. LSeg (Li et al., 2022) employs a text encoder
for semantic label embeddings and a transformer-based
image encoder for dense pixel embeddings, using con-
trastive alignment to achieve zero-shot image segmentation
and generalization to unseen categories. CRIS (Wang et
al., 2022) leverages CLIP for image segmentation, employ-
ing a vision-language decoder to align text and pixel-level
features, and text-to-pixel contrastive learning to enforce
similarity between text and relevant pixel features. CLIP-Seg
(Lüddecke & Ecker, 2022) leverages CLIP as a backbone,
employs a transformer-based decoder for dense prediction,
and generates image segmentation based on arbitrary text
or image prompts. OV-Seg (Liang et al., 2022) improves
open-vocabulary semantic segmentation by finetuning CLIP
on masked image regions and text descriptions from noisy
captions, achieving promising performance without dataset
adaptations.
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Current approaches often employ region proposal or mask
prediction methods to guide open-vocabulary classification
models. OpenSeg (Ghiasi et al., 2021) employs mask rep-
resentations to facilitate visual grouping and align captions
with predicted segmentation masks for open-vocabulary
image segmentation. ViLD (Gu et al., 2021) advances open-
vocabulary object detection by distilling knowledge from
a pretrained image classification model (teacher) into a
two-stage detector (student), aligning region embeddings of
detected boxes with text and image embeddings inferred
by the teacher. Detic (Zhou et al., 2022) expands object
detectors’ vocabulary by training their classifiers on image
classification data, outperforming prior methods on open-
vocabulary and long-tail detection benchmarks, achiev-
ing generalization to new datasets without finetuning and
enabling detectors trained on all ImageNet classes. OVIR-3D
(Lu et al., 2023) enables open-vocabulary 3D object instance
retrieval by fusing text-aligned 2D region proposals into 3D
space, leveraging 2D datasets.

Open-vocabulary scene understanding has also been
explored by using point clouds as sensor inputs. PointCLIP
(Zhang et al., 2021) aligns CLIP-encoded point cloud with
3D category texts, transferring knowledge from 2D to 3D
recognition by projecting point cloud into multi-view depth
maps, using an inter-view adapter for global feature extrac-
tion and few-shot knowledge fusion. ULIP series (Xue et al.,
2022, 2023) learn a unified representation for images, texts,
and3Dpoint cloudby leveragingpre-trainedvision-language
models and automatically synthesized triplets, improving
the performance of various 3D backbones. Lu et al. (2023)
leverage pre-trained image and vision-language models and
cross-modal contrastive learning for open-vocabulary 3D
point cloud detection without 3D annotations.
Combined 3D Scene Representation and Semantic Under-
standing Language has been incorporated into 3D scene
understanding in variousways. For the task of visual question
answering, systems like iQA (Gordon et al., 2018), ScanQA
(Azuma et al., 2022), and SimVQA (Cascante-Bonilla et al.,
2022) leverage 3D information to answer queries about the
environment. For object recognition enhancement, language
and shape information can be combined to improve object
recognition, as seen in Corona et al. (2022) and Thomason
et al. (2022).

Inspired by the success of implicit neural reconstruc-
tion (Mildenhall et al., 2020; Barron et al., 2021, 2022),
researchers also start to explore incorporating language guid-
ance into 3d neural scene representation. LERF (Kerr et al.,
2023) enables open-ended language queries in 3D by incor-
porating language embeddings from models, e.g. CLIP, into
NeRF. 3D-OVS (Liu et al., 2023) leverages pre-trained CLIP
and DINO models in a weakly supervised manner, distilling
multi-modal knowledge and object reasoning into a neural
radiance field (NeRF) for segmentation tasks.

Tschernezki et al. (2022) leverage a pre-trained 2D image
feature extractor to train a 3D student network, boosting per-
formance in analyzing multiple images forming a 3D scene.
FFD (Kobayashi et al., 2022) tackles scene editing by distill-
ing knowledge from pre-trained 2D image feature extractors
into a 3D feature field that guides local editing based on user
queries. VL-Fields (Tsagkas et al., 2023), a neural implicit
spatial representation fusing scene geometry and vision-
language features, enables open-vocabulary semantic queries
without requiringprior object class knowledge. FeatureNeRF
(Ye et al., 2023) distills pre-trained vision models (DINO,
Latent Diffusion) to learn generalizable NeRFs, leveraging
neural rendering for 2D-to-3D mapping and extracting deep
features from NeRF MLPs.

Additionally, ConceptFusion (Jatavallabhula et al., 2023)
enables open-set and multimodal reasoning in 3D scene
representations by fusing foundation model features with
SLAM and multi-view fusion. ConceptGraphs (Gu et al.,
2023) leverages 2D foundation models and multi-view asso-
ciation to capture semantic and spatial relationships for
efficient task-driven planning. OpenMask3D (Takmaz et
al., 2023) aggregates per-mask features using the multi-
view fusion of CLIP-based image embeddings guided by
predicted class-agnostic 3D instance masks. SA3D (Cen
et al., 2023) enables 3D segmentation of target objects
in neural radiance fields (NeRF) through one-shot man-
ual prompting, leveraging density-guided inverse rendering,
cross-view self-prompting, and an iterative process to project
2D segmentation masks onto 3D mask grids. PVLFF (Chen
et al., 2023) generates a scene’s feature field, combining
vision-language and hierarchical instance features through
contrastive loss from 2D instance segment proposals.

CLIP-Fields (Shafiullah et al., 2022) learns a spatial map-
ping to semantic embeddings via weak supervision from
web-trained language and vision models, enabling tasks
like object identification and robot navigation without direct
human labeling. GNFactor (Ze et al., 2023), a multi-task
robotic manipulation agent, leverages a shared 3D voxel
representation and language-augmentedneural fields for gen-
eralizable visual behavior cloning.

Our work is close and directly comparable to LERF (Kerr
et al., 2023) in terms of assumptions about information avail-
able at the training phase and query time. For example, it does
not assume a priori knowledge of query categories at training
time which is assumed 3D-OVS (Liu et al., 2023).

Recently, several concurrentworks have emerged, address-
ing similar problems, and the survey papers (Chen & Wang,
2024; Fei et al., 2024) also offer comprehensive overviews
of related fields. LEGaussians (Shi et al., 2024) introduces a
method for quantizing high-dimensional concatenated CLIP
and DINO features into compact ones to conserve mem-
ory, and attach to each individual Gaussian. Langsplat (Qin
et al., 2024) segments images by SAM (Kirillov et al.,
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2023) and then inputs hierarchical semantic segments into
CLIP model to extract semantic features for the segments.
To address memory constraints, Langsplat incorporates a
scene-specific language autoencoder to encode CLIP fea-
tures into lower dimensions, which are also attached to
each individual Gaussian. Feature 3DGS (Zhou et al., 2024)
distills pixel-aligned features from 2D foundation models,
including SAM (Kirillov et al., 2023) and LSeg (Li et al.,
2022), into GS by associating each Gaussian with a learn-
able vector. However, pixel-aligned LSeg suffers from a
loss of semantic understanding capability, particularly for
long-tail semantics (Kerr et al., 2023). Different from all the
aforementioned methods, which attach semantic features to
each Gaussian, we propose to seamlessly integrate 3D Gaus-
sian scene representation together with MHE for efficient
semantic encodings. Notably, our method does not necessi-
tate additional scene-specific quantization or auto-decoder
steps, thereby preserving the semantic features’ representa-
tion capability from foundation models.

3 BackgroundMethods

3.1 3D Gaussian Splatting

GS (Kerbl et al., 2023) represents an environment using a
set of 3D Gaussians, each defined by a mean μ ∈ R

3, an
anisotropic covariance matrix � ∈ R

3×3, an alpha value
α ∈ [0, 1] representing opacity, and spherical harmonics
coefficients (SH). Given a 3D position x ∈ R

3, the prob-
ability density function of 3D Gaussian is defined as:

G(x) = e− 1
2 (x−μ)T �−1(x−μ) (1)

where (·)T represents a transpose operation and (·)−1 denotes
matrix inversion. To render 3D Gaussians in 2D, we project
their mean positions by point projection, and project their
covariance using the following equation:

�′ = JW � WT JT (2)

where W ∈ R
3×3 is the viewing transformation and J ∈

R
3×3 is the Jacobian of the affine approximation of the pro-

jective transformation (Zwicker et al., 2001). To optimize
covariance matrices, we use an equivalent representation:

� = RSSTRT (3)

where R ∈ R
3×3 and S ∈ R

3×3 are rotation and scaling
matrices, respectively. GS also includes spherical harmonics
coefficients to model the appearance of the scene. Gradients
for all parameters are derived explicitly to avoid overhead
during training.

Each Gaussian encodes the color c using spherical har-
monics, which gives a value depending on the viewing
directions. Theα−blending point-based rendering for a pixel
color c is done by blendingN points in the depth order from
front to back:

c =
∑

i∈N
ciαi

i−1∏

j=1

(1 − α j ), (4)

where αi is given by a 2D Gaussian multiplied by a learned
per Gaussian opacity (Yifan et al., 2019).

Note that although the image rendering model is simi-
lar across NeRFs and GS, the rendering algorithm is much
more efficient in GS. NeRFs need to march along the ray to
integrate volume, however, GS rendering uses a point-based
α−blending approach. This allows GS to include a real-time
rendering solution that leverages GPU sorting algorithms
and draws inspiration from tile-based rasterization. By using
a 3D Gaussian representation, anisotropic splatting can be
performed while respecting visibility order. This is achieved
through sorting and alpha-blending. Additionally, a fast and
accurate backward pass is enabled by tracking the traversal
of sorted splats.

3.2 Multi-resolution Hash Encoding

Representing a 3D feature field can have many forms. A
naivemethod is to attach a feature vector (ormultiple) to each
Gaussian, which can be optimized along with other Gaussian
parameters (position, covariance, and so on). However, this is
extremely costly in terms of computational cost and memory
consumption especially when a large number of Gaussians
are generated for scene representation. In fact, adding a
512 × 1 feature vector per Gaussian will increase the num-
ber of optimized parameters to be 9.83× under authentic GS
parameterization (Kerbl et al., 2023) (10 geometric param-
eters and 48 spherical harmonic appearance parameters per
Gaussian) and 65.0× under simplified GS parameterization
(Keetha et al., 2023) (4 geometric parameters and 4 appear-
ance parameters per Gaussian).

To mitigate this problem, we are motivated by multi-
resolution hash embedding (MHE) (Müller et al., 2022),
which provides efficient scene representation that consists of
two trainable components. The first component first hashes
a given position x ∈ R

3, and then looks up into a train-
able hash table for the corresponding embedding. The second
component is an MLP that takes the corresponding embed-
dings and makes predictions such as color and density.
The representation contains multiple hash tables, one per
each scale. Specifically, MHE first encodes a given posi-
tion q = MHEθ (x). To do so, it contains a hash table with
L levels. Each level contains up to E feature vectors with
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Fig. 2 FMGS Training pipeline: Left: Shows how FMGS’ feature field
renders CLIP and DINO feature maps for loss calculation. The feature
field is a multi-resolution hash encoder (MHE) (Müller et al., 2022)
that embeds semantic information into 3D Gaussians acquired from 3D
Gaussian Splatting (Kerbl et al., 2023). Right: Shows the target DINO

feature map and hybrid CLIP feature map from the foundation models.
Note, for visualization simplicity, we only show a single-level MHE
here but in implementation we have used multiple levels and concate-
nate their encodings

dimensionality D. Resolution of each level is determined by
Nl = ⌊

Nmin · bl⌋where Nmin is the coarsest resolution, Nmax

is the finest resolution, and b is a growth factor.
To get q for a given position x, we query MHE at all

scales and concatenate the resulting features. For each scale,
we find the enclosing voxel for x. Then, each corner entry of
the voxel is mapped into a feature vector with dimensional-
ity D according to the trainable hash table. MHE trilinearly
interpolates the queried corner entries according to their rela-
tive position of x in its hypercube for each level. This ensures
the continuity of the encoded input and its composition with
the neural network, avoiding grid-aligned discontinuities and
blocky appearance. After this mapping is done, the features
from all scales are concatenated to each other, and the auxil-
iary inputsψ ∈ R

K which results in a feature vector q of size
L × D + K . The resulting encoding then goes to the second
component which is an MLP network, MLP�(q), produces
the final output. This architecture significantly reduces the
number of weights that are trained for each view while hav-
ing an O(1) GPU look up for hashing. Overall this results in
significant improvements in quality and speed of training.

4 Method

Our method, i.e. Foundation Model Embedded Gaussian
Splatting (FMGS), leverages strengths of both GS andMHE.
We rely on GS for efficient and accurate scene geometry
representation and on MHE for representing the scene’s lan-
guage content in a light-weighted manner. Given a set of
input images, we compute the corresponding camera poses
and 3D sparse visual points using an off-the-shelf structure
frommotion system, e.g., COLMAP (Schonberger & Frahm,
2016). After that we train GS and acquire 3D Gaussians.

Subsequently,we train the feature embeddingfield (MHE)
in 3D by grounding 2D CLIP embeddings. This requires us
to generate pixel-aligned features on a set of calibrated input
images. However, CLIP embeddings are global in nature and
not suitable for pixel-aligned feature extraction. To overcome
this challenge, we introduce a framework to learn a volu-
metric language embedding field that embeds over the 3D
Gaussians. The field effectively generate features that is the
average CLIP features across all views that include that 3D
Gaussian. To supervise our dense feature field, we create a
hybrid feature map based on CLIP embeddings across multi-
scale crops of training views. Figure2 provides an overview
of our training pipeline.

4.1 Feature Field Architecture

3D Gaussian Splatting produces millions of Gaussians to
enable high quality rendering of a room-scale scene. This
makes it very inefficient to have one CLIP feature per Gaus-
sian since these features are high dimensional and keeping
all of these features in GPU memory is not feasible.

To this end, we parameterize our feature field efficiently
using MHE. For a given 3D Gaussian G(x) with mean posi-
tion x, we first encode x to a feature vector q = MHEθ (x)
where θ is our multi-resolution hash table parameters. We
subsequently feed this output into an MLP, which generates
our language embedding f̂ = MLPCL I P

φ (q), with f̂ belong-

ing to RD . We also normalize f̂ to make it a unit vector.

4.2 Embed the FoundationModels

Weembed the semantic embeddings from foundationmodels
to our scene representation. Training the semantic embedding
has three aspects. First, we use our scene representation to
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Fig. 3 The features extracted from foundation models. The left three
subfigures include the RGB image, extracted DINO features from the
foundation model, and the hybrid CLIP feature, which is an average
of multi-scale CLIP feature maps shown on the right. On the right, the

shown seven CLIP feature maps are the extracted from an image pyra-
mid at multiple scales using the foundation model. The resolution of
CLIP features decreases from left to right

Fig. 4 FMGS Query pipeline: Top: Given a query view to localize a
query, FMGS first renders the dense CLIP feature map. Bottom: given
an open-vocabulary query, FMGS generates a relevancy map highlight-
ing the relevant part of the rendered CLIP feature map to the query

embedding. The highest relevant is colored as red while the lowest rele-
vant part is colored as blue. Note, for visualization simplicity, we show
a single-level MHE in this figure while using multiple-level MHEs in
our implementations (Color figure online)

render a predicted feature map F̂ ∈ R
W×H×D where W is

the width, H is the height, and D is the dimension of the
feature map. Second, we generate target feature maps F by
feeding the image view to foundation models. Finally, we
need to ensure that the predicted feature map is aligned with
the corresponding target features and follows the same object
boundaries in terms of feature similarity.
Hybrid CLIP Feature for Supervision To supervise our fea-
ture field outputs, given a calibrated input image, we first
rasterize the features into a 2D feature map F̂ where the
(i, j)th feature is acquired by point-based α−blending:

f̂i, j =
∑

k∈N
f̂kαk

i−1∏

l=1

(1 − αl) (5)

To generate our target CLIP feature map, denoted as F, we
initially pre-compute a multi-scale feature pyramid of CLIP
embeddings, similar to the approach used in LERF (Kerr
et al., 2023). This involves feeding image patches at various

sizes into theCLIP foundationmodel.However, in contrast to
LERF, which trains its scene representation by interpolating
embeddings from the pre-computed CLIP feature pyramid
at random scales, we rely on a single hybrid CLIP feature
map for training our scene representation. We scale up the
embeddings of the smaller scales in the pre-computed CLIP
feature pyramid bilinearly to the largest scale feature map,
and generate the hybrid feature map by averaging them. We
define our CLIP loss by the following Huber loss:

LCL I P =
{
0.5|F̂ − F|2, if |F̂ − F| < δ

δ · (|F̂ − F| − 0.5 · δ), otherwise
(6)

where δ is a hyperparameter, which is set to be 1.25 empiri-
cally. As seen in Fig. 3 where we use PCA to visualize feature
maps following FFD (Kobayashi et al., 2022), we notice that
the target CLIP feature map is not fine-grained enough when
embedding similarities of neighboring pixels are considered.
This results in poor pixel-alignment gradient signals onGaus-
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sians that are not relevant semantically. On the other hand,
DINO (Caron et al., 2021) features give sharp boundaries
between objects (Amir et al., 2021) in terms of embedding
similarity, which can be used for additional regularization.
Regularization with DINO Feature To transfer the char-
acteristics of DINO features while maintaining the CLIP
embedding semantics, we (a) add a DINO feature field loss
and (b) define a pixel-alignment loss between the DINO and
CLIP feature fields. The DINO feature field shares the same
hash grid parameters as CLIP and gives the same encod-
ing q for a given x. Then the DINO feature field outputs
d̂ = MLPDI NO

ψ (q) where ψ denotes the parameters of the

MLP that are not shared with MLPCL I P
φ . This feature field

is supervised by passing the sampled image once to the pre-
trainedDINOmodelwithout scaling, yieldingD ∈ R

W×H×L

where L is the DINO feature dimension. We then render D̂
using the same approach as rendering F̂. The DINO regular-
ization loss is as follows:

LDI NO = |D̂ − D|2 (7)

Pixel-alignment with Dot Product Similarity We define a
pixel-alignment loss by defining a kernel around every pixel
and enforce the dot product similarity in normalized embed-
ding spaces (between DINO and CLIP) are consistent across
the center pixel and surrounding ones. We normalize both
rendered features to the unit norm, and then compute the
loss:

Lpixel = 1

K 2 − 1

∑

i∈P

∑

j∈N (i),
j �=i

|d̂Ti d̂ j − f̂Ti f̂ j | (8)

where P denotes the set of all the pixels in the image, and
N (i) is the K×K patch kernel around the rendered feature at
pixel i . Thismakes the renderedCLIP feature follow the same
similarity pattern as the DINO feature. Note that we stop
the gradient back-propagation through the rendered DINO
features in this training loss,whichmeansMLPDI NO

ψ would
not be affected by this loss.Lpixel is also termed as “dotsim"
loss for the rest of the paper, since it is formulated by dot
product similarity.
Training Loss Overall our total loss is

Ltotal = λLCL I P + (1 − λ)LDI NO + γLpixel (9)

where λ and γ are weights to balance different loss terms.We
take the mean reduction over all the pixels in the image plane
when computing the different loss terms. We also empiri-
cally find out that adding the pixel-alignment lossLpixel with
an appropriate weight γ has significant benefits, resulting in
crisp and high-quality rendered CLIP feature maps and pro-
ducing the best performance. However, an excessively large

weight γ can exaggerate the differences in CLIP features and
overly enrich them, which can be detrimental to object-level
semantic understanding.

In Fig. 5, we provide examples of features extracted from
foundationmodels for training and the rendered features gen-
erated by our trained hybrid semantic scene representation. It
is evident that the rendered feature maps exhibit higher qual-
ity when compared to the raw feature maps obtained directly
from the foundation models, owing to our training process
enforcing multiple-view consistency.

4.3 Relevancy Score

At query time, when provided with a query prompt and a
viewing direction, FMGS generates a relevancy map that
assigns high scores to semantically relevant locations (see
Fig. 4). To obtain this relevancy map, we first render the fea-
ture map F̂ using our learned semantic feature field via GS
rasterization. Then, we calculate the CLIP embedding fquery
corresponding to the query prompt.

To obtain the dense relevancy map, we define a set of
canonical phrases with CLIP embeddingsFcan following the
methodology similar to Kerr et al. (2023). Then, we com-
pute pairwise softmax scores based on the cosine similarity
between the prompt embedding and f̂i, j , representing the F̂
at location (i, j), as well as the canonical embeddings for
canonical phrases. We take the minimum value of the soft-
max over all canonical prompts and deem it the relevancy
score r :

ri, j = min
n

exp(f̂Ti, j fquery)

exp(f̂Ti, j fquery) + exp(f̂Ti, j f
n
can)

, fncan ∈ Fcan (10)

With the above definition, the relevancy score is higher when
a query embedding is closer to the rendered feature than the
canonical features. We follow Kerr et al. (2023) and choose
the following canonical prompts: “object", “stuff", “things",
and “texture". We also find that these work well for a wide
range of queries removing the need for tuning these canoni-
cal terms. In Fig. 5, we present representative relevancymaps
generated by matching the query embedding with our ren-
deredCLIP featuremap and the targetCLIP featuremap from
the foundation model used in our training. It’s evident that
the relevancy map derived from our rendered CLIP feature
map overall exhibits finer granularity and higher quality.

4.4 Implementation Details

Our approach employs a hash grid for representing lan-
guage features, which is notably larger than a typical RGB
hash grid. This hash grid comprises 24 layers, spanning reso-
lutions from 16 to 512, and possesses a hash table size of 220
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Fig. 5 Features for Training and Rendered Views. Left: From left to
right, the figures show the RGB image, the rendered DINO feature
map, the raw DINO feature map extracted for training, the rendered
CLIP feature map, and the raw CLIP feature map used for training.
Right: We display the relevancy scores for the rendered and raw CLIP

feature maps with the text query ‘flower’, where the color bar indicates
relevancy scores normalized within the 0–255 range. Notably, querying
the raw CLIP feature map is much inferior to querying the rendered
CLIP feature map (Color figure online)

Fig. 6 Effect of dot product similarity (dotpsim) loss. From left to
right: RGB image, rendered DINO feature without dotpsim, rendered
DINO feature with dotpsim, rendered CLIP without dotpsim, and ren-
dered CLIP feature map with dotpsim. The DINO feature maps do not

have significant differences with or without dotpsim. From the CLIP
feature maps, we can see that objects can be further distinguished from
each other and the background. Differences are highlighted in the red
boxes (Color figure online)

with an associated feature dimension of 8. The architecture
of the CLIP and DINO MLP models used for MLPCL I P

φ

and MLPDI NO
ψ aligns with that of LERF (Kerbl et al.,

2023). Furthermore, we leverage the OpenCLIP (Cherti et
al., 2022) ViT-B/16 model, which has undergone training on
the LAION-2B dataset. Notably, this model operates with an
image pyramid that varies in scale from 0.05 to 0.5 of image
size, encompassing a total of seven scales for pre-computing
a CLIP feature pyramid. The pre-computed feature pyramid
is subsequently processed by average pooling to generate the
final hybrid CLIP feature for training our semantics embed-
ded field.

Initially, we train the Vanilla Gaussian Splatting scene
representation (Kerbl et al., 2023) through a total number of
30K iterations, with approximately 10min total time for a
room-scale scene. It’s worth noting that representing such
a scene requires the utilization of millions of Gaussians.
Subsequently, we maintain the frozen states of the geomet-
ric attributes and spherical harmonics associated with these
Gaussians throughout the subsequent training process for
semantic embedding fields.

To mitigate GPU memory constraints, we strategically
select approximately 40% of the Gaussians based on crite-
ria such as high opacity values and a 2D radius of projected
Gaussian exceeding 2 pixels in at least one training view.
Only these selected Gaussians are involved in the rendering
process when we train the semantic embeddings. For opti-
mization, we employ the RAdam optimizer with a weight
decay of 10−9. We incorporate an exponential learning rate
scheduler, which spans from an initial value of 5× 10−3 and
gradually decreases to 4×10−3 over the course of 4.2K train-
ing steps (after the initial 30K original GS training steps). In
our training regimen, all models initially undergo 2.5K steps
without the pixel alignment loss being enabled. These train-
ing and testing procedures are executed on an NVIDIA RTX
A5000 GPUwith 24GB of GPURAM. The semantic feature
field training time with a total of 4.2K steps takes about 1.4
hours. During training, we use weighting factors to balance
the CLIP loss (λ = 0.2) and the pixel-alignment loss (γ =
0.01).
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5 Experiments

Our hybrid semantic scene representation, FMGS, seam-
lessly integrates the 3D Gaussians and multi-resolution
hashing encoding and supports both photo-realistic render-
ing and open-vocabulary object detection. In this section,
we carefully evaluate the performance of open-vocabulary
object detection (or localization) of our proposed method in
uncontrolled real-world scenarios. To showcase the embed-
ding quality of ourmethod, we also evaluate it out-of-the-box
on the open-vocabulary semantic segmentation task. We
compare our method to other SOTA approaches for each
experiment and show significant improvement over their
results.

5.1 Object Detection in theWild

By distilling the language embeddings extracted from
off-the-shelf vision-language model, CLIP, our FMGS is
applicable for associating a wide range of textual prompts
with the relevant vision clues. We test the open-vocabulary
object understanding capability of our method by object
detection experiments.

Dataset: We use the same dataset as used in the LERF
(Kerr et al., 2023) for object detection evaluation, for the pur-
pose of fair comparison. It consists of five labelled scenes
with 2D bounding boxes of objects associated with text
prompts. There are objects including both common and long-
tail ones with different sizes, and the queries for objects are
quite diverse, like ‘vase’, ‘eucalyptus’, ‘big white crinkly
flower’, ‘pikachu’, ‘twizzlers’, ‘spoon handle’, ‘power out-
let’, ‘waldo’, ‘stuffed bear’, ‘cookies on a plate’, etc. The
location of queried images are labelled by bounding boxes
in the test images, which are rendered at novel views from
trained NeRF models of individual scenes. The scenes in
LERF dataset are collected by an iPhone, and each scene
comprise ∼ 200 images. The provided poses of images from
Ploycam app have significant noises in some scenes. Thus
we regenerate the poses of images by running COLMAP
(Schonberger & Frahm, 2016), which also yields sparse 3D
visual points serving as input to initialize 3D Gaussians in
our method. The poses of the officially-provided test images
are also properly transferred to our COLMAP trajectory by
Sim(3) alignment between officially-provided image poses
and our COLMAP poses.

Evaluation Protocol: Following LERF (Kerbl et al.,
2023), the evaluation metric for object detection is the accu-
racy rate. We redeem the query as a success if the highest
relevancy pixel is located inside the target box. The relevancy
score at each pixel is obtained bymatching the renderedCLIP
feature map with the language embedding of the given text
query as described in Sec. 4.3.

Baselines: We compare against FFD-LSeg that embeds
pixel-aligned LSeg feature (Li et al., 2022) into NeRF
(NeuralStudio ‘neurfacto’ implementation by feature fields
distillationmethod (Kobayashi et al., 2022),OWL-ViT (Min-
derer et al., 2022) that is a 2D method based on Vision
Transformer encoder and fine-tuned for object detection,
LERF (Kerr et al., 2023) that embeds CLIP and DINO fea-
tures into NeRF. The 3D methods, FFD-LSeg and LERF,
share the same evaluation protocol as our FMGS. For the 2D
method, OWL-ViT, we regard it as a success if the center of
the predicted bounding box is located in the target box.

Evaluation Results: The quantitative evaluation results
on all sequences of LERF dataset are presented in Table 1,
and representative relevancy score maps of the proposed
method are shown in Fig. 7. The detailed results demonstrate
significant advantages of FMGS’s integration of language
embeddings in detecting objects associated with long-tail
prompts. While LSeg (Li et al., 2022), trained on a small
dataset to learn pixel-aligned CLIP features, exhibits dimin-
ished open-vocabulary language understanding capabilities,
the approach of FFD-LSeg, which distills LSeg features
into radiance fields, struggles with comprehending long-tail
queries and consequently exhibits poorer performance. In
terms of open-vocabulary 2D detection, Owl-ViT, which uti-
lizes full-HD NeRF views and selects bounding boxes based
on the highest confidence scores for text queries, outperforms
FFD-Lseg.However,when facedwith long-tail queries,Owl-
ViT’s performance falls short in comparison to the robust and
versatile FMGS.

We also conducted a comparison with the closest method,
LERF, which distills DINO and CLIP features into neural
radiance fields represented solely by MHEs. As depicted in
Table 1, our FMGS outperforms LERF significantly, achiev-
ing an accuracy improvement of 10.2the officially released
code, slightly surpass those reported in the original paper
(Kerr et al., 2023).

In Fig. 8, we present side-by-side comparisons with LERF
(Kerr et al., 2023). The object detection results are visualized,
highlighting the superior quality of the relevance map pro-
duced by our FMGS. It notably focuses more on the queried
target objects, as opposed to LERF. This outcome stems from
our hybrid representation,which combines 3DGaussians and
MHEs for semantic scene representation. The 3D Gaussians
represent both the geometry and appearance of the scene,
naturally dividing 3D structures of objects and the scene into
distinct Gaussian volumes. This partitioning feature aids in
distinguishing objects from each other and from the back-
ground. In FMGS,we assign an identicalMHE embedding to
a Gaussian volume, further promoting semantic consistency
in local proximity. This, in turn, contributes to focusing of
relevance on the target object. Taking the query ‘Pikachu’
in Fig. 8 as an example, where ‘Pikachu’ is depicted on the
side of a paper bag. Even when observing from a challenging
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Fig. 7 Relevancy score for object detection. Left: The rendered RGB image at novel view from 5 scenes on LERF dataset (Kerr et al., 2023). Right:
Visualization of relevancy scores with the given text queries shown below the figures. We overlay them on the RGB images

Fig. 8 Object detection results. The left and right groups of fig-
ures illustrate the detection results for four open-vocabulary queries,
respectively. Each group comprises three subfigures: Left displays the
ground-truth bounding boxes (blue), our detected highest-relevancy
pixel (green) and the one detected by LERF (red) (Kerr et al., 2023).

Middle showcases our relevancy score corresponding to the given text
query. The text query is shown at the far left of each row. Right show-
cases LERF’s relevancy score corresponding to the given text query.
Our computed relevancy score is more focused on the target objects
linked to the query (Color figure online)
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Table 1 Accuracy and runtime efficiency (Frames Per Second, FPS) of object detection with open-vocabulary queries.

Scene FFD-LSeg (Kobayashi et al., 2022) OWL-ViT (Minderer et al., 2022) LERF (Kerr et al., 2023) Ours

Bouquet 50.0% 66.7% 83.3% 100.0 %

Figurines 8.9% 38.5% 87.2% 89.7%

Ramen 15.0% 92.5% 62.5% 90.0 %

Teatime 28.1% 75.0% 96.9% 93.8%

Kitchen 13.0% 42.6% 85.2% 92.6 %

Average Acc. 18.0% 54.8% 83.0% 93.2%

Inference FPS – – 0.1214 103.4

Comparison between Feature Fields Distillation (Kobayashi et al., 2022) using LSeg (Li et al., 2022) features (FFD-Lseg), OWL-ViT (Minderer et
al., 2022), LERF (Kerr et al., 2023) and Ours FMGS. Please find more details on scenes and text queries for LERF dataset in Kerr et al. (2023)
Best marked with bold and second best marked with italics

Table 2 Segmentation evaluation

Methods Bed Sofa Lawn Room Bench Table

mIoU mAP mIoU mAP mIoU mAP mIoU mAP mIoU mAP mIoU mAP

OV-Seg (Liang et al., 2022) 79.8 40.4 66.1 69.6 81.2 92.1 71.4 49.1 88.9 89.2 80.6 65.3

3D-OVS (Liu et al., 2023) 89.5 96.7 74.0 91.6 88.2 97.3 92.8 98.9 89.3 96.3 88.8 96.5

LERF (Kerr et al., 2023) 33.5 25.6 28.1 45.6 49.8 82.0 26.3 49.1 55.2 79.5 31.1 33.3

Ours 38.0 50.1 56.6 82.0 64.9 90.5 57.0 85.3 62.1 84.1 63.6 85.3

Ours-Refined 80.6 85.5 90.8 97.4 92.6 98.5 87.9 97.8 84.5 94.8 89.4 97.2

We report the mIoU(↑) scores and the mAP(↑) scores of the following methods in 6 scenes of 3D-OVS dataset (Liu et al., 2023). Note that 3D-OVS
is a weakly supervised method, which knows the segmentation annotations in training and specially designed for segmentation task. Our method
and LERF are 3D method training without any segmentation annotations, relying only on the relevancy between class query and the rendered
CLIP features. OV-Seg (Liang et al., 2022) is a supervised method for segmentation task. Our method and LERF are unsupervised methods, under
apple-to-apple comparison. We can further post-process and refine our 2D segmentation results by SAM (Kirillov et al., 2023) and get the results
shown as ‘Ours-Refined’
Best marked with bold

Table 3 Ablation study. Methods Bouquet Figurines Ramen Teatime Kitchen Average

Ours 100.0 89.7 90.0 93.8 92.6 93.2

W/O dotpsim 100.0 91.0 85.0 90.6 85.2 90.4

W/O hybrid CLIP 54.2 32.1 52.5 6.3 9.3 30.8

W/ LERF CLIP 91.7 70.5 72.5 72.5 87.0 78.8

W/O MHE 91.7 71.8 90.0 90.6 77.8 84.4

Object detection comparison between our full method, ours without dot product similarity (dotpsim) loss, and
ours without hybrid CLIP features by averaging at multiple scales for supervision, using single scale CLIP
feature at the finest-resolution instead, as well as ours with LERF CLIP at multiple individual scales (Kerr et
al., 2023)
Best marked with bold

viewpoint with almost no visibility of ‘Pikachu’, FMGS suc-
cessfully maintains high relevance at the target location, due
to its 3D consistency and fine-grained scene understanding.
In contrast, LERF fails to detect ‘Pikachu’ and mistakenly
identifies a visually similar object.

Inference Runtime:Our FMGS, relying on 3D Gaussian
Splatting rendering (Kerbl et al., 2023), excels in efficiently
rendering RGB images. We’ve implemented our rendering
method for CLIP and DINO feature maps based on a CUDA

implementation of Gaussian Splatting rendering. Even when
rendering deep features with high dimensions, which can
significantly increase computation time, our FMGS remains
remarkably fast. It can render the 480 × 270 CLIP feature
map,DINOfeaturemap, andRGBimage jointly at an impres-
sively high rate of 103.4 FPS during inference, even with our
unoptimized implementation. In contrast, LERF operates at
a significantly slower pace, achieving a mere 0.1214 FPS
during inference (see Table 1). This slowness stems from
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LERF’s need to perform a brute-force search for the best
scales when rendering CLIP features, spanning a range from
0 to 2ms with 30 increments. Consequently, we are 851.73
times faster than LERF in rendering CLIP features, enabling
efficient real-time open-vocabulary queries after our scene
representation is trained.

5.2 Unsupervised Segmentation

In following experiments we use FMGS to segment queries
and evaluate their segmentationmasks.Note that our method
is not delicately designed for the segmentation task. We
lack a dedicated segmentation header for predicting seg-
mentation masks, nor do we explicitly partition the scene
at the object level. We have examined the open-vocabulary
language understanding capability of FMGS in the object
detection experiments discussed in the above section. Our
primary objective for doing this segmentation evaluation is to
assess the pixel-level accuracy of the rendered CLIP features
obtained from the trained scene representation. Segmenta-
tion relies on matching these rendered CLIP features to the
embeddings of the provided semantic labels.

Dataset:Weconductedour segmentation evaluationusing
the 3D-OVS dataset (Liu et al., 2023), which consists of
six scenes with labeled ground-truth semantic segmentation
masks for test image views. These scenes are characterized
by their cleanliness, with clear backgrounds andwell-defined
foreground objects. Each scene comprises approximately 30
images with predefined poses and sparse points computed
using COLMAP (Schonberger & Frahm, 2016). The dataset
includes a variety of objects, includingmany long-tail objects
like ‘Gundam,’ ‘Pikachu,’ ‘Stapler’, and more. For further
details about the scenes and semantic labels, please refer to
Liu et al. (2023).

Evaluation Protocol: In terms of our evaluation proto-
col, we rely on the annotated ground-truth masks for the test
views. These masks serve as a reliable benchmark for both
qualitative and quantitative assessments of segmentation per-
formance. We calculate the mean Intersection over Union
(mIOU) scores and mean Average Precision (AP) metrics by
comparing the segmentation results with these ground-truth
masks.

Baselines:We conduct a direct comparison of our method
with LERF (Kerr et al., 2023). To perform semantic seg-
mentation, we initially obtain relevancy scores by computing
the cosine similarity between the rendered CLIP feature and
the embeddings of all class labels (this is different from the
relevancy score calculation with auxiliary canonical phrases
involved in Sec. 4.3.). These relevancy scores serve as seg-
mentation logits, and we subsequently apply the softmax
function to convert them into probabilities. Each pixel is then
assigned a semantic class label corresponding to the maxi-
mum probability. Note that LERF (Kerr et al., 2023) requires

a scale factor when rendering CLIP features, and we report
the best segmentation results that can be achieved by LERF
by selecting the best scales for each ray. It’s also important
to note that both LERF and our method encounter challenges
in discerning the semantic labels of backgrounds when pre-
sentedwith visibility-limited close views and lack of context.
Therefore, we have replaced the original background labels,
including ‘white sheet’, ‘wood wall’, ‘grey sofa’, and ‘lime
wall’, with a more general label ‘background’ when testing
LERF and our method.

Additionally, for comprehensive reference, we present
results obtained using the dedicated 3D-OVS method (Liu
et al., 2023) for the segmentation task. However, it is worth
emphasizing that comparing object detection methods like
ours and LERF (Kerr et al., 2023) to 3D-OVS is not entirely
equitable, as acknowledged in the paper of 3D-OVS (Liu et
al., 2023). 3D-OVS (Liu et al., 2023) has prior access to seg-
mentation class labels and distill class-related information
into the radiance field during training. In contrast, neither
LERF nor our methods have access to class labels during
scene representation training. Consequently, the trained 3D-
OVS scene representation can only be effectively employed
for querying the classes known before training, and does not
support arbitrary semantic queries beyond the trained classes.
Furthermore, we compare to a 2D ceiling approach (Liang
et al., 2022), OV-Seg, which is directly trained for open-
vocabulary semantic segmentation by fine-tuning CLIP on
masked image regions and text descriptions.OV-Seg is super-
vised with mask-category pairs, while ours and LERF are
completely unsupervised.

Evaluation Results The segmentation experiment results
are presented in Table 2 and Fig. 9. Notably, our approach
outperforms LERF (Kerr et al., 2023) by a significant margin
across all cases. This superior performance can be attributed
to the higher quality of our rendered CLIP feature com-
pared to the one produced by LERF. Our method exhibits
more concentrated high relevancy around the queried objects,
showcasing the advantage of our semantic scene represen-
tation, which maintains high semantic consistency in local
proximity.We refine our 2D segmentation results using SAM
(Kirillov et al., 2023) by assigning class labels to SAM
segments through a majority voting based on pixel labels
obtained from our method. The refined result is displayed in
the ‘Ours-Refined’ row of Table 2 and Fig. 9.

5.3 Ablations

We conducted an ablation study on the object detection
task, as it serves as a key indicator of our method’s open-
vocabulary semantic understanding capabilities. The results
are presented in Table 3.
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Fig. 9 Semantic segmentation results. In the rows from top to bottom,
we display RGB images, ground-truth (GT) segmentation masks, our
refined segmentation results, our segmentation results, and the segmen-
tation results obtained by LERF (Kerr et al., 2023) scene representation.
It’s essential to note that neither our method nor LERF was initially

intended for the segmentation task. Our primary aim is to evaluate the
pixel accuracy of the relevance map computed from the rendered CLIP
features. We can further post-process and refine our 2D segmentation
results by SAM (Kirillov et al., 2023) and get the results shown as
‘Ours-Refined’

5.3.1 Hybrid CLIP Feature

In this ablation study, we investigated using a single scale
of CLIP features at the finest scale level, rather than our
hybrid CLIP features, which are obtained by averaging
multiple-scale CLIP features extracted from patches at dif-
ferent resolutions. As demonstrated in Table 3, the hybrid
CLIP feature for supervision is greatly important. The scene
understanding capability is severely compromised when
employing only a single-scale CLIP feature for supervision
(denoted as ‘W/O Hybrid CLIP’). The inferior performance
observed with the use of a single-scale CLIP feature stems
from its potential inadequacy in capturing sufficient contex-
tual information within the image. By contrast, our hybrid
CLIP feature encompasses a significantly larger receptive
field, enhancing its contextual awareness.

To conduct a comprehensive analysis, we also compare
our method of using a single hybrid CLIP supervision
(‘Ours’) to the approach of utilizing CLIP supervision at
multiple individual scales, as proposed by LERF (Kerr et al.,
2023), whichwe denote as ‘W/ LERFCLIP’. During its train-

ing, randomly sampled scale factors are concatenated with
the intermediate MHE feature vector q (refer to Sec. 4.1) to
decode CLIP features at each scale. At inference time, the
optimal scale factors at each pixel location are determined by
an exhaustive search among 30 uniformly distributed scales.
The best scale factor is selected based on its relevance score
to the query. Consequently, this approach is at least 30 times
slower than our method with a single hybrid CLIP supervi-
sion during inference. Despite its inefficiency, the accuracy
achieved by ‘ W/ LERF CLIP’ (78.8%) significantly lags
behind that of ‘Ours’ (93.2%), as shown in Table 3, under-
scoring the efficacy and superior efficiency of our proposed
method. It is worth noting that while it is plausible that ‘W/
LERF CLIP’ could achieve better performance with much
more training iterations, this aspect falls beyond the scope of
our current investigation.

5.3.2 Pixel-Alignment Loss

To assess the effectiveness of our proposed pixel alignment
loss, we conducted an ablation study by training our seman-
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tic scene representation without this loss. The impact of
omitting the pixel alignment loss on the accuracy of the
object detection task is shown in Table 3. Furthermore, we
provide qualitative results in Fig. 6, which indicates that
CLIP features from a scene representation trained with pixel-
alignment loss are better at distinguishing between different
objects and separating objects from the background.

5.3.3 Scene Representation

To evaluate the effectiveness of our hybrid scene presenta-
tion,which integrates 3DGaussians for geometry and appear-
ance representation alongside MHE for efficient semantic
embedding, we compare it with a vanilla scene representa-
tion method that solely employs Gaussians without MHE
by attaching semantic embeddings to each Gaussian (‘W/O
MHE’). Notably, for fair comparisons, we consider only the
selected Gaussians with sufficient opacity and 2D radius in
the vanilla method (as detailed in Sec. 4.4) identical to our
method (‘Ours’). These attached semantic embeddings share
the same dimensionality as the intermediate MHE feature
vector q in our method (see Sec. 4.1). They are also decoded
by two MLPs, MLPCL I P

φ and MLPDI NO
ψ , to obtain CLIP

and DINO features while rendering the feature maps.
As indicated in Table 3, ‘W/O MHE’ achieves an object

detection accuracy of 84.4%, which is inferior to ‘Ours’
with its hybrid scene representation. The superior perfor-
mance of ‘Ours’ can be attributed to its ability to render
CLIP feature maps at a higher quality over ‘W/O MHE’.
Additionally, in terms of scene representation complexity, the
MHE component of our method maintains a constant num-
ber of parameters across the five scenes of the LERF dataset,
whereas the parameter count of the semantic embeddings
in ‘W/O MHE’ varies with the number of Gaussians and
increases by 84.1%, 113.5%, 2.14%, 174.2%, and 136.9%
compared to ‘Ours’. This substantial memory demand of
‘W/O MHE’ can pose even greater challenges in large-scale
scenarios.

6 Discussion and Limitations

When comparing FMGS to LERF (Kerr et al., 2023), both
methods distill Clip and Dino features from foundation mod-
els into 3D scene representations. However, their rendering
algorithms and scene representations differ significantly.
These distinctions lead to rapid and high-quality language
feature acquisition using common hyperparameters, such as
the feature field architecture. An additional key advantage of
FMGS is that it employs the same feature embedding for each
Gaussian, regardless of the viewing direction. This feature
enables direct 3D localization of vision-language queries. It’s
important to note that FMGS not only facilitates the localiza-

tion of language queries in 3D but also allows for finding a
given image of the scene using the 3DGaussian embeddings.
LERF, on the other hand, does not offer such 3D localization
capabilities out of the box.

In terms of limitations, FMGS currently relies heavily on
the presence of high-quality and calibrated input images, a
limitation shared with NeRF-based approaches. Addition-
ally, the performance of FMGS is entirely contingent on
the quality of the base foundation models used for train-
ing the feature fields. It is conceivable that a model better
suited for localizing language within images could yield
improved feature field quality. Furthermore, to enhance per-
formance in semantic segmentation tasks, it is advisable to
embed a specialized segmentation foundation model, such
as SAM (Kirillov et al., 2023; Cen et al., 2023), into our
scene representation. Unlike using SAM solely for post-
refinement of our 2D segmentation results, directly distilling
SAM results into the 3D space offers the advantage of enforc-
ing multi-view consistency, potentially leading to improved
performance.

7 Conclusions

Foundation Model Embedded Gaussian Splatting (FMGS)
contributes to scene understanding by seamlessly merging
vision-language embeddings and 3D representation. This
novel 3D scene representation achieves multi-view seman-
tic consistency through self-supervised distillation and pixel
alignment of CLIP features. The resulting feature-embedded
3D Gaussians achieve state-of-the-art performance in com-
parison to previous methods. By bridging vision, language,
and 3D, FMGS paves the way for unprecedented object
comprehension in real-world environments, opening excit-
ing possibilities for augmented reality, robotics, and beyond.
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