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Abstract
In recent years, deep-learning-based visual object tracking has obtained promising results. However, a drastic performance
drop is observedwhen transferring a pre-trainedmodel to changingweather conditions, such as hazy imaging scenarios, where
the data distribution differs from that of a natural training set. This problem challenges the open-world practical applications of
accurate target tracking. In principle, visual tracking performance relies on the discriminative degree of features between the
target and its surroundings, rather than the image-level visual quality. To this end, we design a feature restoration transformer
that adaptively enhances the representation capability of the extracted visual features for robust tracking in both natural
and hazy scenarios. Specifically, a feature restoration transformer is constructed with dedicated self-attention hierarchies for
the refinement of potentially contaminated deep feature maps. We endow the feature extraction process with a refinement
mechanism typically for hazy imaging scenarios, establishing a tracking system that is robust against foggy videos. In
essence, the feature restoration transformer is jointly trained with a Siamese tracking transformer. Intuitively, the supervision
for learning discriminative and salient features is facilitated by the entire restoration tracking system. The experimental results
obtained on hazy imaging scenarios demonstrate the merits and superiority of the proposed restoration tracking system, with
complementary restoration power to image-level dehazing. In addition, consistent advantages of our design can be observed
when generalised to different video attributes, demonstrating its capacity to deal with open-world scenarios.

Keywords Visual object tracking · Dehazing system · Siamese tracker · Feature restoration

Communicated by Hong Liu.

B Tianyang Xu
tianyang.xu@jiangnan.edu.cn

Yifan Pan
6223112023@stu.jiangnan.edu.cn

Zhenhua Feng
z.feng@surrey.ac.uk

Xuefeng Zhu
xuefeng_zhu95@163.com

Chunyang Cheng
7223115009@stu.jiangnan.edu.cn

Xiao-Jun Wu
wu_xiaojun@jiangnan.edu.cn

Josef Kittler
j.kittler@surrey.ac.uk

1 School of Artificial Intelligence and Computer Science,
Jiangnan University, Wuxi 214122, China

1 Introduction

Visual object tracking is an omnipresent task in intelligent
video analysis systems. The related research is motivated
by the demanding downstream practical applications in
advanced surveillance, human-computer interaction, med-
ical analysis, smart transportation, etc (Jiao et al., 2021).
In general, given the initial state of an object, a track-
ing system is tasked to estimate the target location in the
subsequent video frames. In past decades, with the con-
tinuous achievement of the underpinning theory and the
tracking methodology, the visual tracking community has
witnessed a transition of the research focus from construct-
ing object motion models to object appearance models. In
recent years, empowered by the unprecedented availability of
a large volume of annotated video data and high-performance
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computing devices, the research community has reported
rapid growth of deep neural networks for the tracking task
(Bertinetto et al., 2016; Danelljan et al., 2019; Li et al., 2018;
Wang et al., 2021). As existing annotated training datasets
are collected from daily scenarios, most of the sequences
are of high resolution with good illumination conditions.
Thereby, training complex convolutional neural networks
(CNN) or transformer-based trackers from these datasets has
become the mainstream practice in the community. Despite
the remarkable advances in the ability to track even targets
in the presence of practical challenges, such as deformation,
blur, clutter, and occlusion, the transferability of existing
tracking approaches to open-world scenarios is still severely
limited. In general, in spite of its practical importance, the
tracking accuracy and robustness in severeweather situations
still fail to meet the requirements of many downstream video
applications. Therefore, the manifested necessity of dehaz-
ing and deraining visual object tracking inspires our design
proposed in this paper.

Among deep-learning-based tracking approaches, the
Siamese architecture has beenwidely explored and studied in
recent years. This architecture aims to obtain a target appear-
ance invariant feature space via offline training from paired
image patches (template and search region) (Bertinetto et al.,
2016; Li et al., 2019). Both foreground awareness and back-
ground discrimination are learned in a supervised manner.
In particular, classical Siamese architecture highlights the
foreground and suppresses the backgrounds via allocating a
uni-modal Gaussian heatmap during training. In this setting,
after learning the variation contained in several template-
search pairs, the appearance invariant feature space can be
obtained.As a result, a temporarily changing target canmain-
tain a high degree of consistency of its intrinsic appearance in
the feature space, thus being robust to potential appearance
variations and background clutters.

Despite the effectiveness of Siamese architecture in learn-
ing invariant features against appearance variations, classical
Siamese networks suffer from limited localisation granular-
ity. The main reason comes from the simple connections in
these Siamese approaches, i.e., a backbone network plus a
cross-correlation module (Bertinetto et al., 2016). Drawing
on this, the advanced Siamese trackers introduce dedicated
functional modules into the basic architecture to achieve
fine-grained localisation capacity. Since a visual object track-
ing problem is a specified target detection in a sequence
of frames, many modelling techniques for advanced detec-
tor designs have been explored for this task. For instance,
to accurately characterise the target appearance, bounding
box regression has been introduced in the Siamese paradigm
to achieve high-precision target prediction (Li et al., 2018).
The regression branch adaptively localises the boundaries
of a changing target, providing improved precision against
spatio-temporal variations. To alleviate the additional com-

putation consumption for assigning anchors, SiamFC++
further employs an anchor-free index strategy to directly pre-
dict the bounding boxes for the pre-assigned spatial points in
the obtained representations (Xu et al., 2020b). Besides, to
balance the accuracy and stability in predicting the bounding
box, centreness is imposed in the regression branch to further
improve the tracking robustness (Gao et al., 2020).

More recently, other techniques have also been deployed
in constructing advanced trackers in the Siamese paradigm,
such as pixel-level mask prediction (Wang et al., 2019),
spatio-temporal memory templates (Cao et al., 2022), and
multi-task interactions (Xu et al., 2023), resulting in excel-
lent tracking performance on the well-known benchmarks.
However, the effectiveness of these offline-trained Siamese
approaches relies heavily on the consistency between the
training and test data. In practical applications, the above
assumption is always challenged by unpredictable data dis-
tributions, especially in unconstrained imaging scenarios. In
particular, hazy lighting condition is a typical challenging
factor, destroying the light propagation from the target sur-
face to the camera sensor.

To guarantee the performance of visual analysis sys-
tems in hazy imaging scenarios, existing approaches can
be categorised into two main paradigms. The first one is
to remove the non-essential appearance from the captured
images using image-level restoration techniques. This has
beenwidely studied for image dehazing (Qin et al., 2020; Zhu
et al., 2018). The underlying assumption of this paradigm is
two-fold: 1) the neighbouring pixels in local regions can pro-
vide necessary support information for pixel reconstruction
and restoration; 2) the external imaging factor can be mod-
elled with specific patterns using big training data. Such a
paradigm has been widely studied in the context of low-level
visual tasks, demonstrating impressive success in removing
undesirable information from hazy images.

The second approach to addressing the transfer degrada-
tion issue involves training a specific supervised model using
the data captured in the corresponding hazy imaging sce-
nario. Though guaranteed performance can be achieved by
collecting the data and training a network in specific imag-
ing scenarios, it is always time-consuming to pursue such
an approach. A training-friendly dataset requires carefully
assigned sample distribution, with diverse categories, scales,
illuminations, and motion types. Compared to the cost of
collecting video clips, more resource is allocated to labelling
the ground truth. More importantly, it is difficult to collect
naturally hazy data. Therefore, it is preferable to construct
a general tracking system that can adaptively enhance the
visual clues derived from hazy imaging scenarios.

In this paper, we propose a novel Siamese-based dehazing
tracking approach enabled by a general feature restoration
module (FRT). To improve the model transferability, we
apply an innovative restoration process at the feature level.
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Fig. 1 Comparison of existing dehazing tracking approach and our
formulation. Rather than performing image-level dehazing and regular
tracking separately, we propose to achieve joint feature-level dehazing
and tracking, unifying the processing in the same feature space

As shown in Fig. 1, compared with the existing image-level
dehazing restoration techniques, the proposed restoration
module is designed to refine the feature representations rather
than the input pixels. The FRT module aims to recover the
discriminative feature patterns that can distinguish the object
from the surroundings even in hazy scenarios. Different from
the image-level dehazing approaches that can only process
the dehazy data, our FRT enables joint natural and hazy video
tracking.

Different from existing transformer structures, to enable
its haze restoration power, we introduce restoration prompts
and the local attention mechanism, correspondingly. The
restoration prompts aim to guide the restoration process-
ing within the encoder and decoder layers. Besides, it is
not necessary to access the long-range dependencies in the
restoration stage, we design a local attention mechanism
to accelerate the token aggregation. The information in the
transformer layers (Dosovitskiy et al., 2020) is hierarchi-
cally accumulated in a U-shape manner to extract and restore
the underlying salient features (Fig. 3). To better reflect the
consistency between template-search pairs in the Siamese
paradigm, we propose to simultaneously predict the bound-
ing box for both patches, rather than merely focusing on the
search patch. As a result, a model of complex dependency
between template-search pairs can be gradually obtained by
the Siamese tracking transformer. In principle, FRT is jointly
trained with the Siamese tracking transformer.

According to the above analysis, to validate network train-
ing, hazy video data is necessary. Therefore, rather than
manually collecting and annotating hazy videos, we pro-
pose to generate hazy video sequences using existing mature
haze generation approaches (Zhang et al., 2017; Hong et
al., 2020). Specifically, we generate the Haze-COCO dataset
for network training. Besides, we evaluate the tracking per-
formance of the proposed feature restoration transformer
tracker (FRTT) on synthesised hazy video datasets, i.e.,
Haze-OTB2015, Haze-TC128, and Haze-VOT2018. The
experimental results demonstrate the merits of performing
feature restoration for visual tracking in hazy scenarios.

To summarise, the proposed approachhas threemain inno-
vations:

– A feature restoration transformer is designed to refine the
hazy visual features to improve the target discrimination
in visual object tracking, thus providing a robust feature
enhancement for foggy imaging scenarios.

– A novel multi-task Siamese transformer is proposed to
achieve inter- and intra-interactions of each template-
search pair, improving the supervision signal with the
support from the template target self-perception.

– The proposed FRTT achieves robust dehazing visual
tracking performance in challenging foggy videos, pro-
viding a novel dehazing solution for downstream vision
tasks, which is generalised to a deraining solution with
consistent performance.

The remainder of this paper is organised as follows. In
Sect. 2, we introduce relevant development of recent track-
ing paradigms and dehazing studies. Our joint dehazing and
tracking network is presented in Sect. 3. The experimental
results and analysis are reported in Sect. 4. In Sect. 5, we
summarise our work into conclusions.

2 RelatedWork

For a detailed review of the existing tracking frameworks,
a reader can refer to recent surveys (Wu et al., 2013; Li et
al., 2016; Wu et al., 2015). In this paper, we briefly discuss
relevant studies that formulate the tracking paradigms and
inspire our designs. The following review includes advanced
tracking approaches and dehazing formulations.

2.1 Discriminative and Siamese Tracking
Approaches

Recent progress in visual tracking focuses on training
online discriminative filters and offline Siamese networks.
The online discriminative paradigm follows the traditional
learning-detection-updating manner to obtain a list of dedi-
cated discriminative filters (Danelljan et al., 2019; Bhat et al.,
2019). Thus, the target can be highlighted by performing a
correlation between the filters and the corresponding feature
representations. The learning stage is to optimise a bank of
correlation filters that fit the desired output with regularisa-
tions. In terms of constraining the distribution of the obtained
filters, several studies have explored spatial weighting strate-
gies (Danelljan et al., 2017), channel selection embeddings
(Xu et al., 2019, 2021), and multi-feature fusion schemes
(Danelljan et al., 2019; Xu et al., 2020).

Besides the online learning paradigm, to exploit the under-
lying appearance correspondence in the annotated video
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datasets, offline pair-wise matching is accomplished by deep
neural networks based on the Siamese architecture. In par-
ticular, the Siamese structure inputs an image pair, i.e., a
template and a search region, to obtain feature representa-
tions by abackbonenetwork and several adjustmentmodules,
where the target regions within the template and search
region are of salient similarity, and free of nuisance variables
confounding the appearance variations. After obtaining the
backbone feature embedding, SINT (Tao et al., 2016) calcu-
lates the scores of each template-candidate pair, where the
candidates are cropped from the search region. Then, the
candidate corresponding to the maximal score defines the
final target location.To avoid complicated calculations for the
sampled template-search pairs, GOTURN (Held et al., 2016)
directly predicts the bounding box location using stacked
fully connected (FC) layers. In spite of the simple design of
GOTURN, the FC layers restrict the input resolution of the
network. To enable flexible input sizes, the cross-correlation
between template and search is directly used to obtain the
response map in SiameseFC (Bertinetto et al., 2016), which
further boosts the merit of the Siamese tracking paradigm.

The above Siamese approaches construct an end-to-end
learning network to infer the centre location of the target in
the search region, for a given template. Besides themodule to
localise the target centre, precise allocation of the target scale
(width and height) is significant for accurate tracking. There-
fore, existing studies have concentrated on incorporating
bounding box regression designs in the Siamese structures.
Specifically, SiamRPN proposes to employ the Region Pro-
posal Network (RPN) to perform simultaneous classification
and regression and each anchor (Li et al., 2018). A similar
multi-branch structure has been developed with anchor-free
mode to alleviate the computational burden from anchor
assignment (Xu et al., 2020b). Specifically, the predefined
anchors are replaced by grid points, such that the num-
ber of candidates decreases k times, where k denotes the
scale numbers. Besides constructing multi-task structures
and formulating anchor-free models, ATOM performs IOU
maximisation for the template-candidate pair, achieving fine-
grainedoverlap precision (Danelljan et al., 2019). In addition,
SiamRPN++ (Li et al., 2019) has been proposed to effectively
fuse the features obtained by different Siamese layers.

2.2 Transformer Tracking Approaches

In the recent two years, the mainstream modelling tech-
niques in many computer vision tasks have shifted from
CNNs to transformer models. The global perception ability
exhibited by the self-attention mechanism enables compre-
hensive relationship mapping within the input tokens. In
visual object tracking, the transformer blocks are first intro-
duced inTransTChen et al. (2021). The cross-attention layers
compute the cross-interactions between a template and a

search, hierarchically injecting the intrinsic target informa-
tion from the template into the search region (Wang et al.,
2021). Such cross-interaction operations obtain improved
fusion results than the widely used simple correlation (Li
et al., 2018) and graph mapping (Gao et al., 2021). To
extend the cross-attention in amore general perspective, both
inter- and intra-interaction within the template and search
region are emphasised in Stark (Yan et al., 2021). Then,
the feature maps are directly concatenated and flattened for
self-attention training. Besides, existing studies also explore
the potential of transformer trackers in terms of hierarchical
feature fusion (Cao et al., 2021; Kang et al., 2023), refined
attention modules (Xu et al., 2023; Gao et al., 2022), and
pure Transformer architectures (Cui et al., 2022a; Li et al.,
2023).

Although the developed tracking approaches have lifted
up the benchmark record, the performance degradation dur-
ing theonline tracking stage in hazyvideos is underestimated.
In principle, existing tracking processes are predefined by
specified parameterised models regardless of the input video
imaging conditions. These models always assume consistent
distributions of the target appearance and lighting scenarios
between the training and test datasets. To bridge this gap, we
argue that the tracking process should benefit from appear-
ance adaptation in hazy situations. This is possible only if
a reliable restoration mechanism for each hazy input can be
provided so that an effective appearance correction can be
applied.

2.3 Dehazing Formulations

In low-level dehazing approaches, physical scatteringmodels
were first introduced to directly formulate the inverse hazy
imaging scenario problem using traditional prior-based algo-
rithms. In this paradigm, DCP (He et al., 2010) proposes to
use a prior clue to estimate the transmission map, explicitly
modelling the difference between the image object and atmo-
spheric light. Similar formulations are suggested for colour
attenuation (Zhu et al., 2014) and non-local prior (Berman
et al., 2016). The effectiveness of these approaches is deter-
mined by the fitting degree of the transmission map to the
target scenarios. However, a complex transmission map can
not be predicted well for a given hazy image, using hand-
crafted models, especially in unconstrained scenarios.

To benefit from large image datasets, deep learning has
been naturally applied to perform image dehazing in recent
years. DehazeNet (Cai et al., 2016) is the seminal approach
that constructs an end-to-end network to estimate themedium
transmission map. The local modelling and nonlinear activa-
tion of CNNs further improve the transmission capacity as
compared to the traditional approaches. A similar structure
was further introduced (Ren et al., 2016) to support multi-
scale perception, achieving a transmission map refinement.
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To alleviate the accumulated artifacts, advanced deep dehaz-
ing methods focus on directly generating restored images,
rather than the transmissionmap. To this end, a feature fusion
attention mechanism was proposed to obtain the desired out-
put, with �1 loss to supervise the network training (Qin et
al., 2020). Besides, positive samples were used (Hong et al.,
2020) through teacher-student supervision to achieve knowl-
edge transfer.

Though advanced performance has been achieved for
these image-level dehazing approaches, we argue that image-
level dehazing is not the only solution for visual recognition
tasks in hazy scenarios. In principle, we propose to perform
joint feature-level dehazing and tracking in an end-to-end
learning network. Specifically, it has been demonstrated that
feature representations are significant in delivering promis-
ing visual tracking performance (Wang et al., 2015). This
suggests that for downstream visual tasks, such as visual
tracking, it is more necessary to restore the haze-free descrip-
tors rather than directly recover the photo-realistic image
pixels.

3 Feature Restoration Transformer Tracker
(FRTT)

In this section, we introduce our feature restoration trans-
former tracking approach FRTT in detail. As shown in Fig. 2,
we input a pair of hazy images into FRTT, i.e., hazy target
template and hazy search region. The area of the template is
4 times the target scale, while the area of the search region is
25 times the target. Both the template and search region are
squared cropped from two randomly selected frames within
a video sequence. They are passed into a shared pre-trained
CNN backbone network to obtain the feature representa-
tions, and thenflattened and concatenated into ordered tokens
X = {XT , X I }, where the superscripts T and I denote tem-
plate and search region, respectively. The proposed feature
restoration transformer performs feature token refinement,
supervised by the tokens extracted from clear-view image
pairs. Once the restored tokens X̂ are obtained, a template-
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Fig. 2 An overview of our FRTT that has the following components:
backbone feature extractor, feature restoration transformer, template-
search transformer encoder, template-search transformer decoder, and
joint bounding box prediction head. The backbone network is used to
extract and adjust hazy input features X , as introduced in Sec. 3.1.
The feature restoration transformer is designed to refine the hazy visual
features from X to X̂ to enhance their discriminative power, as pre-

sented in Sec. 3.2. The template-search encoder-decoder is constructed
to achieve a spatio-temporal fusion, obtaining X̂en which captures
long-term dependency interactions to highlight the changing target, as
introduced in Sec. 3.3. The joint bounding box prediction head is con-
structed to perform a joint corner heatmaps prediction, as described in
Sec. 3.4
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search transformer encoder is used to fuse the inter- and
intra-relations among X̂ T and X̂ I . Therefore, the template
reference can be absorbed by the search tokens. Two query
entities and the encoder output X̂en are then input into the
decoder to obtain the corresponding reply tokens. For the
final prediction heads, we simultaneously predict the corner
heatmaps for both the template and search region.

3.1 Backbone Network

In the proposed method, both ResNet-50 (He et al., 2016)
and CvT (Wu et al., 2021) are tested, separately, as the back-
bone feature extractor. Therefore, both convolution-based
and transformer-based backbones are involved to reflect
the consistent capacity of our design. We use the weights
pretrained on ImageNet-1K for network initialisation. In gen-
eral, other backbone networks can also be considered to
substitute ResNet-50 or CvT to balance the effectiveness
and efficiency in practice, which has been widely explored
in edge device-based applications, such as UAV tracking
problems (Cao et al., 2022). Specifically, the input hazy
template and search region are of size HT × WT × 3 and
H I ×W I ×3, respectively. They are synthesised from clear-
view images byHazeRD (Zhang et al., 2017), as no annotated
hazy video dataset is available. The obtained featuremaps are

of HT

s × WT

s ×C and H I

s × W I

s ×C , where s is the total stride.
The subsequent one 1× 1 conv layer is applied to reduce the
channel number fromC to D. Similar to ViT (Dosovitskiy et
al., 2020), we flatten the spatial dimensions of the hazy image
featuremaps and concatenate them together to obtain the fea-

ture tokens X ∈ R

WT HT +W I H I

s2
×D . In the training stage, the

clear-view images are also considered to extract the corre-
sponding feature tokens X̃ , for the use of a supervision signal
in the restoration stage. To link the spatial layout among input
tokens, positional embeddings are assigned to these tokens
with a fixed cosine manner (Dosovitskiy et al., 2020).

3.2 Feature Restoration Network

Note that the quality of feature representation is the most
essential factor for tracking. However, haze directly contam-
inates the visibility and clarity of the raw pixels and degrades
the quality of image features. Though existing image-level
dehazing approaches have achieved significant progress, we
argue that it is not necessary to recover the raw pixels for
the visual tracking task. In principle, a high-performance
tracker focuses on the discriminative clues between the target
and surroundings, rather than reconstructing and enhancing
the raw pixels. Therefore, we propose performing feature
restoration for the contaminated backbone features. Given
the feature tokens obtained from both hazy and clean views,
X and X̃ , the target of our feature restoration network is to
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Fig. 3 The architecture of the proposed feature restoration transformer

recover the discriminative and salient feature representations
from X . As shown in Fig. 3, stacked feature restoration trans-
former blocks are utilised with skip connections to gradually
refine the involved feature tokens. Specifically, 3 downsam-
pling operators are inserted after Block A ∼ C in the upper
branch, compressing the token number to 1

2 ,
1
4 , and

1
8 , respec-

tively. While the 1× 1 conv layer is used to perform channel
adjustment. In the bottom branch, Block D ∼ F are stacked
to hierarchically reconstruct the features, where skip con-
nections are used to concatenate the corresponding output
of the upper blocks. For each block, besides the feature
tokens, a learnable restoration prompt is involved to guide the
interaction in the local attention layer. In the local attention
layer, we propose a multi-head local mechanism to perform
token interaction rather than the standard self-attention. The
local attention is achieved by introducing a local attention
mask L in the multiplication between the queries and keys,
where only the neighbouring 5 × 5 tokens and the prompt
tokens are used for each query token. The details of each
block are shown at the bottom of Fig. 3. Our local attention
emphasises the reconstructive power embedded in the neigh-
bouring region of each spatial region. In particular, standard
self-attention uses dense involvement among all the spatial
tokens, which is expert in generating long-ranged depen-
dencies for recognition tasks. But our goal is to recover the
intrinsic feature representations from hazy input rather than
globally perceiving the image content. Therefore, our local
attention can highlight such locality and decrease the com-
putation compared to the standard self-attention operation.

Different from the standard vision transformers, our net-
work employs a multi-resolution architecture, formulating
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a U-shape restoration manner. To this end, local details are
coded and recovered in Block A and Block F, while global
patterns are reflected by Block C and Block D. Therefore,
multiple granularities are involved in the processing stage,
delivering fine-grained restoration performance.

A Standard multi-head attention module with layer nor-
malisation and feed-forward network is employed to capture
long-range interactions in each layer. In principle, the pro-
posed feature restoration transformer achieves hazy data
representation recovery by incremental disentangling the
impact of haze from the contaminated visual features. Hav-
ing obtained the restored feature tokens X̂ and the desired
feature tokens X̃ , the Charbonnier loss (Charbonnier et al.,
1994) is used for image restoration:,

Lr =
√

‖X̂ − X̃‖2 + ε2, (1)

where ε is a constant (empirically set to 10−2 in this paper). In
terms of using the Charbonnier loss, the underlying reason
is that it can balance the requirement of sparse and dense
distribution of our reconstruction errors. If the reconstruction
error is larger than epsilon, sparse regularisation is dominant.
While if the reconstruction error is smaller than epsilon, it
highlights dense regularisation. In principle, a feature-level
dehazing task is indeed an ill-posed problem, such that a
simple dense loss is not suitable, especially for challenging
scenarios. Given the above analysis, the Charbonnier loss is
suitable for supervising our restoration transformer.

3.3 The Template-Search Transformer
Encoder-Decoder

In the template-search matching stage, we first follow the
basic structure of Stark (Yan et al., 2021) to perform a direct
token fusion within X̂ to obtain the encoder output X̂en .
The template-search encoder consists of Nen standard trans-
former blocks. In the decoder, different from the existing
transformer tracking networks that only extract the target
clue in the search (Carion et al., 2020; Yan et al., 2021),
we simultaneously use two query entities (as input) together
with X̂en to obtain the responses for both template and search.
Through interaction with the search region, the target state
conveyed by the template helps to emphasise the token qual-
ity within X̂en , providing an additional supervision signal
for the feature restoration transformer. The decoder has Nde

stacked transformer blocks. Based on the proposed trans-
former network, the target state can reliably be estimated
from the feature tokens.

3.4 Joint Bounding Box Prediction Head

The details of the template and search bounding box predic-
tion heads are presented in Fig. 4. We modified the approach
in Yan et al. (2021) to simultaneously predict the top-left and
down-right corners of the target in the template and search,
respectively. In particular, we split the encoder output X̂en

into X̂ T
en and X̂ I

en , corresponding to the template and the
search features. The encoder output and decoder replies are
fused to jointly generate the heatmaps of two corners for both
the template and search region. After obtaining the corner
heat maps, the final bounding box is determined by comput-
ing the expectation for each point. Then, the generalised IOU
loss and �1 loss are used for supervising the target localisation
loss in the template and the search region:

⎧
⎪⎨
⎪⎩
LT =λT

iouLiou

(
b̂T , b̃T

)
+ λT

�1
L�1

(
b̂T , b̃T

)

LI =λI
iouLiou

(
b̂I , b̃I

)
+ λT

�1
L�1

(
b̂I , b̃I

) , (2)

where b̂T , b̃T are the predicted bounding box and ground
truth in the template, b̂I , b̃I are the predicted result and
ground truth for the search region, λT

iou , λT
�1
, λI

iou , and λI
�1

are balancing hyper-parameters.

4 Experimental Results

In this section, we first introduce the experimental settings,
including the implementation details evaluation dataset, and
evaluation metrics. Then we report the comparison analy-
sis with the state-of-the-art tracking approaches. To validate
the merit of performing feature-level dehazing tracking, we
compare its performance against the image-level dehazing
formulation.Ablation studies are followed to present detailed
component analysis.

Joint Bounding Box Prediction Head

× FC
N

FC
N

Template Corner Heatmaps

     Instance Corner Heatmaps

Instance Reply

Template Reply

×

split

split

Fig. 4 The architecture of the proposed joint bounding box prediction
head
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4.1 Experimental Settings

4.1.1 Implementation Details

We implement FRTT with PyTorch on NVIDIA GeForce
RTX 2080Ti GPU. To achieve joint training for both the
restoration and tracking tasks, we use a mixture of training
datasets, including COCO (Lin et al., 2014), LaSOT (Fan
et al., 2019), GOT-10k (Huang et al., 2019), TrackingNet
(Muller et al., 2018) and the generated Haze-COCO. Haze-
COCO is synthesised from the COCO dataset using HazeRD
(Zhang et al., 2017). Some generated images are shown in
Fig. 5 Here, we only generate the hazy images for COCO
as COCO contains still images of 80 object categories and
various background scenarios. Except for the data fromHaze-
COCO, we remove the restoration loss during training and
directly copy the backbone features of the original images as
the input of the transformer encoder-decoder. The generated
Haze-COCO is also involved in training other state-of-the-art
tracking networks, enabling fair comparison. The hyperpa-
rameters are set as λT

iou = 0.1, λT
�1

= 0.25, λI
iou = 0.2, and

λI
�1

= 0.5.
To achieve joint feature restoration and tracking, our net-

work is trained in two stages. In the first phase, only the
feature restoration transformer is trained with COCO and
Haze-COCO, using the ADAMW (Loshchilov & Hutter,
2017) optimiser, for 200 epochs. The learning rate is set
to 10−4. The input resolutions of the template and instance

are 128 × 128 and 320 × 320 pixels, respectively. We
use pretrained ResNet-50 and CvT as our backbone net-
work candidates, with the parameters being initialised from
ImageNet-1K training. Typically, we name the two versions
of our model as FRRT_C and FRRT_V for the two back-
bones. In the second stage, we train the restoration and
tracking modules together with ADAMW for 500 epochs,
and 60, 000 template-instance pairs are sampled in each
epoch. Specifically, the initial learning rate is 10−4, and then
decreases to 10−5 at the 401 epoch. A gradient norm clipping
trick is used, with a predefined threshold of 0.1, to alle-
viate the impact of gradient explosion. Data augmentation
techniques, including random centre and scale jittering, are
applied to improve the data diversity. During the inference
stage, the initial frame is cropped as the template.We remove
the template box head and only output the target state of the
instance.

4.1.2 Datasets And Evaluation Metrics

To verify the tracking performance of a method in hazy
environments, we generate Haze-OTB2015, Haze-TC128,
Haze-VOT2018, Haze-LaSOT, andHaze-GOT-10K from the
original OTB2015 (Wu et al., 2015), TC128 (Liang et al.,
2015), VOT2018 (Kristan et al., 2018), LaSOT (Fan et al.,
2019), and GOT-10K (Huang et al., 2019) using HazeRD.
Some typical examples are illustrated in Fig. 5.

For evaluation, we employ the widely used OTB and VOT
protocols (Wu et al., 2015; Kristan et al., 2018). The area

5102BTO)b(OCOC)a(

5102BTO-ezaH)d(OCOC-ezaH)c(

8102TOV)f(821CT)e(

8102TOV-ezaH)h(821CT-ezaH)g(

Fig. 5 Some examples of the original and generated hazy images from COCO, OTB2015, TC128, and VOT2018
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Fig. 6 The experimental results obtained on the Haze-OTB2015 dataset. The precision plots (with the DP score reported in the figure legend) and
the success plots (with the AUC score reported in the figure legend) are presented
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Fig. 7 The experimental results obtained on the Haze-TC128 dataset. The precision plots (with the DP score reported in the figure legend) and the
success plots (with the AUC score reported in the figure legend) are presented

Table 1 The tracking results on
Haze-VOT2018

ATOM DiMP PrDiMP SiamRPN++ SiamMask Stark

EAO 0.271 0.296 0.272 0.235 0.223 0.127

A 0.538 0.546 0.563 0.584 0.556 0.587

TransT KeepTrack ToMP SiamCAR FRTT_C FRTT_V

EAO 0.222 0.170 0.195 0.291 0.311 0.306

A 0.601 0.593 0.601 0.561 0.571 0.580

Top-performing three results are shown in Bold, Italic and Bolditalic

under curve (AUC) and distance precision (DP) are recorded
to generate the success plot and precision plot, respectively,
on Haze-OTB2015 and Haze-TC128. Specifically, the suc-
cess plot reflects the degree of successfully tracked bounding
box in terms of overlap performance. A predicted bounding
box can be considered as successfully tracked if its overlap
with the groundtruth is above a threshold (Wu et al., 2015).
In contrast, the precision plot reflects the centre localisation

degree. The distance precision (DP) is observed by setting the
centre error threshold as 20 pixels. For Haze-VOT2018, we
use the expected average overlap (EAO) to comprehensively
evaluate the tracking performance (Kristan et al., 2018),
which simultaneously measures the bounding box accuracy
and robustness against failures. For Haze-LaSOT, precision
(PR), normalised precision (NPR), and AUC are used to
measure the tracking performance (Fan et al., 2019). For
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Table 2 The tracking results on Haze-LaSOT and Haze-GOT-10K

Dataset Metric ToMP PrDiMP DiMP ATOM KeepTrack Stark Mixformer TransT FRTT_C FRTT_V

Haze-LaSOT PR 0.616 0.533 0.504 0.426 0.616 0.598 0.626 0.599 0.658 0.644

NPR 0.671 0.571 0.541 0.451 0.668 0.649 0.682 0.653 0.722 0.713

AUC 0.587 0.499 0.476 0.398 0.578 0.575 0.593 0.569 0.614 0.605

Haze-GOT-10K AO 0.605 0.521 0.511 0.426 0.579 0.585 0.625 0.588 0.631 0.631

SR_0.50 0.702 0.601 0.582 0.483 0.662 0.670 0.713 0.671 0.734 0.729

SR_0.75 0.509 0.382 0.340 0.269 0.453 0.489 0.555 0.496 0.590 0.588

The top three results are highlighted in Bold, Italic and Bolditalic

ATOM            DiMP          KeepTrack   Mixformer          Stark            ToMP             TransT           FRTT_C

Fig. 8 Illustration of the qualitative tracking results on challenging
hazy sequences (the listed videos are Left: Haze-Airport_ce, Haze-
Basketball_ce2, Haze-Deer, Haze-Ironman, Haze-Baby_ce, Right:
Haze-Basketball_ce1, Haze-CarDark, Haze-Football1, Haze-Skiing,

Haze-Bolt, from the Haze-TC128 dataset). The colour bounding boxes
are the corresponding predictions of ATOM, DiMP, KeepTrack, Mix-
former, Stark, ToMP, TransT, and the proposed FRTT tracker

Haze-GOT-10K, its online evaluation server outputs the test
performance in terms of average overlap (AO), the success
rates with two thresholds (SR0.50 and SR0.75) (Huang et al.,
2019).

4.2 ComparisonWith Other Tracking Algorithms

Haze-OTB2015:There are 100videos in theHaze-OTB2015
dataset. Besides the hazy lighting conditions, the videos
also contain other challenging factors, reflecting diverse
visual effects for practical variations. As haze is additionally
imposed on the original OTB2015 images, it is much more

difficult to successfully track the target on Haze-OTB2015.
The average video length of Haze-OTB2015 is 591 frames.
The experimental results are reported in Fig. 6 using the pre-
cision and success plots.

Among all the advanced DCF and Siamese approaches,
our FRTT design obtains the top performance, in both
precision and success plots.Compared to the third best,Keep-
Track, FRTT_C improves the DP from 83.5% to 88.0%, and
the AUC from 64.3% to 66.9%, demonstrating its advan-
tages in robust tracking under challenging hazy scenarios.
FRTT_V achieves a similar performance compared with
FRTT_C.We attribute the slight advantage of FRTT_C to the
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Fig. 9 Visualisation of the haze and rainy samples, with different contamination levels

fact that convolutions are more expert in preserving local rel-
evance than transformers, which exhibit more reconstruction
power in our restoration transformer. In particular, SiamMask
performs poorly on this benchmark. The underlying reason is
that SiamMask performs segmentation to localise the target.
However, predicting a precise target mask is too difficult for
hazy input as shown in Fig. 5. The results illustrate the merits
of performing feature restoration proposed by our approach
for hazy videos.
Haze-TC128: The Haze-TC128 dataset contains 128 video
sequences. The original TC128 dataset focuses on explor-
ing the potential of colour clues for advanced visual tracking
systems and the additional added hazy content challenges
the representative power and increases the tracking difficulty.
The average sequence length of Haze-TC128 is 429, belong-
ing to standard short-term tracking datasets. We report the
experimental results in Fig. 7 using the precision and suc-
cess plots.

Compared to the advanced end-to-end deep trackers, the
FRTT series achieves the top performance in both plots. Con-
sistent promising results of our approach can be observed on
Haze-TC128 as on Haze-OTB2015. Specifically, compared
to Stark, which contains similar components in modelling
the appearance network as FRRT, our FRRT_C outperforms
Stark by 11.1% and 6.1% in terms of DP and AUC. As the
difficulty of Haze-TC128 is increased than Haze-OTB2015,
FRRT_V performs better than FRRT_C in terms of over-
lap metric (AUC), reflecting the relative merit of long-range
dependencies in localising challenging sequences. The above
comparison verifies the effectiveness and superiority of per-
forming feature-level dehazing in visual object tracking.
Haze-VOT2018: The Haze-VOT2018 dataset contains 60
challenging video sequences for single object tracking. Fol-
lowing the standard protocol, we report the detailed results in

Table 1. Consistent advantages of FRRT_C and FRRT_V can
be obtained onHaze-VOT2018, achieving 0.311 and 0.306 in
terms of EAO. Specifically, without performing restoration,
the transformer-based Stark suffers the largest performance
drop, which indicates that the particular imaging challenge
cannot be directly addressed by simply constructing powerful
transformer trackers. As self-attention amplifies the similar
patterns while suppressing the dissimilar ones during token
interaction, haze contaminates the token embeddings thus
drastically weakening the discrimination.
Haze-LaSOT: The Haze-LaSOT validation set contains 280
long-term video sequences. We report the experimental
results in Table 2. Our FRTT_C achieves the best perfor-
mance among all the involved trackers, obtaining 0.772 and
0.614 in terms of NPR and AUC. Compared to the advanced
KeepTrack, both FRTT_C and FRTT_V exhibit more than
2% advantages in terms of PR, NPR, and AUC. In particular,
the average length of Haze-LaSOT is more than 1500 frames
per sequence, such long-term property verifies the consistent
merit of our FRTT.
Haze-GOT-10K: The Haze-GOT-10K test set contains 180
challenging video sequenceswith real-worldmoving objects.
Table 2 lists the tracking results. Similar to the performance
on Haze-LaSOT, our FRTT_C and FRTT_V surpass other
advanced trackers.

Besides quantitative comparisons, we also deliver the
qualitative performance results in Fig. 8. As in sequences
Haze-Airport_ce andHaze-Baby_ce, their original non-hazy
videos are less challenging, and all the advanced trackers
can successfully track the target. While in the hazy scenario,
our FRRT achieves robust tracking performance compared to
the failures produced by other trackers. For other more chal-
lenging sequences (Haze-Ironman, Haze-Skiing), our FRRT
can still maintain high-performing predictions, thanks to the
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feature restoration capability. The above visualisation com-
parison reflects a consistent merit of the proposed design in
dealing with hazy visual tracking issues.

4.3 Image-Level Dehazing + Tracking v.s.
Feature-Level Dehazing Tracking

The entire motivation of our design is constructed on the
belief that feature-level dehazing tracking outperforms the
image-level dehazing + tracking formulations. Therefore, we
further report the tracking performance of image-level dehaz-
ing + tracking (ILD+T) and feature-level dehazing tracking
(FLDT) approaches. In particular, DehazeFormer (Song et
al., 2023) is used to perform image-level dehazing task for the
test datasets, i.e., Haze-OTB2015, Haze-TC128, and Haze-
VOT2018. After obtaining the dehazed image sequences, we
repeat the test process for all the involved trackers. Detailed
results are reported in Table 3. For Haze-OTB2015, except
Mixformer, all the trackers improve the tracking performance
after using image-level pre-process, with the DP gains rang-
ing from 0.6% to 4.1%, andAUC gains ranging from 0.4% to
4.0%. Among all the compared trackers, the best-performing
tracker with image-level dehazing + tracking is KeepTrack,
which achieves 85.0%DP and 65.1%AUC.While our FRRT
method (88.0% DP and 66.9% AUC) still performs bet-
ter than KeepTrack with image-level dehazing + tracking,
demonstrating themerit of performing feature-level dehazing
tracking in the proposed method. In addition, FRRT further
improves the performance to 91.2% DP and 69.2% AUC
after using both image- and feature-level dehazing.

We observe similar results on Haze-TC128. The top-
performing tracker after image-level dehazing + tracking is
DiMP, with 0.342 EAO, which is better than FRRT. The
underlying reason is that VOT exhibits severe short-term
visual challenges, DiMP quipped with online updated fil-
ters presents a better solution than the approaches using
a fixed template. The sequences with image-level dehaz-
ing + tracking are less challenging, which can unveil the
online modelling capacity of DiMP. Besides the perspective
of dehazing power, the forward pass of image-level dehazing
(DehazeFormer-M) costs 77.29ms while our feature restora-
tion transformer only needs 6.35ms in our implementation,
demonstrating the efficiency of our solution. According to
the above analysis, we can conclude the merit of our feature-
level dehazing tracking design and the complementary effect
between image-level + tracking and feature-level dehazing
tracking.

4.4 Dehazing Tracking with Different Challenging
Levels

To further analyse the restoration power of our designed
approach, we conduct experiments in terms of both hazy

and rainy scenarios with different degrees. Illustration of the
generated hazy and rainy samples is presented in Fig. 9. As
listed in Table 4, different levels of visibility are considered
the dehazing ability of our approach and other competitors.
The degree denotes the visibility distance (metre), which
is obtained by HazeRD. Consistent with the default haze
degree (500-metre visibility), our FRTT achieves the best
performance in all the possible degrees, ranging from 50ms
to 1000ms. Similarly, the gap between our two versions,
FRTT_C and FRTT_V, is also marginal, where FRTT_C
performs slightly better than FRTT_V in most situations.
Though outperforming other trackers, our approach cannot
well handle the heavy haze, e.g., 50-metre visibility, with
the DP and AUC below 0.2. Among the involved advanced
trackers, it is interesting that ToMP exhibits a relative advan-
tage in the heavy haze situations. We attribute this as ToMP
can capture global information with extremely low inductive
bias and thus learn more powerful predictions of the target
model, which is quite suitable under extremely hazy scenar-
ios. Given the above analysis, we verified the merit of our
restoration design in terms of different haze levels.

Besides haze, in practical scenarios, other challenging
weathers also impede the applications of the normally well-
trained trackers. Therefore, we perform experiments to verify
the generation ability of our approach against the rainy
weather. As reported in Table 5, we list the results of tracking
performance under 100mm/hr and 200mm/hr rainfall situa-
tions. Different from the hazy images, rainy images receive
less negative impact in terms of tracking performance drop.
Most of the trackers can achieve the DP and AUC above
0.8 and 0.6, which already an acceptable results in challeng-
ing scenarios. In principle, the absolute values of our FRTT
performance are also much higher than those in the hazy sit-
uations, but it cannot outperform other advanced trackers.
After carefully compare the contamination added by haze
and rain, we found that haze also destroys the holistic appear-
ance of an image, while rain only affects a limited number
of spatial regions. Therefore, a certain degree of the original
appearance can well support the discrimination calculation
during the tracking process, which decreases the negative
impact of the images with rains. In addition, according to the
above analysis, specific designs should be proposed to restore
the rainy data, and thus further boost the derainy tracking per-
formance.

Beyond challengingweather, we further provide the track-
ing performance of our tracking approach on the standard
LaSOT, to evaluate its basic capacity for non-hazy videos.We
report the results inTable 6.We canfind that our FRTTcannot
outperform the advancedKeepTrack.Wecanobtain a compa-
rable performancewithTransT. In principle, ourwork aims to
achieve joint dehazing and tracking. Our designs focus on the
restoration network and joint bounding-box prediction mod-
ule. Our FRTT uses a fixed template to guide tracking, which
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Table 6 Tracking performance on LaSOT

AUC NPR PR

KeepTrack 0.671 0.772 0.702

DiMP 0.569 0.650 0.567

TranST 0.649 0.738 0.690

FRTT_C 0.655 0.747 0.694

FRTT_V 0.651 0.745 0.690

performs inferior under natural scenarios than KeepTrack.
However, our approach achieves a balanced performance
between accuracy and efficiency, especially obtaining quite
superior performance for dehazing tracking.

4.5 Ablation Study

To further validate the effectiveness of the proposed FRTT
method, we perform an ablation study on the synthe-
sised datasets, i.e., Haze-VOT2018 and Haze-OTB100. As
reported in Table 7, the entire FRTT achieves 0.311 in
terms of EAO on VOT2018, and 0.669 in terms of AUC
on OTB100, with an average speed around 46 FPS. The
term ’FRTT - FRT’ denotes the tracking network without
the restoration module, where the feature tokens X of the
backbone output are directly used as the input of the trans-
former encoder. As the hazy visual feature is not refined to fit
the target matching task, this version scarifies EAO by 0.076
and AUC by 0.072, while increasing the speed to around
65 FPS. To replace our FRT with standard multi-head self-
attention layers (’FRTT - FRT + MHSA’), the performance
drops 0.4% and 0.5%, demonstrating themerit of performing
prompt embedded local attention.

After verifying the merit of integrating the proposed
feature restoration module into the tracker, we test the
effectiveness of using the transformer decoder. Specifically,
’FRTT - TDE’ in Table 7 denotes the tracker without the
transformer decoder (TDE), that directly predicts the corner
heatmaps using the encoder output X̂en . In this version, com-
pared to the entire FRTT, EAO is decreased from 0.311 to

Table 7 The ablation study results

Haze-VOT2018 Haze-OTB2015

EAO AUC FPS

FRTT - FRT 0.235 0.597 65

FRTT - FRT + MHA 0.307 0.664 43

FRTT 0.311 0.669 46

FRTT - TDE 0.270 0.644 50

FRTT - TBH 0.289 0.657 46

FRTT 0.311 0.669 46

0.270, and AUC is dropped from 0.669 to 0.644. Though
some existing studies calculate the tracking decision with
only the encoder structure, our results demonstrate the advan-
tage of considering the decoder stage to achieve amore robust
template-search fusion, compared to that in the encoder stage.

By removing the template box head from the original
decoder module, the tracking performance drops from 0.311
to 0.289 in terms of EAO and from 0.669 to 0.657 in terms
of AUC. The results indicate the merits of predicting tem-
plate bounding box in the training stage to provide additional
supervision signals for back-propagation, compared to the
existing search region-only prediction paradigm. As we dis-
regard this template bounding box head in the inference stage
anyway, there is no additional computational burden for this
strategy.

5 Conclusion

To address the tracking challenges introduced by the haze
imaging condition,we unified the processing of dehazing and
tracking jointly at the feature level, delivering a novel haze
feature restoration and tracking mechanism to enable precise
object tracking. The proposed approach contains a feature
restoration transformer, a template-search encoder-decider,
and a joint bounding box head. The feature restoration trans-
former enabled feature-level recovery for the discriminative
and salient visual clues. A modified transformer encoder-
decoder was advocated to perform offline template-search
matching learning, with both input images used in concert
to supervise the target localisation. The joint bounding box
head entangles the prediction clues for target localisation in
both template and search region, providing accurate target-
ness support. The entire FRTT method achieved favourable
performance in the hazy video datasets synthesised by an
advanced haze generator. The collection and annotation of
real hazy videos will be an integral part of future work with
the aim of validating the proposed FRTT in practical sce-
narios. Not only single-object tracking but also multi-object
tracking (Li et al., 2022; Zeng et al., 2022) will be involved
in future.
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