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Abstract
The task ofNovel ClassDiscovery (NCD) in semantic segmentation involves training amodel to accurately segment unlabelled
(novel) classes, using the supervision available from annotated (base) classes. The NCD taskwithin the 3D point cloud domain
is novel, and it is characterised by assumptions and challenges absent in its 2D counterpart. This paper advances the analysis
of point cloud data in four directions. Firstly, it introduces the novel task of NCD for point cloud semantic segmentation.
Secondly, it demonstrates that directly applying an existing NCD method for 2D image semantic segmentation to 3D data
yields limited results. Thirdly, it presents a newNCDapproach based on online clustering, uncertainty estimation, and semantic
distillation. Lastly, it proposes a novel evaluation protocol to rigorously assess the performance ofNCD in point cloud semantic
segmentation. Through comprehensive evaluations on the SemanticKITTI, SemanticPOSS, and S3DIS datasets, our approach
show superior performance compared to the considered baselines.
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1 Introduction

Humans possess a remarkable ability to categorise new
information (or novelties) into homogeneous groups, even
when they are unfamiliar with what is observed. In con-
trast, machines can hardly achieve this without guidance.
The primary challenges of machine vision lie in crafting dis-
criminative latent representations of the real world and in
quantifying uncertainty when faced with novelties (Han et
al., 2019; Zhong et al., 2021; Zhao et al., 2022). Han et al.
(2019) pioneered the formulation of the Novel Class Dis-
covery (NCD) problem. They defined it as the endeavor to
categorise samples from an unlabelled dataset, termed novel
samples, into distinct classes by leveraging the insights from
a set of labelled samples, known as the base samples. Note
that the classes in the labelled and unlabelled datasets are
disjoint.

NCD has been explored in the 2D image domain for clas-
sification (Han et al., 2019; Fini et al., 2021; Zhong et al.,
2021), and subsequently, for semantic segmentation (Zhao
et al., 2022). Specifically, Zhao et al. (2022) introduced the
first approach to address NCD in the 2D semantic segmen-
tation task. The authors posited two key assumptions: first,
each image contains only one novel class; and second, the
novel class corresponds to a foreground object detectable
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Fig. 1 SNOPS addresses the novel class discovery task in 3D point
cloud semantic segmentation by leveraging the knowledge of ground-
truth labels (for base classes) and the auxiliary supervision from a foun-

dation model (for novel classes) to learn the correct semantic segmen-
tation of both base and novel points

through saliency detection (e.g., a man on a bicycle, with
the bicycle being the novel class). Leveraging these assump-
tions, the authors were able to pool the features of each image
into a single latent representation and group the representa-
tions of the entire dataset to identify clusters of novel classes.
However, we argue that these assumptions impose signifi-
cant constraints that are difficult to meet with generic 3D
data, especially point clouds obtained fromLiDARsensors in
large-scale settings. A single point cloud may contain multi-
ple novel classes, and the concept of saliency in 3D data does
not directly translate from its 2D counterpart. While both
concepts relate to the focus of human attention, 3D saliency
is more about the regional significance of 3D surfaces rather
than a simple foreground/background distinction (Song et
al., 2021).

Our previous work, NOvel Point Segmentation (NOPS)
(Riz et al., 2023) pioneers in NCD for 3D semantic seg-
mentation, with the primary focus on addressing the above
discussed limitations. NOPS has shown promising perfor-
mance in tackling 3D NCD, yet, the recent emergence of
3D foundation models (Peng et al., 2023) offers us new
opportunities in terms of the methodology design in NCD
for their strong performance in zero-shot recognition. How-
ever we empirically show that the accuracy of using the
foundation model alone in a zero-shot manner for the NCD
task is significantly lower than combining it with method
that is specifically designed for NCD onmultiple benchmark
datasets (Behley et al., 2019; Pan et al., 2020; Armeni et al.,
2016), as shown in Tables 4, 5 and 6.

In thiswork,we present Semantically-alignedNovel Point
Segmentation (SNOPS), a method that extends NOPS (Riz
et al., 2023) by utilising an additional, unsupervised source
of semantic knowledge in the form of a foundation model,
such as CLIP (Radford et al., 2021) (Fig. 1). SNOPS, given a
dataset partially annotated by humans, concurrently learns
base and novel semantic classes by clustering unlabelled

points based on their semantic similarities. We have adapted
the methodology of Zhao et al. (2022), termed Entropy-
based Uncertainty Modelling and Self-training (EUMS), to
accommodate point cloud data, thereby establishing it as our
baseline. We move beyond their framework and, drawing
inspiration from Caron et al. (2020) and Peng et al. (2023),
incorporate batch-level (online) clustering and distillation
from a foundation model. Batch-level clustering generates
prototypes that we utilise to manage large-cardinality 3D
point clouds, while distillation is essential to leverage the
intrinsic semantic knowledge contained within foundation
models. We update prototypes during training to make clus-
tering computationally feasible and introduce amethodbased
on uncertainty to enhance prototype quality. We establish
point-cluster assignment to produce pseudo-labels for self-
training and also employ over-clustering to ensure precision.
Given the diverse semantic classes within point clouds, it is
inevitable that not all classes are represented in every batch.
To address this issue, we have developed a queuing approach
to maintain representative features throughout the training
process. These features act as proxies for missing categories
during the generation of pseudo-labels, facilitating a more
balanced clustering of the novel classes. Lastly, we gener-
ate two augmented perspectives of a singular point cloud
and enforce consistency in pseudo-labels between them. Our
methodology is assessed on SemanticKITTI (Behley et al.,
2019; Geiger et al., 2012; Behley et al., 2021), Semantic-
POSS (Pan et al., 2020), S3DIS (Armeni et al., 2016), and
nuScenes Caesar et al. (2020). We establish an evaluation
protocol for NCD and point cloud segmentation, serving as a
potential benchmark for subsequent research. Empirical evi-
dence suggests that our method significantly surpasses our
baseline and predecessor version of our method (Riz et al.,
2023) across all datasets. Additionally, we undertake a com-
prehensive ablation study to underscore the significance of
our method’s diverse components.
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To summarise, our contributions are:

• TacklingNCD for 3D semantic segmentation, addressing
unfit assumptions that are originally imposed onNCD for
2D semantic segmentation;

• Providing empirical proof that zero-shot semantic seg-
mentation with 3D foundation model is not a good
enough solution for NCD.

• Presenting a novel method SNOPS that effectively syn-
ergises NCD method with semantic distillation through
foundation model, advancing the state of the art in NCD
for 3D semantic segmentation;

• Introducing a new evaluation protocol to assess the per-
formance of NCD for 3D semantic segmentation.

This paper extends our earlier work (Riz et al., 2023) in
several aspects.We extend the original NOPS by leveraging a
foundationmodel (Peng et al., 2023) to improve the accuracy
of novel classes.Weempirically show that the zero-shot accu-
racy of the foundationmodel alone is significantly lower than
that achieved by using it in combination of our novel class
discovery method. Then, we significantly extend our exper-
imental evaluation and analysis by adding new experiments,
new datasets, new comparisons, and new ablation studies to
evaluate this new setup. Lastly, we expand the related work
by reviewing additional state-of-the-art approaches.

2 RelatedWork

In this section, we thoroughly discuss recent works on three
relevant topics, including point cloud semantic segmentation,
3D representation learning and novel class discovery.
Point cloud semantic segmentation can be performed at
point level (Qi et al., 2017), on range view maps (Ron-
neberger et al., 2015), or by voxelising the input points (Zhou
& Tuzel, 2018). Point-level networks process the input with-
out intermediate representations. Examples of these include
PointNet (Qi et al., 2017), PointNet++ (Qi et al., 2017),
RandLA-Net (Hu et al., 2020), and KPConv (Thomas et
al., 2019). PointNet (Qi et al., 2017) and PointNet++ (Qi
et al., 2017) are based on a series of multi-layer percep-
tron where PointNet++ introduces global and local fea-
ture aggregation at multiple scales. RandLA-Net (Hu et
al., 2020) uses random sampling, attentive pooling, and
local spatial encoding. KPConv (Thomas et al., 2019)
employs flexible and deformable convolutions in a contin-
uous input space. Point-level networks are computationally
inefficient when large-scale point clouds are processed.
Range view architectures (Milioto et al., 2019) and voxel-
based approaches (Choy et al., 2019) are more compu-
tationally efficient than their point-level counterpart. The
former requires projecting the input points on a 2D dense

map, processing input maps with 2D convolutional fil-
ters (Ronneberger et al., 2015), and re-projecting predictions
to the initial 3D space. SqueezeSeg networks (Wu et al.,
2018, 2019), 3D-MiniNet (Alonso, Riazuelo, Montesano,
and Murillo, 2020), RangeNet++ (Milioto et al., 2019), and
PolarNet (Zhang et al., 2020) are examples of this category.
Although they are more efficient, these approaches tend to
lose information during projection and re-projection. The
latter includes 3D quantisation-based approaches that dis-
cretise the input points into a 3D voxel grid and employ 3D
convolutions (Zhou & Tuzel, 2018) or 3D sparse convolu-
tions (Graham& van der Maaten, 2017; Choy et al., 2019) to
predict per-voxel classes. VoxelNet (Zhou & Tuzel, 2018),
SparseConv (Graham&van derMaaten, 2017;Grahamet al.,
2018), MinkowskiNet (Choy et al., 2019), Cylinder3D (Zhu
et al., 2021), and (AF)2-S3Net (Cheng et al., 2021) are archi-
tectures belonging to this category. The above-mentioned
approaches usually tackle point cloud segmentation in a
supervised setting, whereas we address novel class discovery
with both labelled base classes and unlabelled novel classes.
3D representation learning refers to learn general and
useful point cloud representations from unlabelled point
cloud data (Achlioptas et al., 2018; Xiao et al., 2023).
Existing methods can be grouped into generative, context
similarity based, local descriptor based, and multi-modal
approaches. Generative approaches involve the generation of
a point cloud as unsupervised task (Yang et al., 2018, 2021,
2019). FoldingNet (Yang et al., 2018), PSG-Net (Yang et al.,
2021) and PointFlow (Yang et al., 2019) follow the autoen-
coder (Hinton & Salakhutdinov, 2006) paradigm and learn
to self-reconstruct the input point cloud. Differently, Latent-
GAN (Achlioptas et al., 2018), Tree-GAN (Shu et al., 2019)
and 3D-GAN (Wu et al., 2016) follow a generative adversar-
ial strategy and learn to generate point cloud instances from
a sampled vector or a latent embedding. PU-GAN (Li et al.,
2019) and PU-GCN (Qian et al., 2021) learn the underlying
geometries of point clouds by generating a denser point cloud
with similar geometries. On the other hand, PCN (Yuan et
al., 2018), SA-Net (Wen et al., 2020), Point-BERT (Yu et al.,
2022) and Point-MAE (Pang et al., 2022) learn to complete
the input point cloudbypredicting the arbitrarymissing parts.
Context similarity based approaches learn discriminative 3D
representations through the underlying similarities between
point samples. PointContrast (Xie et al., 2020), DepthCon-
trast (Zhang et al., 2021), ACD (Gadelha et al., 2020) and
STRL (Huang et al., 2021) enforce the network to group
feature representations through contrastive learning between
positive and negative point cloud pairs. Another similarity
based techniquemakes use of coordinate sorting as a unsuper-
vised task. For example, Jigsaw3D (Sauder & Sievers, 2019)
and Rotation3D (Poursaeed et al., 2020) follow this idea and
train the network to predict either the re-organised version or
the rotation angle of the input point clouds. Local descriptor
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approaches focus on learning to encode per-point informative
features by solving low-level tasks, e.g. point cloud registra-
tion. PPF-FoldNet (Deng et al., 2018) and CEM (Jiang et
al., 2021) learn compact descriptors by solving the task of
point cloud matching and registration, respectively. Differ-
ently, GeDi (Poiesi & Boscaini, 2022) employs constrastive
learning between canonical point cloud patches to learn com-
pact and generalisable descriptors. Multi-modal approaches
follow the recent success from the 2D literature (Radford et
al., 2021; Dong et al., 2023) and learn robust and compre-
hensive representations by modeling the relationships across
modalities. Language grounding (Rozenberszki et al., 2022)
maps per-point features to text CLIP (Radford et al., 2021)
embeddings, providing a robust pre-training for semantic
tasks. ConceptFusion (Jatavallabhula et al., 2023) leverages
the open-set capabilities of foundation models (Guzhov et
al., 2022; Radford et al., 2021; Kirillov et al., 2023) from
multiple modalities and fuses their features into a 3D map
via traditional integration approaches. More recently, Open-
Scene (Peng et al., 2023) learns a feature spacewhere text and
multi-view image pixels are co-embedded in the CLIP fea-
ture space. In this work, we tackle NCD for 3D segmentation
and extend our previous method NOPS (Riz et al., 2023) by
leveraging the powerful representations of OpenScene (Peng
et al., 2023) in our novel class discovery network.
Novel class discovery (NCD) is initially explored for 2D
classification (Han et al., 2019; Zhong et al., 2021; Fini et
al., 2021; Joseph et al., 2022; Roy et al., 2022; Jia et al., 2021;
Zhong et al., 2021; Vaze et al., 2022; Yang et al., 2022) and
2D segmentation (Zhao et al., 2022). NCD is formulated in
a different way compared to standard semi-supervised learn-
ing (Souly et al., 2017; Zhang &Qi, 2020; Tang et al., 2016).
In semi-supervised learning, labelled and unlabelled sam-
ples belong to the same classes, while in NCD, novel and
base samples belong to disjoint classes. Han et al. (Han et
al., 2019) pioneered the NCD problem for 2D image classifi-
cation. A classification model is pre-trained on a set of base
classes and used as feature extractor for the novel classes.
They then train a classifier for the novel classes using the
pseudo-labels produced by the pre-trained model. Zhong
et al. (Zhong et al., 2021) introduced neighbourhood con-
trastive learning to generate discriminative representations
for clustering. They retrieve and aggregate pseudo-positive
pairs with contrastive learning, encouraging the model to
learn more discriminative representations. Hard negatives
are obtained by mixing labelled and unlabelled samples in
the feature space. UNO (Fini et al., 2021) unifies the two
previous works by using a unique classification loss func-
tion for both base and novel classes, where pseudo-labels
are processed together with ground-truth labels. NCD with-
out Forgetting (Joseph et al., 2022) and FRoST (Roy et al.,
2022) further extendNCD to the incremental learning setting.
EUMS (Zhao et al., 2022) is the only approach analysing

NCD for 2D semantic segmentation. Unlike image classi-
fication, the model has to classify each pixel and handle
multiple classes in each image. EUMS consists of a multi-
stage pipeline using a saliency model to cluster the latent
representations of novel classes to produce pseudo-labels.
Moreover, entropy-based uncertainty and self-training are
used to overcome noisy pseudo-labels while improving the
model performance on the novel classes.

In this work, we focus on NCD for 3D point cloud
semantic segmentation. Unlike previous works, our problem
inherits the challenges from the fields of 2D semantic seg-
mentation (Chen et al., 2018; Chen, Papandreou, Kokkinos,
Murphy, and Yuille, 2017) and 3D point cloud segmenta-
tion (Choy et al., 2019; Saltori et al., 2022; Milioto et al.,
2019). From 2D semantic segmentation, the main challenges
are multiple novel classes in the same image and the strong
class unbalance. From 3D point cloud segmentation, we have
to tackle the sparsity of input data, the different density of
point cloud regions and the inability to identify foreground
and background, which are not present in 2D segmenta-
tion (Zhao et al., 2022). From related fields in 3D scene
understanding, the previous effort REAL (Cen et al., 2022)
tackles open-world 3D semantic segmentation by classify-
ing all the unknown points into a single class. Novel classes
are then labelled by a human annotator and used for learning
incrementally novel classes. Instead, NOPS (Riz et al., 2023)
is the first work tacklingNCD for 3D semantic segmentation.
Unlike (Zhao et al., 2022) that usesK-Means,Riz et al. (2023)
formulate clustering as an optimal transport problem to avoid
degenerate solutions, i.e. all data points may be assigned to
the same label and learn a constant representation (Asano et
al., 2020;Mei et al., 2022). On top ofNOPS (Riz et al., 2023),
this work incorporates the unsupervised semantic knowledge
distilled from a 3D foundation model (Peng et al., 2023). We
show that the unsupervised knowledge distilled from a 3D
foundation model significantly improves NCD performance.

3 Our Approach

3.1 Overview

Weuse twoUNet-like deep neural networks optimised for 3D
data tof extract point-level features from an input point cloud.
The primary network starts untrained, serving as our target
for training to concurrently segment both base and novel
classes. The secondary network is auxiliary and pre-trained
for task-agnostic open-vocabulary 3D scene understanding.
For base class points, we use traditional supervised training,
leveraging the available human annotations (ground truth).
The training for novel classes pursues two distinct objec-
tives. Firstly, we aim to align the features with the semantic
knowledge of the auxiliary network (Sect. 3.6). Secondly,
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Fig. 2 Overview of SNOPS. We extract point-level featuresF with the
shared backbone fg . F are used to obtain pseudo-labels in the online
pseudo-labelling block. We forward F through a novel fn and a base
fb segmentation head to obtain point-wise predictions. We also pass F
through a projection layer fs that produces point-wise features for novel

points. We align such point descriptors to the ones output by a frozen
auxiliary network fa , a large 3D vision model. The network is opti-
mised by minimising the sum of a segmentation loss and an alignment
loss

we adopt a self-supervised approach that generates pseudo-
labels based on our online pseudo-labelling method through
the Sinkhorn-Knopp algorithm (Cuturi, 2013) (Sect. 3.3). To
enable each processed batch to maintain an equal number
of novel classes, even if some are absent in point clouds
being processed, we use a class-balanced queue that stores
features during training (Sect. 3.4). We harness the pseudo-
label confidences (class probabilities) to sift out uncertain
points, thus populating the queue solely with high-quality
points (Sect. 3.5). Specifically, our optimisation objective is

L = �S + γ �A, (1)

where �S is the segmentation loss involving ground-truth
labels and pseudo-labels (Sect. 3.3), �A is the alignment loss
that considers the semantic features extracted with the auxil-
iary network (Sect. 3.6) and γ is a weighting factor. Figure 2
shows the block diagram of SNOPS.

3.2 Problem Formulation

Let X = {X } be a dataset of 3D point clouds captured in
different scenes. The point cloud X is a set composed of
a base set Xb and a novel set Xn , s.t. X = Xb ∪ Xn . The

semantic categories that can be present in our point clouds
are C = Cb ∪ Cn , where Cb is the set of base classes and Cn
is the set of novel classes, s.t. Cb ∩ Cn = ∅. Each X ∈ X
is composed of a finite but unknown number of 3D points
X = {(x, c)}, where x ∈ R

3 is the coordinate of the a point
and c is its semantic class. We know the class of the point
(x, c), s.t. x ∈ Xb and c ∈ Cb, but we do not know the class
of the point (x, c), s.t. x ∈ Xn and c ∈ Cn . No points in Xn

belong to one of the base classes Cb. As in (Han et al., 2019;
Zhong et al., 2021; Zhao et al., 2022), we assume that the
number of classes to discover is known, i.e. |Cn| = Cn . We
aim to train a deep neural network f� that can segment all the
points of a given point cloud, thus learning to jointly segment
base classes Cb and novel classes Cn .� are the weights of our
deep neural network. f� is composed of a feature extractor
network fg , two segmentation heads fn and fb (for novel
and base classes, respectively) and a feature projector fs .
f� = fg ◦ { fb, fn, fs}, where ◦ is the composition operator
(Fig. 2).

3.3 Online Pseudo-Labelling

We formulate pseudo-labelling as the assignment of novel
points to the class-prototypes learnt during training (Caron
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et al., 2020). Let P ∈ R
D×ρ be the class prototypes, where

D is the size of the output features from fg and ρ is the num-
ber of prototypes. Let Z ∈ R

D×mn be the normalised output
features for novel points extracted from fg , i.e. Z = fg(Xn),
wheremn is the number of novel points of the point cloud.mn

is unknown a priori and it can differ across point clouds. We
define Q ∈ R

ρ×mn as the assignment between the ρ proto-
types and themn novel points that equally partitions the novel
points in the point cloud across the available prototypes. This
equipartition ensures that the feature representations of the
points belonging to different novel classes are well sepa-
rated, thus preventing the case inwhich the novel class feature
representations collapse into a unique solution. Caron et al.
(2020) employs an arbitrary large number of prototypes ρ to
effectively organise the feature space produced by fg . They
discard P after training. In contrast, we learn exactly ρ = Cn

class prototypes and use P as the weights for our new class
segmentation head fn , which outputs the Cn logits for the
new classes. In order to optimise the assignment Q, we max-
imise the similarity between the features of the new points
and the learnt prototypes as

max
Q∈Q

Tr(Q�P�Z) + εH(Q) → Q∗, (2)

where H is the entropy function, ε is the parameter that deter-
mines the smoothness of the assignment and Q∗ is our sought
solution. Asano et al. (2020) enforce the equipartioning con-
straint by requiring Q to belong to a transportation polytope
and perform this optimisation on the whole dataset at once
(offline). This operationwith point clouddata is computation-
ally impractical. Therefore, we formulate the transportation
polytope such that the optimisation is performed online,
which consist of considering only the points within the point
cloud being processed

Q =
{
Q ∈ R

Cn×mn+ |Q1mn = 1

Cn
1Cn ,Q

�1Cn = 1

mn
1mn

}
,

(3)

where 1� represents a vector of ones of dimension �. These
constraints ensure that each class prototype is selected on
average at least mn/Cn times in each point cloud. The solu-
tion Q∗ can take the form of a normalised exponential matrix

Q∗ = diag(α) exp

(
P�Z

ε

)
diag(β), (4)

where α and β are renormalisation vectors that are computed
iterativelywith theSinkhorn-Knopp algorithm (Cuturi, 2013;
Mei et al., 2023).We then transpose the optimised soft assign-
ment Q∗ ∈ R

Cn×mn+ to obtain the soft pseudo-labels for each
of the mn novel points being processed within each point
cloud. For simplicity, the procedure described here takes into

Fig. 3 Overview of the different outputs after the input point cloud X
undergoes two different random augmentations, required for the gener-
ation of self-supervised pseudo-labels

account only batches composed of a single point cloud. How-
ever, the same algorithm can be applied when two or more
point clouds are concatenated into a single batch.

We empirically found that training can be more effective
if pseudo-labels are smoother in the first training epochs and
peaked in the last training epochs. Therefore, we introduce a
linear decay of ε during training.
Segmentation objective: The segmentation objective �S is
formulated as the weighted Cross Entropy loss and it is based
on the ground-truth labels Yb for base points and on the
pseudo-labels Ỹn for novel points. We formulate a swapped
prediction task based on these pseudo-labels (Caron et al.,
2020). We begin by generating two different augmentations
of the original point cloud X that we define as X ′ and X ′′
(Fig. 3). For the augmentation X ′ we define the segmenta-
tion predictions Ŷ ′ = fb( fg(X ′))⊕ fn( fg(X ′)), where ⊕ is
the concatenation operator. Analogously, we define Ŷ ′′ as the
network output forX ′′. The segmentation targets are defined
as Ỹ ′ = Ỹ ′

n ∪ Y ′
b, where Ỹ ′

n are the pseudo-labels predicted
with our approach and Y ′

b are the available targets for base
classes (same for Ỹ ′′

n ).
At this point, we enforce prediction consistency between the
swapped pseudo-labels of the two augmentations as:

�S(X ) = �wCE(Ŷ ′, Ỹ ′′) + �wCE(Ŷ ′′, Ỹ ′), (5)

where �wCE is the weighted Cross Entropy loss. The weights
of the loss for the base classes are computed based on their
occurrence frequency in the training set. The weights of the
loss for the novel classes are all set equally as their occurrence
frequency in the dataset is unknown.
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Multi-headed segmentation: A single segmentation head
may converge to a suboptimal feature space, thus producing
suboptimal prototype solutions. To further improve the seg-
mentation quality, we use multiple novel class segmentation
heads to optimise f� based on different training solutions.
Different solutions increase the likelihood of producing a
diverse partitioning of the feature space as they regularise
with each other (they share the same backbone) (Ji et al.,
2019). In practise, we concatenate the logits of the base class
segmentation head with the outputs of each novel class seg-
mentation head and we separately evaluate their loss for each
novel class segmentation head at training time.

We task our network to over-cluster novel points, using
segmentation heads that output o · Cn logits, where o is the
over-clustering factor. Previous studies empirically showed
that this is beneficial to learn more informative features
(Caron et al., 2020; Fini et al., 2021; Mei et al., 2022; Ji
et al., 2019). We observed the same and concur that over-
clustering can be useful for increasing expressivity of the
feature representations. The over-clustering heads are then
discarded at inference time.

3.4 Class-Balanced Queuing

Soft pseudo-labelling described in Sect. 3.3 produces an
equipartite matching between the novel points and the class
centroids. However, it is likely that batches are sampled with
point clouds containing novel classes with different cardi-
nalities when dealing with 3D data. In addition, some scenes
may contain only a subset of the novel classes. Therefore,
enforcing the equipartitioning constraint for each batch of the
dataset could affect the learning of less frequent (long-tail)
classes. As a solution, we introduce a queue Zq containing
a randomly extracted portion of the features of the novel
points from the previous iterations. We use this additional
data to mitigate the potential class imbalance that may occur
during training. We compute Z ← Z ⊕ Zq , where ⊕ is
the concatenation operator, and execute the Sinkhorn-Knopp
algorithm on this augmented version of Z. The obtained
Q∗ ∈ R

Cn×(mc+|Zq |) represents the assignment between the
class prototypes and all the points in the augmented version
of Z. Being interested only in the pseudo-labels for the points
in the actual batch, we retain only the firstmc columns of Q∗,
discarding the additional information related to the points
contained in Zq .

3.5 Uncertainty-Aware Training and Queuing

The optimisation of f� through pseudo-labels and the inser-
tion of the novel points into the queue Zq can both benefit
from the selection of novel points that are considered reliable
by the network. We perform this selection by considering the
class assignment probability Ŷn for the novel points. In par-

ticular, we propose to apply a different threshold τc for each
novel class c ∈ Cn . All the novel points predicted by the
network as belonging to novel class c with the confidence
above τc are used during optimisation, and are kept as can-
didates for the insertion in the queue. All the other novel
points are instead discarded. We found that it is impractical
to seek a fixed threshold for all the novel classes, while being
also compatible with the variations of the class probabilities
during training. Therefore, we employ an adaptive threshold
based on the class probabilities within each batch.

Our adaptive selection strategy operates as follows.
Firstly, we extract the novel points that have been predicted
as part of novel class c by the network. Secondly, we com-
pute τc as the p-th percentile of the class probabilities of
these novel points. Lastly, we retain only the novel points of
class c whose class probability is above the threshold τc. We
define this selection strategy as the function

φ : (Fn, Ŷn) × p 
→ (F̄n), (6)

where Fn is the set of feature vectors extracted from fg and
Ŷn is the set of class probabilities predicted by the network for
these points. The selected features F̄n for the reliable novel
points are both processed by the Sinkhorn-Knopp algorithm
to generate the pseudo-labels and added toZq tomake itmore
effective.

At the first optimisation iterations, the threshold τc is low
for all the novel classes c ∈ Cn due to the network’s random
initialisation. However, each novel class is discovered during
training, each threshold τc is expected to increase in an adap-
tiveway to select novel points that aremore andmore reliable,
resulting in a better optimisation of f�. Figure 4 shows the
evolution of the adaptive threshold τc when discovering four
novel classes. The behaviour of the four different thresholds
indicates that our method progressively selects more reliable
novel points for training, thereby enhancing the optimisation
process of f�, leading to effective discovery of the four novel
classes.

3.6 Incorporating Semantic Knowledge

The optimisation of f� through the ground-truth labels
and the pseudo-labels generated as described in Sect. 3.3
arranges the feature space output by fg so to effectively sep-
arate representations of novel and base classes. However, the
supervision provided by ground-truth targets is significantly
stronger than the self-supervision of the pseudo-labels. This
unbalance could result into a sub-optimal organisation of the
feature space, in which base class representations are com-
pact and well-separated while novel class features are poorly
clustered with more noise and less compactness. To address
this issue, we incorporate additional supervision for novel
categories. We employ an auxiliary neural network fa that
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Fig. 4 Evolution of the adaptive selection threshold τc when discover-
ing four novel classes on S3DIS

is able to output point-level semantic-aligned features, such
as a 3D foundation model (Peng et al., 2023). Such archi-
tectures have shown great performance in multiple 3D scene
understanding tasks, being able to reach the results of models
specifically tailored for each single task. This good gener-
alisation capability suggests that the feature spaces of 3D
foundation model are well partitioned and organised accord-
ing to semantics. So, by guiding our network f� to mimic
the point-level features output by fa , we can enhance the
semantic organisation of its feature space.

The most natural choice when aligning the features of our
network to the ones of fa would be to consider the feature
space output by our backbone fg . However, there is the risk
that the distillation procedure from fa interferes with the
Sinkhorn-Knopp algorithm in organising the feature space
output by fg . So, we attach an additional projection head fs
on top of the feature extractor fg . The knowledge distilla-
tion from the foundation model is performed on the features
Fs output by fs , while the features F are reserved for the
Sinkhorn-Knopp algorithm. A well-separated representation
of novel classes in the feature space of fs , achieved through
knowledge distillation from the foundationmodel, can in turn
lead to improved separation of novel classes in the feature
space of fg . In fact, the feature space fs is on top of fg and
they share the same underlying architecture. The distillation
procedure is performed by minimising the alignment objec-
tive:

�A(X ) = �cos(F̂ ′
s, F̃ ′

s) + �cos(F̂ ′′
s , F̃ ′′

s ), (7)

where �cos is the cosine loss, F̂ ′
s = fs( fg(X ′)) and F̃ ′

s =
fa(X ′). The same applies for F̂ ′′

s and F̃ ′′
s (Fig. 3). Differently

from �S, in this case we do not use a swapped prediction task.
Theprojectionhead fs and featuresFs are only considered

during training and we ignore this branch of f� at test time.

4 Baseline Methods for 3D Novel Class
Discovery

SNOPS and our earlier method NOPS (Riz et al., 2023) are
the first architectures proposed to tackle the task of Novel
Class Discovery in point cloud semantic segmentation. So, in
this work we also present two baseline methods related to 3D
novel class discovery we can compare SNOPS to: the adapta-
tion of EUMS from the image domain to the 3D point cloud
domain (referred to EUMS†) and the zero-shot testing of the
OpenScene (Peng et al., 2023)model. These approaches hold
significant importance in the relatively unexplored domain of
3D NCD, as they offer valuable insights into the challenges
of such task. In particular, EUMS† serves as a baseline to
highlight the challenges in naively adapting 2D methods to
the 3D domain. The zero-shot testing with OpenScene pro-
vides instead a reference point, demonstrating the deep scene
understanding capabilities of 3D Vision-Language Models
and highlighting also the difficulties encountered in their
application.

4.1 Adapting NCD for 2D Images to 3D Point Clouds

One of the contributions of this work is to adapt the method
proposed by (Zhao et al., 2022) for NCD in 2D semantic
segmentation (EUMS) to 3D data. Our empirical evaluation
(see Sect. 5) shows that the transposition of EUMS to the 3D
domain has some limitations. In particular, as described in
Sect. 1, EUMS uses two assumptions: I) the novel classes
belong to the foreground and II) each image can contain
at most one novel class. This allows EUMS to leverage a
saliency detection model to produce a foreground mask and
a segmentationmodel pre-trained on the base classes to deter-
mine which portion of the image is background. The portion
of the image that belongs to both the foregroundmask and the
background mask is where features are then pooled. EUMS
computes a feature representation for each image by average
pooling the features of the pixels belonging the unknown
portion. The feature representations of all the images in the
dataset are clustered with K-Means by using the number of
classes to discover as the target number of clusters. EUMS
shows that overclustering and entropy-based modelling can
be exploited to improve the results. The affiliation of a point
to its cluster is used to produce hard pseudo-labels that are
in turn used along with the ground-truth labels to fine-tune
the pre-trained model.

With 3D point clouds, there is no concept of foreground
and background (in contrast with I). Our adaptation is
designed to discover the classes of all the unlabelled points
(in contrast with II). Therefore, given the unlabelled points
of each point cloud, we randomly extract a subset of these
by setting a ratio (e.g. 30%) with upper bound (e.g. 1K) on
the number of points to select. We compute and collect their
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Fig. 5 Overview of EUMS†, our adaptation of the method proposed
by (Zhao et al., 2022). We first pre-train fg and fb considering only the
base points in each point cloud. Using fg , we extract the features of the
novel points in each scene, that are filtered with the selection function

�(·). Then, we produce the pseudo-labels for the selected novel points
by using the k-means algorithm. Lastly, we plug a new segmentation
head fc into fg and fine-tune the completemodel on both novel and base
points, considering pseudo-labels and ground-truth labels respectively

Fig. 6 Zero-shot 3D semantic segmentation. We extract point-level
features from the 3D vision encoder fvision and text embedding from
the text encoder ftext . We assume class vocabularies to be known. Class
predictions are assigned by similarity matching between point-level
features and text embedding

features for all the point clouds in the dataset and apply K-
Means on the whole set of features. Note that this clustering
step is computationally expensive, and we had to use High
Performance Computing to execute it. The subsampling of
the points was necessary to fit the data in the RAM (see
Sect. 5 for a detailed analysis). Once the cluster prototypes
are computed, we produce the hard pseudo-labels. To enrich
the set of pseudo-labels, we propagate the pseudo-label of
each point to its nearest neighbour in the coordinate space.
This allows us to expand the subset of pseudo-labelled ran-
domly selected points. We also implement the other steps
of overclustering and entropy-based modelling to boost the
results. Lastly, we fine-tune our model with these pseudo-
labels. We name our transposition of EUMS as EUMS† and
report its block diagram in Fig. 5.

4.2 Zero-Shot Testing with OpenScene

3D Vision-Language Models (3D-VLMs) have shown
promising generalization capabilities in scene understanding
(Peng et al., 2023), especially in the context of 3D semantic
segmentation. Their capabilities can be used off-the-shelf to
recognize new objects within scenes by providing the correct
text prompt. In this section, we assess the zero-shot semantic
segmentation capabilities of the OpenScene models (Peng et
al., 2023). Our objective is to evaluate these 3D-VLMs on
datasets that differ from the ones theywere distilled from.We
consider this testing to be our lower bound and with SNOPS
we aim to improve over it.
We report in Fig. 6 the implementation of our zero-shot
experiment. The input point cloud X is forwarded into the
frozen fvision, resulting in point-wise CLIP-aligned features
Fv. Subsequently, the frozen text encoder ftext is provided
with classical prompts following the template An image
of a <CLASS> for all the classes present in the dataset.
This process yields the output Ft. Finally, we use the pair-
wise cosine similarity between each point and class name
embedding to assign the predicted classes Ŷ .
In its naive version, this experiment would imply the use
of dataset class names as input prompts with a simple text
template,e.g., An image of a <CLASS>. However, we
argue that the simple use of the given dataset class namesmay
limit zero-shot capabilities of OpenScene. Dataset names
are selected from a (large) set of synonyms with the same
meaning, e.g., person can also be indicated with the words
pedestrian or walker. Oppositely, the CLIP text encoder has
been trained with descriptors that contain different terms for
the same concept and consequently it has learnt slightly dif-
ferent embeddings for each of the synonyms of the same
concept. So, deriving a single text embedding for each class
(e.g. for the dataset class name person) does not ensure
the coverage of all the variations inside such class (e.g. for
walker and pedestrian). To this extent, we propose to map
each class name to four additional synonyms, which capture
different meanings under the same class name. Similarly to
what proposed for the text templates, we use the five differ-
ent embeddings for each class as an ensemble. This enable a
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better coverage ot the CLIP feature space and increases the
zero-shot capabilities of OpenScene. The synonyms for each
class are extracted by querying the WordNet dataset (Miller,
1995). When the returned words are not enough, we also
make use of Thesaurus.com for additional synonyms. To fur-
ther exploit the sensitivity of ftext to text input (Radford et
al., 2021), we use an ensemble of text templates to produce
robust and stable predictions. In particular, we use the 80
templates originally proposed in (Radford et al., 2021).

Tables 4, 5 & 6 show the OpenScene zero-shot per-
formance on SemanticPOSS, SemanticKITTI, and S3DIS
respectively. We report such results as “OpenScene�” to
highlight the usage of the proposed pipeline involving syn-
onyms and templates. On SemanticPOSS,OpenScene� using
ensembles of 3 synonyms reaches 21.18%mIoU, surpassing
the standard testing with single class words by around 2.4%.
The testingwith 5 synonyms shows even better results, show-
ing an overall 23.05% mIoU, with an improvement over the
baseline of around 4.3%. On SemanticKITTI, OpenScene�

reaches 19.28% mIoU with 5 synonyms, improving over the
testing with 3 synonyms by around 0.7% and gaining 1.0%
mIoU over the standard testing with single class words. On
S3DIS, we report the results without using ensembles of
synonyms, since the furniture class names (e.g. chair) of
this dataset are too specific to find suitable synonyms for
each class label. The zero-shot testing of OpenScene� on the
S3DIS dataset results in an overall 36.76 mIoU.

5 Experimental Results

5.1 Experiments

Datasets. We evaluate our approach on SemanticKITTI
(Behley et al., 2019; Geiger et al., 2012; Behley et al.,
2021), SemanticPOSS (Pan et al., 2020) and Stanford
3D Indoor Scene Dataset (S3DIS) (Armeni et al., 2016).
SemanticKITTI (Behley et al., 2019) consists of 43,552
point cloud acquisitions with point-level annotations of 19
semantic classes. Based on the conventional benchmark
guidelines (Behley et al., 2019), we use sequence 08 for
validation and the other sequences for training. Seman-
ticPOSS (Pan et al., 2020) consists of 2,988 real-world
point cloud acquisitions with point-level annotations of 13
semantic classes. Based on the conventional benchmark
guidelines (Pan et al., 2020), we use sequence 03 for vali-
dation and the other sequences for training. S3DIS (Armeni
et al., 2016) consists of 271 indoor RGB-D scans with point-
level annotations of 13 semantic classes. We follow the
official split (Armeni et al., 2016) and use Area_5 for vali-
dation and the other areas for training.
Experimental protocol for 3DNCD. Similarly to what pro-
posed by (Zhao et al., 2022) in the 2D domain, we create

Table 1 SemanticKITTI splits, is defined as KITTI-ni , where n is the
number of novel classes and i is the split index

Split Novel classes

KITTI-50 building, road, sidewalk, terrain, veget.

KITTI-51 car, fence, other-ground, parking, trunk

KITTI-52 motorc., other-v., pole, traffic-s., truck

KITTI-43 bicycle, bicyclist, motorcyclist, person

Table 2 SemanticPOSS splits, defined as POSS-ni , where n is the num-
ber of novel classes and i is the split index

Split Novel classes

POSS-40 building, car, ground, plants

POSS-31 bike, fence, person

POSS-32 pole, traffic-sign, trunk

POSS-33 cone-stone, rider, trashcan

Table 3 S3DIS splits, defined as S3DIS-ni , where n is the number of
novel classes and i is the split index

Split Novel classes

S3DIS-40 ceiling, clutter, floor, wall

S3DIS-31 chair, door, table

S3DIS-32 beam, bookcase, column

S3DIS-33 board, sofa, window

different splits of each dataset to validate the NCD per-
formance with point cloud data. We create four splits for
SemanticKITTI, SemanticPOSS, and S3DIS. We refer to
these splits as SemanticKITTI-ni , SemanticPOSS-ni , and
S3DIS-ni , where i indexes the split. In each set, the novel
classes and the base classes correspond to unlabelled and
labelled points, respectively. Tables 1, 2 and 3 detail the splits
of our datasets. These splits are selected based on their class
distribution in the dataset and on the semantic relationship
between novel and base classes, e.g. in KITTI-43 the base
class motorcycle can be helpful to discover the novel class
motorcyclist.

We quantify the performance by using the mean Intersec-
tion over Union (mIoU), which is defined as the average IoU
across the considered classes (Behley et al., 2019). We pro-
vide separate mIoU values for the base and novel classes. We
also report the overall mIoU computed across all the classes
in the dataset for completeness.
Implementation Details.We implement our network based
on a MinkowskiUNet-34C network (Choy et al., 2019).
Point-level features are extracted from the penultimate layer.
The segmentation heads fb and fn are implemented as linear
layers, producing output logits for each point in the batched
point clouds. The projection head fs is a sequence of lin-
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ear layer, batch norm, ReLU, and another linear layer. The
auxiliary network fa is theMinkowskiUNet-18 network pre-
sented in OpenScene (Peng et al., 2023). We use the version
distilled fromnuScenes-OpenSeg for SemanticKITTI-ni and
SemanticPOSS-ni , and the version distilled from ScanNet-
OpenSeg for S3DIS-ni . We train our network for 10 epochs
for SemanticKITTI-ni and SemanticPOSS-ni , and for 50
epochs for S3DIS-ni . We use the SGD optimizer, with
momentum 0.9 and weight decay 0.0001. Our learning rate
scheduler consists of linear warm-up and cosine annealing,
with lrmax = 10−2 and lrmin = 10−5. We train with batch
size equal to 4. We employ five segmentation heads, that
are used in synergy with an equal number of over-clustering
heads, with o = 3. In φ, we set p = 0.5 for SemanticKITTI-
ni , and p = 0.3 for SemanticPOSS-ni and S3DIS-ni . We
set γ = 3.0 for SemanticKITTI-ni , and γ = 7.0 for
SemanticPOSS-ni and S3DIS. We adapted the implemen-
tation of the Sinkhorn-Knopp algorithm (Cuturi, 2013) from
the code provided by (Caron et al., 2020), with the intro-
duction of the queue and an in-place normalisation steps.
Similarly to (Caron et al., 2020), we set nsk_i ters = 3, while
we adopt a linear decay for ε, with εstart = 0.3, εend = 0.05.

5.2 Quantitative Analysis

We evaluate SNOPS on both outdoor LiDAR datasets
(SemanticPOSS (Pan et al., 2020) and SemanticKITTI
(Behley et al., 2019)) and indoor RGB-D datasets
(S3DIS (Armeni et al., 2016)). For each setting, we report the
upper boundFull supervisionobtainedby supervised training
over both base and novel classes. We name with Open-
Scene� n Syn. the zero-shot results achieved by OpenScene
as described in Sect. 4.2 using n synonyms when building
the ensembles. This baseline is our competitor for the per-
formance achieved on novel classes. EUMS† (Sect. 4.1) and
NOPS (Riz et al., 2023) are the NCD approaches that we
directly compare against SNOPS.
Outdoor datasets. Tables 4 and 5 report the segmentation
results on SemanticPOSS and SemanticKITTI, respectively.

On SemanticPOSS, SNOPS achieves 30.05 IoU on novel
classes, improving of +15.11 IoU over EUMS† and +8.65
IoU over NOPS (Table 4). SNOPS outperforms the other
methods on all the four dataset splits and on all the classes,
except for bike, person, and pole, where NOPS achieves
better results. We attribute the significant decline in perfor-
mance observed in SNOPS for the bike class to the alignment
procedure with the auxiliary zero-shot model, since the aux-
iliary zero-shot network exhibits notably poor results on this
particular class (0.06 IoU). We consider the decrease in per-
formance for the other two classes (i.e. person and pole) as
simple fluctuations that may happen when SNOPS organizes
its feature space differently from the one of NOPS. SNOPS
improves over the reference OpenScene� baseline of +7.00

IoU, outperforming it on all classes, apart for car, plant and
trashcan. Interestingly, the OpenScene� setting outperforms
even the Full supervision upper bound on the car class.
On SemanticKITTI, SNOPS achieves 26.39 IoU on novel
classes, improving of +9.34 IoU over EUMS† and +3.55
IoU over NOPS (Table 5). SNOPS outperforms all the com-
pared approaches on all the SemanticKITTI splits, showing
a large improvement on novel classes, e.g., building and
sidewalk. Again, SNOPS improves over the referenceOpen-
Scene� baseline of +7.11 IoU, outperforming it on 14 out of
19 classes, surpassing it with a large margin in the classes
bicyclist, car, and traffic-sign. Interestingly, SNOPS outper-
forms the Full supervision upper bound on the traffic-sign
class, with an improvement of +1.81 IoU.
Indoor dataset. Table 6 reports the results on the indoor
S3DIS dataset. In this settings, SNOPS achieves 34.05 IoU
on novel classes, improving of +24.67 IoU over EUMS†

and+13.26 IoU over NOPS. SNOPS outperforms by a large
margin EUMS† on all four splits. Compared to NOPS, it
improves on three out of four splits, with the remarkably
large margins of +29.86 IoU and +23.08 IoU on S3DIS-40

and S3DIS-31, respectively. Considering the average perfor-
mance over base and novel classes, SNOPSnotably surpasses
the results obtained byFull supervision on two splits (S3DIS-
31 and S3DIS-33), with 43.45 IoU in average over the four
splits (only −0.98 as compared to Full supervision).
Discussion. SNOPS consistently outperforms the compared
baselines across most of the splits within the three datasets.
While the superiority of SNOPS over other NCD methods
is empirically clear, understanding the underlying factors
contributing to this improvement is essential. Compared to
EUMS†, SNOPS achieves superior performance, thanks to
online pseudo-labelling (shared with NOPS). This enables
precise refinement and adaptation of the model’s predictions
and leads to better results. Compared to NOPS, SNOPS
incorporates an alignment procedure that injects unsuper-
vised semantic knowledge into our architecture. To assess
the impact of the semantically-aligned branch, we compare
the tSNE (Van der Maaten & Hinton, 2008) dimensionality
reduction of the embedding spaces of NOPS and SNOPS,
as shown in Fig. 7. We randomly selected eight point clouds
from the validation set of each dataset and processed them
through the feature extractors of both NOPS and SNOPS,
resulting inpoint-wise features. From these,we retained5000
random novel points along with their respective features,
applied t-SNE reduction, and visualized the points with col-
ors corresponding to their ground-truth labels. As illustrated
in Fig. 7, SNOPS exhibits a more refined organization of the
feature space, characterized by compact and well-separated
class clusters. This contributes to the observed performance
enhancement between SNOPS and NOPS. SNOPS also sig-
nificantly improves over the OpenScene� baseline on two
out of three datasets, highlighting that relying solely on the
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Fig. 7 t-SNE dimensionality reduction of the embedding space output
by the feature extractors fξ of NOPS and SNOPS for the novel points
in different splits of our datasets. Compared to NOPS, SNOPS is able

to better organize its embedding space, better grouping features of the
novel classes in more compact and separated clusters

zero-shot capabilities of the auxiliary network is not enough
for performance. In contrast, SNOPS adeptly integrates the
advantages of online pseudo-labelling and semantic align-
ment, showcasing its ability in making these components
work in synergy for superior performance in point cloud
semantic segmentation.
In our opinion, the performanceof the auxiliary zero-shot net-
work fluctuates significantly based on what we deem as class
representation disparities between the distillation and test-
ing datasets; it performs relatively well for well-represented
classes but it encounters substantial challenges in accurately
identifying rare classes during testing.
Computational time. SNOPS shows a drastic reduction in
the computational time when compared to EUMS†. Firstly,
EUMS† requires a pre-training step and a fine-tuning step,
i.e. 30 training epochs in total. Then, EUMS† requires a large
amount of memory (up to 200 GB memory for KITTI-50) to
store the data required for clustering, taking several hours (50
hrs) to complete the training procedure. Differently, SNOPS
achieves superior performance with 10 training epochs, by
using less memory (10 GB max) and a lower computational

time (up to 25 hrs for KITTI-50). We run these tests using
one GPU Tesla A40-48GB.

5.3 Qualitative Analysis

Figure 8 depicts segmentation results obtained with SNOPS,
NOPS and EUMS† across SemanticPOSS, SemaniticKITTI,
and S3DIS datasets. EUMS† faces substantial challenges
when it comes to identifying novel objects within scenes,
resulting in noisy and mixed labels for these categories. In
KITTI-51, EUMS† inaccurately labels portions of car objects
as trunk, and in S3DIS-41, parts of the wall are mislabeled
as table and clutter. NOPS demonstrates improved seman-
tic segmentation capabilities, giving in output more coherent
labels and less noisy predictions. However, there are cases in
which NOPS exhibits a limited understanding of the scenes.
For instance, in POSS-32, trunk is mixed with traffic-sign
and pole. Moreover, in S3DIS-40, NOPS fails in differenti-
ating between the ceiling and the floor class, likely due to
their similar geometric structure. In contrast, SNOPS shows
enhanced segmentation and scene understanding capabili-
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Fig. 8 Qualitative comparisons on SemanticPOSS (top),
SemanticKITTI (centre) and S3DIS (bottom). We report results
on novel classes. EUMS† fails in recognising novel objects with mixed
and noisy predictions, e.g. the car class in KITTI-51 or the wall class in
S3DIS-40. NOPS shows better segmentation performance on the novel

classes, but it still misses a complete knowledge over the meaning of
classes, e.g. it mixes trunk and pole classes in POSS-32 or ceiling and
floor in S3DIS-40. SNOPS demonstrates superior performances on all
three datasets, proving a better understanding of the scene

ties. For example, it proficiently identifies traffic-sign and
pole classes in POSS-32 and accurately segments fence and
car in KITTI-51. Notably, SNOPS properly distinguishes
the ceiling from the floor class in S3DIS-40, thanks to the
semantical knowledge acquired through the semantic align-
ment procedure detailed in Sect. 3.6.

6 Ablation Studies

We thoroughly evaluate SNOPSonSemanticPOSS, conduct-
ing an analysis of its core components and exploring how
variations in its training parameters affect its performance.
Namely, we analyse SNOPS behaviour when changing the
value of the percentile p and the semantic alignment loss
weighting factor γ , to provide a comprehensive understand-
ing of the efficacy of different part of our architecture.

We also evaluate SNOPS on S3DIS, analysing its stabil-
ity across different runs, by conducting the same experiments

Fig. 9 Ablation study with different components and initialisation
strategies on SemanticPOSS. In P, OC and Q, we initialise the model
after base pre-training, and use different configurations of the over-
clustering heads and of our queue balancing. In NP NP+, NP++ and
NP+++, we begin with Q, we avoid pre-training, and we use φ and τc
incrementally. In Full, we add the semantic alignment head. See Sect. 6
for definition of methods

multiple rounds and checking the mean and standard devia-
tion of the obtained results. Lastly, we assess the importance
of acquisition sensor and distillation dataset in the compari-
son between OpenScene� and SNOPS.
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Table 7 Ablation study showing how different values of p affect the
performance on SemanticPOSS

Split Percentile p
0.1 0.3 0.5 0.7 0.9

POSS-40 30.81 35.70 28.77 30.93 26.69

POSS-31 28.33 30.02 30.43 23.32 18.91

POSS-32 8.07 8.95 10.32 10.25 7.76

POSS-33 10.55 10.94 11.69 14.38 13.42

Avg 19.44 21.40 20.30 19.72 16.70

The lower p is, the less severe the selection of the features, resulting
in better performance for POSS-40. Differently, POSS-33 benefits from
an higher value of p, which leads to a more vigorous filtering of the
features. POSS-31 and POSS-32 show the best performance with p =
0.5

Fig. 10 Ablation study analysing the difference in performance when
changing the value of γ , the weighting factor of �A. Reported perfor-
mance are in terms of average mIoU of novel classes in the four splits
of SemanticPOSS

Method components. Figure 9 shows the performance on
novel and base classes of eight versions of SNOPS. The first
three versions use the pre-trained model on the base classes,
while the last fiveversions use themodel trained fromscratch.
Each version is defined as follows:

• P: we use a pre-trained model, and we remove Zq , τc and
the over-clustering heads.

• OC: P + over-clustering heads.
• Q: OC + Zq , i.e. our queue without uncertainty-aware
filtering.

• NP: Q without pre-training.
• NP+: NP + our selection function φ on the queue.
• NP++: NP + τc on the features used to derive the pseudo-

labels.
• NP+++:NPwith τc andφ,without the semantic alignment
branch.

• Full: SNOPS with all the components activated.

Pre-trained approaches generally underperform their trained-
from-scratch counterparts on the novel classes. This is visible
in the low performance of P, OC and Q. We have a signifi-
cant improvement when pre-training is not used (NP), i.e. we
achieve 20.26 mIoU. We can see that the queue both with
and without pre-training is helpful. When we add the fea-
ture selection for the queue and for the training, i.e. NP+
and NP++, we have improvements, i.e. 20.63 mIoU and
20.90 mIoU, respectively. With NP+++ we observe a fur-
ther increase in performance, reaching 21.40 mIoU. The best
performance is achieved with Full, with an mIoU of 30.05.
Although we can observe variations on the performance of
the base classes, their information is retained by the network
when we discover the novel categories.
Percentile analysis.We study the behaviour of the percentile
p in our selection function φ, whenwe apply it to the features
both for pseudo-labelling and for the class-balanced queue
Zq . Table 7 reports the results on each split of SemanticPOSS.
For each split, we can observe that the performance depends
on the number of points and difficulty of the novel classes.
In POSS−40 and POSS-31, lower values of p result in less
severe selection. We believe this is related to the class distri-
bution within these splits. This is in line with what observed
in Table 4. In POSS−32 and POSS-33, we notice a different
behaviour, a higher value of p provides better results. We
relate this to the difficulty of the novel classes in these splits
whose noisy pseudo-labels can benefit from a more rigorous
selection of the features.
Loss weighting analysis.

We examine the behavior of SNOPS when adjusting the
value ofγ , theweighting factor assigned to the alignment loss
�A. The results shown in Fig. 10 depict the average perfor-
mance across the four SemanticPOSS splits for novel classes

Table 8 Ablation study reporting mean and standard deviation obtained by running the same experiment N = 10 times

S3DIS-40 S3DIS-31 S3DIS-32 S3DIS-33

Novel Base All Novel Base All Novel Base All Novel Base All

μ 55.71 30.82 38.48 52.28 41.48 43.97 18.27 50.92 43.38 10.90 54.80 44.67

σ 0.53 0.76 0.53 0.95 0.42 0.51 1.29 0.48 0.57 1.08 0.39 0.45

minσ 0.14 0.03 0.03 0.95 0.04 0.04 0.20 0.29 0.20 0.62 0.12 0.12

maxσ 2.24 2.47 2.47 1.82 3.89 3.89 3.65 3.10 3.65 3.96 2.37 3.96

We report results on novel and base classes, together with the performance on all classes. minσ and maxσ represent the lowest and the highest
standard deviation showcased for the different groups of classes, respectively
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aswe vary γ .We observe that increasing the value of γ corre-
sponds to higher mIoU values for novel classes. The optimal
performance is achieved when γ is set to 7.0. However, fur-
ther increasing the value of γ leads to a decrease in mIoU
values. We attribute this trend to an imbalance between the
alignment loss �A and the segmentation loss �S. By assign-
ing excessive weight to �A, there is an indirect reduction in
the significance of �S, which in turn decreases the network’s
ability to converge to a good solution.
SNOPS’s stability. We assess the stability in SNOPS opti-
misation by running the same experiment N = 10 times.
Table 8 presents mean μ and standard deviation σ for all
the splits in S3DIS. The results show that SNOPS is gener-
ally stable across different runs of the same experiment, with
an average standard deviation (σ ) of 0.52 across the four
splits. In three out of four splits, the novel classes exhibit
higher standard deviations compared to the base classes. This
difference is likely attributed to the fact that the first group
of (novel) classes is learned solely with the supervision of
pseudo-labels and distillation, whereas the base classes ben-
efit from the availability of labelled data.
Distillation data. In Sect. 5, the OpenScene� baseline is
obtained by testing the OpenScene model on data that
differs from the one seen during distillation: we use the
ScanNet-OpenSeg model for S3DIS and nuScenes-OpenSeg
for SemanticKITTI and SemanticPOSS. In Tables 9 & 10 we
report results obtained by testing theOpenScene� baseline on
data which is similar to the one seen during training.

Table 9 reports the results obtained on S3DIS using the
Matterport-OpenSeg OpenScene model. The testing dataset
(S3DIS) shares the same acquisition sensor as the distillation
data (Matterport (Chang et al., 2017)) for the Matterport-
OpenSeg model, i.e. the Matterport360 camera. This should
reduce the domain gap between training and testing data,
resulting in better results for OpenScene�. Interestingly, on
OpenScene�, the use of the Matterport-OpenSeg model pro-
duces very similar results as ScanNet-OpenSeg, with 36.67
average IoU in the first case and 36.76 in the second case.
However, when applied to NCD, the use of Matterport-
OpenSeg results in worse average results on novel classes,
dropping from 34.05 IoU to 32.91.

Table 10 presents a comparative analysis between the
baseline method OpenScene� and SNOPS when applied to
the nuScenes dataset (Caesar et al., 2020; Fong et al., 2022).
As detailed in Sect. 5.1, we outline in Table 11 the dataset
division into splits for theNCD setting. Notably,OpenScene�

achieves 31.81 IoU in its optimal configuration, surpassing
the average IoU performance of SNOPS across the four splits
on novel classes (20.61). SNOPS only exhibits a superior
performance in three specific classes: barrier, bicycle, and
other-ground. This experiment underscores that when both
distillation and testing are conducted on the same dataset,
OpenScene� demonstrates a very good performance. How- Ta
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Table 11 nuScenes splits, defined as nuScenes-ni , where n is the num-
ber of novel classes and i is the split index

Split Novel Classes

nuScenes-40 driveable s., manmade, terrain, veget.

nuScenes-41 barrier, car, sidewalk, truck

nuScenes-42 bus, other g., pedestrian, trailer

nuScenes-43 bicycle, constr. v., motorc., traffic c.

ever, employing distillation on one dataset and evaluating
it on another dataset with certain domain gap (as in all our
previous experiments) results in a poorer performance. This
shows that the distilled open-vocabulary knowledge has lim-
ited generalisation capability when tested cross-dataset.

7 Conclusions

Weexplored the new problem of novel class discovery for 3D
point cloud segmentation. Firstly, we adapted the only NCD
method for 2D image semantic segmentation to 3D point
cloud data, and experimentally found that it has several lim-
itations. We discussed that extending 2D NCD approaches
to 3D data (point clouds) is not trivial because the assump-
tions made for 2D data are not easily transferable to 3D.
Secondly, we presented SNOPS, an extension of our original
NOPS method, that tackles NCD for point cloud segmenta-
tion by using online clustering, uncertainty quantification and
semantic distillation through a foundationmodel.We showed
that the zero-shot accuracy of such foundationmodel alone is
not satisfactory andwe proved that by using it in combination
with our SNOPS we can achieve higher performance. Lastly,
we introduced a novel evaluation protocol to asses the per-
formance of NCD in point cloud segmentation. Experiments
on three different segmentation dataset showed that SNOPS
outperforms the compared baselines by a large margin.
LimitationsThefirst limitation of SNOPS is the prior knowl-
edge on the number of novel classes Cn to discover. This
could be a limitation whenCn is not a known prior and novel
classes appear in an incremental manner. We believe that a
solution may be to learn novel classes incrementally, as for
example proposed by Roy et al. (2022) in the 2DNovel Class
Discovery literature. Finally, SNOPS lacks a mechanism to
prevent drift when the auxiliary network outputs inaccurate
features for novel classes. SNOPS may benefit the introduc-
tion of a filteringmechanism to avoid point features when the
auxiliary network exhibits high uncertainty, as for example
proposed by Saltori et al. (2022).
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