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Abstract
Open-vocabulary (OV) semantic segmentation has attracted increasing attention in recent years, which aims to recognize
objects in an open class set for real-world applications. While prior OV semantic segmentation approaches have relied on
additional semantic knowledge derived from vision-language (VL) pre-training, such as the popular CLIP model, this paper
introduces a novel paradigm by harnessing the unprecedented capabilities of large language models (LLMs). Inspired by
recent breakthroughs in LLMs that provide a richer knowledge base compared to traditional vision-language pre-training, our
proposedmethodology capitalizes on the vast knowledge embeddedwithin LLMs for OV semantic segmentation. Particularly,
we partition LLM knowledge into object, attribute, and relation priors, and propose three novel attention modules-semantic,
scaled visual, and relation attentions, to utilize the LLM priors. Extensive experiments are conducted on common benchmarks
including ADE20K (847 classes) and Pascal Context (459 classes). The results show that our model outperforms previous
state-of-the-art (SoTA) methods by up to 7.2% absolute. Moreover, unlike previous VL-pre-training-based works, our method
can even predict OV segmentation results without target candidate classes.

Keywords Open-vocabulary · Semantic segmentation · Large language model

1 Introduction

Semantic segmentation aims to extract masks for all objects
in an image, which serves as a fundamental and vital step for
many real-world applications, such as object extraction (Fan
& Zhang, 2023; Zhang et al., 2023; Lin et al., 2023), robot
navigation (Hu et al., 2023; Li et al., 2023) and multimedia
retrieval (Ma et al., 2023; Shi et al., 2022; Wang et al., 2023;
Shi et al., 2023). Prior segmentation methods (Li et al., 2017;
He et al., 2020) are usually trained on a limited dataset and
focus on recognizing a fixed number of object categories,
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as shown in Fig. 1a. They cannot handle real-world appli-
cations that require segmenting diverse novel objects. This
leads to the recent trend in open-vocabulary (OV) semantic
segmentation that aims to generate masks for objects in an
open-category set.

To recognize open-set objects, OV semantic segmenta-
tion methods (Liang et al., 2023; Ding et al., 2022; Xu et al.,
2023; Yu et al., 2023) usually leverage extra knowledge to
extend their semantic spaces, as illustrated in Fig. 1b, and
they can generally be categorized into two groups: one- and
two-stage methods. Early works (Xu et al., 2021; Ghiasi et
al., 2022) often adopt a two-stage strategy, which decouples
OV semantic segmentation into two sub-tasks: mask pro-
posal generation and classification. The proposal generation
step uses pre-trained segmentation models to generate class-
agnostic masks to capture as many objects as possible. The
mask classification step often employs vision-language (VL)
pre-training feature extractors such as CLIP (Radford et al.,
2021) to classify class-agnostic mask proposals to recognize
OV objects. Although two-stage approaches are intuitive,
they highly rely on well-trained mask proposal generators.
To address the issue, recent studies (Xu et al., 2023; Yu et
al., 2023) move to the one-stage architecture, which directly
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Fig. 1 Comparison between fixed-set and open-vocabulary seman-
tic segmentation. a Fixed-set methods are trained with segmentation
data and only recognize limited objects in their training data during
inference. b Open-vocabulary (OV) semantic segmentation also uses
segmentation data for training, but is expected to segment diverse novel
objects (red) during inference, which are typically addressed by lever-
aging extra knowledge

leverages VL pre-training to simultaneously predict masks
and their classes. Despite notable progress, most of these
existing OV semantic segmentation methods mainly utilize
VL pre-training models to extract embeddings, which only
provides limited implicit semantic information.

On the other hand, in the past fewyears,we havewitnessed
the huge success of large language models (LLMs), which
can provide more comprehensive understanding of scenes.
This motivates us to consider: Can we leverage LLM knowl-
edge to address the challenges inOV semantic segmentation?
Particularly, we observe that three types of knowledge in
LLM descriptions are useful for OV semantic segmentation.
Firstly, object names (e.g., glass ceiling, statues and chairs in
Fig. 2) in LLM descriptions indicate potential objects, which
can help OV object discovery, mask prediction and classifi-
cation. Secondly, object attributes often provide diverse cues
for segmentation, such as object sizes (e.g., large), numbers
(e.g., several) and appearances (e.g., naked). Finally, object
relations (e.g., in and near) can provide valuable context.

Based on these observations, in this paper, we propose
a novel LLMFormer that exploits LLM knowledge as pri-
ors to improve OV semantic segmentation. Specifically, we
extract three useful knowledge from LLMs for OV seman-
tic segmentation, i.e., object names, attributes and relations.
Three attention models are introduced to leverage these pri-
ors. Firstly, a semantic attention mechanism is proposed
to incorporate object name and attribute priors into mask
embeddings for OV object discovery and classification. Sec-
ondly, considering many attributes indicate object sizes, we
propose a scaled visual attention module to segment objects
of different sizes based on attribute priors. Finally, we intro-

duce relation attention to incorporate LLM relation priors for
better OV semantic segmentation.

Our key contributions can be summarized as follows.

• This is a pioneeringwork in proposing the idea of exploit-
ing the comprehensive knowledge of LLMs, beyond the
conventional object names, for OV semantic segmenta-
tion.

• We propose LLMFormer, which consists of three novel
attention modules: semantic, scaled visual and rela-
tion attentions, to leverage different LLM knowledge
(objects, attributes and relations) for OV semantic seg-
mentation.

• Extensive experiments on ADE20K, Pascal Context and
Pascal VOC show that our method significantly out-
performs the state-of-the-art solutions. Moreover, our
method also shows the ability to predict OV results with-
out pre-defined candidate classes, which ismore practical
in real-world applications.

2 RelatedWork

2.1 Fixed-Set Semantic Segmentation

Early methods use CNN-based architectures to deal with
the fixed-set semantic segmentation task. FCN (Long et al.,
2015) designs an encoder-decoder structure, where a CNN
encoder extracts image features and aCNNdecoder classifies
each pixel in the feature maps. Nevertheless, the vanilla FCN
(Long et al., 2015) is easy to lose image details, due to too
many down-sampling layers in the encoder. To capture more
details, Chen et al. (2018) and Yu and Koltun (2016) replace
a number of downsampling layers with atrous convolutions
and dilated convolutions in the encoder, respectively. Noh
et al. (2015) design a deconvolutional decoder to gradually
restore more details, mirroring the CNN encoder. Although
these approaches make significant progress for recognizing
objects at fixed size ranges, they struggle to segment objects
of diverse sizes. To segment variable sized objects, many
prior works (Lin et al., 2017; Zhao et al., 2017; Chen et al.,
2018; Shi et al., 2018; Chen et al., 2016; Li et al., 2020) use
multi-scale combinations, such as by pyramid pooling mod-
ule (PPM), pyramid atrous convolutions and feature pyramid
network (FPN). Some approaches (Lin et al., 2018; Liu et al.,
2015; Shi et al., 2019; Chen et al., 2018; Zhang et al., 2018;
Ding et al., 2018; Shi et al., 2018) model global context of
objects to better understand the whole scene.

With the development of transformers in recent years,
many works leverage ViTs to model long-range dependen-
cies to improve the semantic segmentation performance.
DPT (Ranftl et al., 2021) and Zheng et al. (2021) use
transformers as encoders to extract feature maps and use
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CNN-based decoders to generate semantic segmentation
results. Strudel et al. (2021) and Xie et al. (2021) present
transformer decoders that take object classes as queries to
classify image regions. Many methods such as P2T (Wu et
al., 2021), PVT (Wang et al., 2021), Focal Transformer (Yang
et al., 2021) and Liu et al. (2021) design pyramid encoders
to capture multi-scale features for better segmentation. Sen-
Former (Bousselham et al., 2022), PFT (Qin et al., 2022) and
TSG (Shi et al., 2023) further propose multi-scale decoders.
MaskFormer (Cheng et al., 2021) and Mask2Former (Cheng
et al., 2022) develop instance-level transformer decoders
and combine them with pixel-level decoders to predict seg-
mentation results. Based on the Mask2Former (Cheng et
al., 2022) decoder, Oneformer (Jain et al., 2023) presents a
multi-dataset training approach, which allows joint training
on semantic, instance and panoptic segmentation datasets.
Nonetheless, thesemethods are hard to leverage the powerful
knowledge from large pre-trained models, due to differ-
ent network architectures. ViT-Adapter (Chen et al., 2023)
employs the adapter mechanism to transfer knowledge from
large pre-trained ViTs. These works are foundations of our
OV segmentation method. However, they can only recognize
fixed-set objects, while our method focuses on exploiting
LLM knowledge to improve the OV segmentation ability.

2.2 Open-Vocabulary Semantic Segmentation

OV semantic segmentation is an emerging problem that
requires a trained model to segment any arbitrary concepts
during testing without the need for retraining or adaptation.
Previous OV semantic works can be mainly categorized into
two types: one- and two-stage. Two-stage methods leverage
separate models for mask proposal generation and classifica-
tion. They first train a model or employ a pre-trained method
to generate mask proposals, which are then fed into a VL pre-
training model for classification. Xu et al. (2021); Ding et al.
(2022) train mask proposal generation models with segmen-
tation datasets to extract class-agnostic masks, and then these
mask proposals are classified by CLIP (Radford et al., 2021).
OpenSeg (Ghiasi et al., 2022) introduces image-text pairs to
train the classification network. DeOP (Han et al., 2023) opti-
mizes network connection by a decoupled and single-pass
framework. CEL (Dao et al., 2023) proposes background
learning to improve theOV training.Qi et al. (2022) only gen-
erate masks without their classes. Jaus et al. (2023) presents
a contrastive-learning-based unsupervised method to rec-
ognize OV panoptic objects in panoramic images. These
methods are intuitive. Nevertheless, they highly rely on well-
trained mask proposal generation models. Moreover, since
two-stage methods involve two heavy models, they usually
require high computational costs.

Therefore, one-stage methods Xu et al. (2022); Shi et al.
(2024); Liang et al. (2023); Xu et al. (2023) are proposed,

which generate masks and their classes simultaneously by
a single model. Xu et al. (2022) trains a ViT model with
image-text pairs and leverages group tokens to generate seg-
mentation results.ODISEXuet al. (2023) employs afixed-set
semantic segmentationnetwork (Chenget al., 2022), anduses
pre-trained Stable Diffusion (Takagi & Nishimoto, 2023) as
the image encoder for OV segmentation. (Xu et al., 2023)
introduces a side adaptation network that simultaneously
learns mask proposals and mask classification from the pre-
trained CLIP image encoder. FC-CLIP (Yu et al., 2023)
improves input resolutions to achieve finer segmentation
results. AttrSeg (Ma et al., 2023) adds category attribute
descriptions to reduce ambiguous categories and recognize
indescribable categories. HIPIE (Wang et al., 2023) unifies
semantic-, instance- and part-level segmentation tasks. Some
works (Zhang et al., 2023; Xu et al., 2023; Liang et al., 2023)
propose new training strategies. OpenSeed (Zhang et al.,
2023) combines detection and segmentation data to boost the
training. OVSegmentor (Xu et al., 2023) adopts web training
data and presents cross-modal as well as cross-image consis-
tency to improve OV training. OV-Seg (Liang et al., 2023)
proposes visual prompt tuning to improve theOV training. To
reduce the reliance of visual supervisions, FOSSIL (Barsel-
lotti et al., 2024) leverages pre-trained diffusion models
to generate text-conditioned visual embeddings. CLIP-DIY
(Wysoczanska et al., 2024) employs pre-trained CLIP to
classify multi-scale image patches as coarse segmentation
results, and refines them by existing segmentation technolo-
gies.However,most of thesemethods only extract knowledge
from VL pre-training models or self-trained models, which
only provide implicit semantic information. Unlike them, we
exploit more comprehensive knowledge from LLMs, and we
propose three types of attentionmodules to guide OV seman-
tic segmentation based on LLM priors.

2.3 Large LanguageModel

LLMs provide powerful knowledge for many real-world
applications. Different from early VL pre-training models
(Radford et al., 2021), which only learn embeddings to
model semantic spaces, LLMs (e.g., GPT-4 OpenAI (2023),
MiniGPT-4 Zhu et al. (2023) and LLAMA Touvron et al.
(2023)) are usually trained on a mass of language data
to obtain comprehensive and complex reasoning abilities.
Some recent models such as Liu et al. (2023) and Dai et al.
(2023) employ vision-language data and instruction learning
to allow LLMs to understand diverse visual content, namely
multi-modal large language models (MLLMs). These LLMs
are based on question answering (QA) or visual question
answering (VQA)mechanisms that flexibly generate answers
for various tasks. Based on visual input and language ques-
tions, Peng et al. (2023), Zhang et al. (2023) and SoMYang et
al. (2023) further extend LLMs to the region level to achieve

123



International Journal of Computer Vision

Fig. 2 Illustration of our proposed LLMFormer for OV semantic seg-
mentation. Our model contains three parts: a image feature extraction
extracts multi-scale image features; b LLM prior extraction extracts
prior knowledge from the LLM for segmentation; c LLM-prior-guided

segmentation divides LLM knowledge into three types: objects (red),
attributes (green) and relations (blue), and utilizes them via semantic,
scaled visual and relation attention modules

more fine-grained visual understanding and reasoning. Lai et
al. (2023) proposes a reasoning segmentation task and lever-
ages LLMs for complex reasoning. Our work is built upon
these LLMs, but different from them. LLMs aim at general
representations and predictions, while our method focuses
on leveraging LLMs to boost the OV semantic segmentation
performance.

3 Our Method

In this section, we first describe the definition of the OV
semantic segmentation problem and the overall architecture
of our proposed LLMFormer in Sect. 3.1. Then, we discuss
the details of ourmethod inSect. 3.2 –3.4. Finally, the training
strategy of our model is presented in Sect. 3.5.

3.1 Problem Definition and Overview

Consider an inputRGB image I ∈ R
H×W×3,where H andW

are the height and width. OV semantic segmentation expects
to predict a pixel-wise classification map Out ∈ R

H×W , in
which each element indicates the class of the corresponding
pixel in the image. OV methods typically generate segmen-
tation results by mask-text alignment, where N masks are
generated and aligned with C candidate classes on the target
application.

Figure 2 shows the overall architecture of our proposed
LLMFormer, which consists of three parts: Image Feature
Extraction, LLM Prior Extraction and LLM-Prior-Guided
Segmentation. (a) The Image Feature Extraction part con-
tains a vision encoder from multi-modal large language
models (MLLMs), an adapter and an MSDA (multi-scale

deformable attention) to capture multi-scale image fea-
tures. (b) The LLM Prior Extraction part is to extract
comprehensive prior knowledge from LLMs. (c) The LLM-
Prior-Guided Segmentation part introduces novel semantic,
scaled visual and relation attentions to decouple LLM priors
and guide OV semantic segmentation. Next, we introduce
each module in detail.

3.2 Image Feature Extraction

Our image feature extraction module takes the image I as
input, and generates image feature maps, as shown in Fig. 3.
To better segment objects of different sizes, we generate
multi-scale feature maps. We use the vision encoder of an
MLLM (such as LLAVA Liu et al. (2023)), while our model
can use any image encoder. ViT Adapter Chen et al. (2023)
is leveraged to transform the feature maps from the general
vision encoder to our target domain. Inspired by fixed-set
segmentation methods (Cheng et al., 2021, 2022), anMSDA
(multi-scale deformable attention) module is also adopted to
refine multi-scale feature maps. Let {Vl ∈ R

Hl×Wl×Dl }Ll=1
denote the refined feature maps, where L is the number of
scales, and Hl , Wl and Dl are the height, width and channel
number for the l-th feature map, respectively.

3.3 LLM Prior Extraction

In this subsection, we extract comprehensive knowledge of
LLMs for OV semantic segmentation. Current MLLMs are
usually based on the visual question answering (VQA) archi-
tecture. They contain a vision encoder to obtain general
features of the input image, and a language model to gen-
erate answers from a question and the image features, as
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Fig. 3 The flow of our image feature extraction. We adopt ViT Adapter
Chen et al. (2023) to extract knowledge from the pre-trained vision
encoder (ViT) to discover open-vocabulary objects. Specifically, an ini-
tial feature extraction module is first used to generate multi-scale image
features. Then, K adapter blocks progressively embed knowledge from

K vision encoder blocks into our multi-scale image features. Finally,
an MSDA module (Cheng et al., 2022) is leveraged to gradually refine
the feature map on each scale, and we take these refined features as our
final image features {Vl }Ll=1

shown in Fig. 2. While any VQA-based MLLM can be used
in our model, here we adopt Liu et al. (2023). We input ques-
tions such as ’Describe the image’ to obtain comprehensive
descriptions of an image.

As discussed in Sect. 1, wewant to extract object, attribute
and relation priors from the MLLM. To do that, we employ
language parsing tools (e.g., Schuster et al. (2015)) to extract
nouns as object priors, adjectives related to an object as its
attribute priors, and verbs or prepositions related to multiple
objects as their relation priors. Textual embeddings of these
words are also extracted from the MLLM. Let O ∈ R

M×D ,
A ∈ R

M×D and R ∈ R
K×D represent the embeddings of

object, attribute and relation priors, respectively, where M is
the number of objects, K is the count of object relations, and
D is the dimension of textual embeddings. If a prior contains
multiple words, we average their embeddings. Moreover, we
generate M attribute prior embeddings to align with object
priors. Similarly, if an object is related to multiple attributes,
we use the average of the embeddings to represent the object
attribute prior. If there is no attribute for an object, we set
an all-zero vector as its corresponding attribute prior. Note
that LLMs usually cannot describe all objects as well as their
attributes and relations in an image. Thus, we use LLMpriors
as guidance, but do not completely rely on them.

3.4 LLM-Prior-Guided Segmentation

Here, we build a transformer-based decoder to generate seg-
mentation results guided by LLM priors. As illustrated in
Fig. 4, we set N learnable mask embeddings Z ∈ R

N×DZ

as queries in our decoder, where each embedding is a DZ -
dimensional vector. Z is randomly initialized and can be
learned during training. Our transformer decoder contains
Ldec blocks, and each block consists of three main compo-
nents: semantic, scaled visual and relation attentions.

Semantic Attention. Semantic attention embeds object
and attribute priors into mask embeddings, to leverage object
classes and appearances to enhance OV object discovery,
mask prediction and classification. It also captures the corre-
spondences between object priors and masks for subsequent
attention modules. Our semantic attention is a multi-head
cross-attention model:

ZS,AttS = MHCA(query = Z,

key = O + A,

value = O + A)

(1)

where MHCA(·, ·, ·) is multi-head cross-attention with
addition and normalization (Vaswani et al., 2017). We take
mask embeddings Z as queries, and the sum of object
and attribute prior embeddings as keys and values in this
attention. The outputs ZS ∈ R

N×DS are updated mask
embeddings, which incorporate object and attribute priors
from LLMs. AttS ∈ R

N×M is the average of attention maps
from all heads, which captures the relationships between N
masks and M LLM object priors. Each element aSn,m inAttS

is from 0 to 1, and a high aSn,m means that the n-th mask is
highly related to the m-th LLM object.

Scaled Visual Attention. The updated mask embeddings
ZS are then input into scaled visual attention to embed visual
information {Vl}Ll=1. We find that many attributes indicate
object sizes. For example, the attribute large in Fig. 2 directly
describes the object size, and the word several indicates that
the corresponding object class involves many image regions.
Therefore, we propose to leverage attribute priors for scale
selection to better segment objects in different sizes.

Concretely, we expect to select suitable visual feature
maps from {Vl}Ll=1 for eachmask based on attribute priorsA.
To this end, we first generate attribute embeddings for every
mask:

123



International Journal of Computer Vision

Fig. 4 Our semantic, scaled visual and relations attentions. a Seman-
tic attention incorporates object name and attribute priors into mask
embeddings for OV object discovery and classification. b Scaled visual
attention is to segment objects of different sizes based on attribute pri-

ors. c Relation attention incorporates LLM relation priors into attention
learning to better model object relationships for OV semantic segmen-
tation

AZ = AttS × A (2)

where × denotes matrix multiplication. We leverage the
prior-mask correspondence matrixAttS to transform object-
prior-wise attributes A into mask-wise ones AZ ∈ R

N×D .
Next, a two-layer MLP (multilayer perceptron) with Soft-

max is used to predict scale selection scores for every mask

S = Sof tmax(MLP(AZ )) (3)

where S ∈ R
N×L are scale selection scores. In S, each ele-

ment sn,l is from 0 to 1 andmeans the confidence of choosing
the l-th image feature map to segment the n-th mask.

On the other hand, we embed each image feature map Vl

into mask embedding by a multi-head cross-attention with
addition and normalization as

ZV
l = MHCA(query = ZS,

key = Vl

value = Vl)

(4)

where mask embeddings ZS are queries, the image feature
mapVl is used as keys and values, and ZV

l ∈ R
N×DV are the

output mask embeddings which encode visual information
from the l-th image feature map. In this way, we generate
L updated mask embeddings {ZV

l }Ll=1, where each vector
zVn,l ∈ R

DV denotes the embedding of the n-th mask in the
l-th scale.
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Fig. 5 Pipeline of generating OV semantic segmentation results. We
generate mask resultsMask based on mask embeddings ZR and image
featuresVL , while classifying each mask by calculating the similarities

Sim between mask embeddings ZR and candidate class embeddings
Cls. The final segmentation results Out is the combination of Mask
and Sim

Finally, we leverage scale selection scores S to choose
mask embeddings of suitable scales as

zVn =
L∑

l=1

sn,l zVn,l . (5)

For eachmask n, we calculate theweighted sumof its embed-
dings in different feature maps {ZV

l }Ll=1, and the weights
are corresponding scale selection scores sn,l in S. zVn is the
final embedding for the n-th mask, and ZV ∈ R

N×DV is the
embedding map for all masks.

Relation Attention.We inputZV to our relation attention
to learn mask relationships with LLM relation prior guid-
ances. We generate a 0-1 object relation map Re ∈ R

M×M

from relation prior R. If two objects are related in LLM
descriptions, the corresponding value in Re is 1; otherwise,
the value is 0. Then, we map Re to mask-level as

ReZ = AttS × Re × (AttS)T (6)

where ReZ ∈ R
N×N indicates the LLM relation prior for

every mask pairs, and each value in ReZ is in [0, 1].
These priors is encoded into mask embeddings by amulti-

head self-attention as follows,

ZR = MHSA(query = ZV ,

key = ZV ,

value = ZV ,

attention = Ãtt)

(7)

Ãtt = Sof tmax(Linear(Att + ReZ )) (8)

where MHSA(·, ·, ·) is multi-head self-attention with addi-
tion, normalization and FFN in transformers (Vaswani et al.,
2017). We take ZV as queries, keys and values to model
the relationships among masks. Att ∈ R

N×N is the original

attention map. We use a linear layer to integrate the trans-
former attention map Att and LLM relation priors ReZ . A
Softmax is leveraged to normalize the integrated attention
map. Ãtt ∈ R

N×N denotes the integrated and normalized
attention, and we use it to embed both visual and prior rela-
tions into mask embeddings. ZR ∈ R

N×DR is the output
of each decoder block, where DR is its dimension. ZR in
the final block is the output of our entire decoder, which
embedsmask relations, scaled visual information, and object,
attribute and relation priors for OV semantic segmentation.

Segmentation Result Generation. Similar to fixed-set
methods (Cheng et al., 2021, 2022), mask embeddings ZR

and the largest pixel-level image feature map VL are used to
generate mask results, as shown in Fig. 5. We first leverage
two two-layer MLPs to convert the dimensions of ZR and
VL into the same. Z̃R ∈ R

N×D and ṼL ∈ R
HL×WL×D are

the transformed features, and the dimension D is as the same
as textual embeddings.

Mask results are generated by

Mask = Z̃R × (ṼL)T (9)

where Mask ∈ R
N×HL×WL is N segmentation masks, and

each mask is an HL × WL segmentation map.
For OV classification, We generate a text embedding

matrixCls ∈ R
C×D for all theC candidate classes on the tar-

get application, where the text embedding for each class can
be generated by our LLM. If there is no pre-defined candi-
date class, we can use all LLM object priors R as candidates
to realize OV segmentation. Then, we calculate mask-text
similarities:

Sim = Z̃R × ClsT (10)

where Sim ∈ R
N×C denotes similarities between each mask

and each candidate class. For each mask, the class with the
highest similarity can be selected as the class of this mask.
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Finally, we convert mask-wise predictions into pixel-level
classification maps by

Õut = SimT × Mask (11)

where Õut ∈ R
C×HL×WL is a pixel-wise semantic segmen-

tation map. The final segmentation output Out is generated
by selecting the class with the highest score for each pixel.

3.5 Training

Similar to fixed-set semantic segmentation (Cheng et al.,
2022), our entire training loss contains two parts as follows:

Loss = Lmask + λLcls (12)

where Lmask is the mask loss for mask predictions Mask,
including a binary cross-entropy loss and a dice loss. Lcls is
a cross-entropy loss for classification results based on mask-
class similarities Sim. λ is a weight to control the loss ratio.
We only train the adapter, MSDA and transformer decoder,
while fixing other parts, as shown in Fig. 2. During training,
LLM descriptions for each image only need to be extracted
once to reduce computational redundancies.

4 Experiments

4.1 Datasets andMetrics

Following previous OV semantic segmentation methods
(Liang et al., 2023; Xu et al., 2022, 2023), we train ourmodel
on theCOCO-Stuff dataset (Caesar et al., 2018),while testing
on ADE20K (Zhou et al., 2017), Pascal Context (Mottaghi
et al., 2014) and Pascal VOC (Everingham et al., 2010) to
evaluate the OV performance.

COCO-Stuff (Caesar et al., 2018) is a comprehensive
segmentation dataset that includes mask annotations for
171 classes. These classes encompass both things (such as
dogs and cats) and stuffs (e.g., grass and sky). The dataset
comprises more than 118,000 training images and 5,000 val-
idation images.

Pascal Context (Mottaghi et al., 2014) contains 5105 nat-
ural images for validation. There are two class settings in
this dataset: the 59 most frequent classes (PC-59) and all 459
classes (PC-459). P-459 is harder and can better estimate the
OV ability.

ADE20K (Zhou et al., 2017) comprises a set of 2000 vali-
dation photographs. We utilize two variations: one including
the top 150 most common classes (A-150) and the other
encompassing a broader range of 847 classes (A-847).

The Pascal VOC 2012 , as described in Everingham et
al. (2010), consists of 20 classes. Most of the classes overlap

with COCO-Stuff. Therefore, OV methods on this dataset
usually achieve high accuracy. The dataset consists of 11,185
training images and 1,449 validation images.

Evaluation metrics. We use the common semantic seg-
mentation metric, mean Intersection over Union (mIoU), to
evaluate the performance. All reported mIoU scores are in a
percentage format.

4.2 Implementation Details

Ourmethod canuse anyVQA-basedMLLMas the backbone.
Here,weuseLLAVA−1.5-7BLiu et al. (2023) as an example,
which includes an image encoder (ViT-L trained on CLIP
Radford et al. (2021)) and a language model (Vicuna-7B
Vicuna (2023)). Textual embeddings are extracted from the
final embedding layer. The maximum numbers M and K of
object and relation priors are both set to 50. The number N
of mask queries is 100. We use four image feature maps, i.e.,
L = 4. We set λ = 2.0 in our loss function. The input image
size is 640×640 and the number of iterations is 120K. Other
network and training settings are the same as Cheng et al.
(2022). The model is trained on 8 Nvidia V100 GPUs.

4.3 Comparisons with State-of-the-art Methods

We report OV semantic segmentation results on the Pascal
Context dataset in Table 1. FC-CLIP (Yu et al., 2023) shows
the best results in previous methods, which proposes a net-
work with higher resolutions. Compared with FC-CLIP (Yu
et al., 2023), our method achieves gains of 7.2% on PC-459
and 5.8% on PC-59. SAN (Xu et al., 2023) is the second-
best existing method. It leverages a side adapter to adapt
CLIP knowledge forOV semantic segmentation. Ourmethod
outperforms it by 8.3% and 4.0% on PC-459 and PC-59,
respectively. We achieve this superior performance because
various LLM knowledge are exploited by our method, and
our semantic, scaled visual as well as relation attentions
effectively leverage these knowledge to guide OV semantic
segmentation.

Table 2 shows the results on theADE20Kdataset.Our pro-
posed method also achieves state-of-the-art performance on
bothA-847 andA-150. In particular, ourmethod exceeds FC-
CLIP (Yu et al., 2023), the second-best method, by 1.7% on
A-847 and 4.4% on A-150. When comparing with SAN (Xu
et al., 2023) using the VIT-L backbone, we yield improve-
ments of 2.8% on A-847 and 5.2% on A-150.

In Table 3, we evaluate the effectiveness of our LLM-
Former on Pascal VOC2012. Since this dataset only contains
20 classes and most of them are included in COCO-Stuff
training data, all methods show high performance. Despite
that, we also achieve the best mIoU, and significantly outper-
form the previous SOTAmethod FC-CLIP by 1.4%.We also
report results under the Open IoU metric (Zhou et al., 2023)
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Table 1 OV semantic segmentation results on pascal context

Method Backbone Training Dataset PC-459 (mIoU (%)) PC-59 (mIoU (%))

LSeg+ Li et al. (2022) R101 COCO-Panoptic 5.2 36.0

OpenSeg Ghiasi et al. (2022) R101 COCO-Panoptic 6.5 36.9

OpenSeg Ghiasi et al. (2022) R101 COCO-Panoptic + Loc. Narr 7.9 40.1

GroupVIT Xu et al. (2022) VIT-S GCC + YFCC 4.9 25.9

Zegformer Ding et al. (2022) R101 COCO-Stuff 10.4 45.5

Simple Xu et al. (2022) R101c COCO-Stuff 8.7 47.7

DeOP Han et al. (2023) R101c COCO-Stuff 156 9.4 48.8

MaskCLIP Ding et al. (2023) R50 COCO-Panoptic 10.0 45.9

OV-Seg Liang et al. (2023) R101c COCO-Stuff + COCO-Caption 11.0 53.3

OV-Seg Liang et al. (2023) Swin-B COCO-Stuff + COCO Caption 12.4 55.7

HIPIE Wang et al. (2023) ViT-H O365,COCO,RefCOCO,PACO 14.4 59.3

ODISE Xu et al. (2023) ViT-B COCO-Panoptic 14.5 57.3

SAN Xu et al. (2023) VIT-B COCO-Stuff 12.7 53.4

SAN Xu et al. (2023) VIT-L COCO-Stuff 17.1 60.2

FC-CLIP Yu et al. (2023) ConvNeXt-L COCO-Panoptic 18.2 58.4

LLMFormer (Ours) ViT-L COCO-Stuff 25.4 64.2

Bold values indicate the best results
‘PC-459’ and ‘PC-59’ mean 459 and 59 classes on pascal context, respectively

Fig. 6 OV semantic segmentation results on A-150. Left to right: input
images, ground truths, results of FC-CLIP Yu et al. (2023) and ours.
Previous methods fail to segment and classify some objects, such as
wall, floor and field in the first and second images. Prior works also
over-segment some large objects (e.g., plant and building in the third

image), and miss small objects like the pole of the signboard object
in the third image. Our method avoids these errors, because we extract
object, attribute and relation priors from LLM, and leverage them for
OV object segmentation, classification as well as scale selection
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Table 2 OV semantic segmentation results on ADE20K

Method Backbone Training dataset A-847 (mIoU (%)) A-150 (mIoU (%))

LSeg+ Li et al. (2022) R101 COCO-Panoptic 2.5 13.0

OpenSeg Ghiasi et al. (2022) R101 COCO-Panoptic 4.0 15.3

OpenSeg Ghiasi et al. (2022) R101 COCO-Panoptic + Loc. Narr 4.4 17.5

GroupVIT Xu et al. (2022) VIT-S GCC + YFCC 4.3 10.6

Zegformer Ding et al. (2022) R101 COCO-Stuff 5.6 18.0

Simple Xu et al. (2022) R101c COCO-Stuff 7.0 20.5

DeOP Han et al. (2023) R101c COCO-Stuff 156 7.1 22.9

MaskCLIP Ding et al. (2023) R50 COCO-Panoptic 8.2 23.7

OV-Seg Liang et al. (2023) R101c COCO-Stuff + COCO-Caption 7.1 24.8

OV-Seg Liang et al. (2023) Swin-B COCO-Stuff + COCO Caption 9.0 29.6

HIPIE Wang et al. (2023) ViT-H O365,COCO,RefCOCO,PACO 9.7 29.0

ODISE Xu et al. (2023) ViT-B COCO-Panoptic 11.1 29.9

SAN Xu et al. (2023) VIT-B COCO-Stuff 10.2 27.6

SAN Xu et al. (2023) VIT-L COCO-Stuff 13.7 33.3

FC-CLIP Yu et al. (2023) ConvNeXt-L COCO-Panoptic 14.8 34.1

LLMFormer (Ours) ViT-L COCO-Stuff 16.5 38.5

Bold values indicate the highest results
‘A-847’ and ‘A-150’ represent 847 and 150 classes on ADE20K, respectively

Table 3 OV semantic
segmentation results on Pascal
VOC 2012

Method Backbone Training dataset mIoU (%)

LSeg+ Li et al. (2022) R101 COCO-Panoptic 59.0

OpenSeg Ghiasi et al. (2022) R101 COCO-Panoptic 60.0

OpenSeg Ghiasi et al. (2022) R101 COCO-Panoptic + Loc. Narr 63.8

GroupVIT Xu et al. (2022) VIT-S/16 GCC + YFCC 50.7

Zegformer Ding et al. (2022) R101 COCO-Stuff 89.5

Simple Xu et al. (2022) R101c COCO-Stuff 88.4

DeOP Han et al. (2023) R101c COCO-Stuff 156 91.7

OV-Seg Liang et al. (2023) R101c COCO-Stuff + COCO-Caption 92.6

OV-Seg Liang et al. (2023) Swin-B COCO-Stuff + COCO Caption 94.5

SAN Xu et al. (2023) CLIP VIT-B/16 COCO-Stuff 94.0

SAN Xu et al. (2023) CLIP VIT-L/14 COCO-Stuff 95.5

FC-CLIP Yu et al. (2023) ConvNeXt-L COCO-Panoptic 95.4

LLMFormer (Ours) ViT-L COCO-Stuff 96.8

Bold value indicates the best results

Table 4 OV semantic segmentation results under the Open IoU metric Zhou et al. (2023), which can better verify the OV capability

Method Backbone Training dataset A-847 A-150 PC-459 PC-59 Pascal VOC

Simple Xu et al. (2022) R101c COCO-Stuff 12.9 29.0 14.5 50.8 90.2

OV-Seg Liang et al. (2023) Swin-B COCO-Stuff + COCO Caption 15.7 36.9 17.4 59.6 95.6

SAN Xu et al. (2023) CLIP VIT-L/14 COCO-Stuff 19.2 39.0 19.9 60.4 96.0

FC-CLIP Yu et al. (2023) ConvNeXt-L COCO-Panoptic 20.6 40.4 16.3 61.2 96.2

LLMFormer (Ours) ViT-L COCO-Stuff 23.2 44.8 28.5 68.2 97.3

Bold values indicate the best results
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Table 5 The effects of main
components in our method on
the ADE20K dataset

Model Semantic Scaled visual Relation
attention attention attention A-847 A-150

Baseline 7.3 23.4

Model A � 11.9 30.5

Model B � � 14.8 36.2

Model C � � 13.3 34.0

Full model � � � 16.5 38.5

The baseline model is a modification of the fixed-set segmentationmethodMask2Former (Cheng et al., 2022),
where we replace the fixed-set classification head with a mask-text alignment head for OV recognition. The
text embeddings are extracted by our language model. We also replace the image encoder with our encoder
(i.e., ViT, adapter and MSDA)

in Table 4, which can better evaluate the OV ability. It can be
observed that ourmethod achieves significant improvements,
compared with previous works. These results demonstrate
the effectiveness of our LLMFormer and attention modules.

We visualize our results in Fig. 6. It can be seen that FC-
CLIP misclassifies some classes due to their similarity. For
instance, rug and grass in the first and second images are
misclassified as floor and field, respectively. In addition, FC-
CLIP also does not segment out the wall object in the first
image. Our method exploits LLM object, attribute and rela-
tion priors for OV semantic segmentation, and thus reduces
these mistakes. In addition, in the third image in Fig. 6, FC-
CLIP fails to segment small objects such as the pole of the
signboard object, despite high-resolution inputs.Meanwhile,
the plant object in this image is over-segmented by FC-
CLIP. Our method successfully segments out these objects,
because we leverage LLM attribute priors for segmentation
scale selection.

4.4 Discussion

In this section, we conduct extensive ablation studies to fur-
ther verify the effectiveness of our proposed methods. All
models are trained with COCO-Stuff while being tested on
ADE20K.

The effects of main components. The effects of every
proposed component are reported in Table 5. We modify
several components of the fixed-set segmentation method
Mask2Former (Cheng et al., 2022) as our baseline. We place
the fixed-set classification head with a mask-text alignment
head for OV recognition. The text embeddings are extracted
by our language model. Its image encoder is also replaced
with our encoder for a fair comparison. When comparing
Model A with the baseline, we observe significant per-
formance gains of 4.6% and 7.1% on A-847 and A-150,
respectively. These findings highlight the significance of our
semantic attention module, which embeds LLM object and
attribute priors into the segmentation model. Moreover, both
Model B and Model C show improvements compared to

Table 6 The effects of our semantic attention on the ADE20K dataset

Object Attribute
Model priors priors A-847 A-150

Baseline 7.3 23.4

Embedding enhance

Model D � 8.8 26.3

Model E � � 9.4 26.9

Embedding enhance and self-attention

Model F 8.7 26.5

Model G � 9.6 27.8

Model H � � 10.4 28.3

Cross-attention

Model I � 11.0 29.2

Model A � � 11.9 30.5

Scaled visual and relation attention are not used in this experiment.
‘Embedding enhance’ means that we do not use the MHCA in our
semantic attention. Instead, we directly sum all object and attribute
embeddings as a single vector, and add the sum to eachmask embedding
for enhancement. ‘Embedding enhance and self-attention’ means that
we sum the priors and add them to mask embeddings, and then input
enhanced mask embeddings into MHSA. ‘Cross-attention’ means that
we leverage cross-attention to enhance mask embeddings based on our
priors, as described in Sect. 3.4

Table 7 The effects of scaled visual attention on ADE20K

Model Scale strategies A-847 A-150

Model A Multi-scale progress 11.9 30.5

Model J Single scale (large) 10.5 27.9

Model K Multi-scale fusion 11.7 30.8

Model L Scale selection 13.5 35.1

Model B Scale selection based on attributes 14.8 36.2

Here, we use semantic attention. ‘Multi-scale progress’ means that
multi-scale feature maps are progressively input into different blocks in
the transformer decoder as in Cheng et al. (2022). In Model J, we only
use the large feature map to capture more visual details. In Model K, all
image feature maps are input into theMHCA and we average the output
embeddings. Model L leverages a vision-based scale selection method
(Shi et al., 2023). ‘Model B’ is our method that selects segmentation
scales based on LLM attribute priors
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Fig. 7 Visualization of scale selection based on attributes. We show
how a certain attribute (the green word in the description) selects multi-
scale feature maps. To this end, we first set other attributes to 0 in
our attribute priors A and predict scale selection scores S. Then, S in
the final decoder block is multiplied with the mask predictionsMask to
generate attribute response maps. In the first image, the large bus area is

highlighted in low-resolution feature maps to avoid over-segmentation.
High-resolution feature maps are selected in the second image to better
segment the small dog.Other attributes (such aswhite in the third image)
are also helpful to highlight objects, but only in middle-resolution fea-
ture maps

Table 8 The effects of relation attention on ADE20K

Model Relation strategies A-847 A-150

Model B Transformer attention only 14.8 36.2

Model M Transform 15.1 36.6

Full model Sum and transform 16.5 38.5

Here,we use semantic and scaled visual attention.Model B uses original
attention maps in the MHSA. Model M only uses the linear layer with
softmax. Our full model adds our relation priors to original attention
maps and leverages a linear layer with softmax to transform the sum

Model A, suggesting that scale selection based on LLM
attributes and attention enhancement by LLM relations can
further improve the performance. Therefore, we incorpo-
rate all three modules into our full model, yielding the best

performance of 16.5% and 38.5% on A-847 and A-150,
respectively.

Semantic attention. Table 6 shows different setups of our
semantic attention.We explore the effectiveness of object pri-
ors, attribute priors, and variousmethods to incorporate these
priors. Overall, the utilization of object priors consistently
improves the OV segmentation performance. For example,
all models involving object priors, such as Models D, G & I,
outperformmodelswithout object priors, such as the baseline
and Model F. Attribute priors are employed in Models E, H
&A to further enhance the results. Among different methods
of prior integration, cross-attention exhibits the most supe-
rior performance. Meanwhile, cross-attention allows us to
calculate prior-mask correspondences, which is crucial for
our following scaled visual and relation attentions.

Table 9 The effects of different
attention methods on ADE20K

Model A-847 A-150

Masked attention Cheng et al. (2022) (Baseline) 7.3 23.4

TSG attention Shi et al. (2023) 9.4 30.6

Ours 16.5 38.5

Masked attention (Cheng et al., 2022) adds additional masks to cross-attention. It is equal to our baseline
model, wherewe change the classification head inMask2Former (Cheng et al., 2022) into theOVclassification
head, and replace the image encoder with our encoder. TSG Attention (Shi et al., 2023) generates scale gates
to improve attentions, where we add this module to our baseline
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Table 10 The number of
trainable parameters and FLOPs

Model Params (M) FLOPs (T) A-847 A-150

Zegformer Ding et al. (2022) 430 10.5 8.0 23.5

Simple Xu et al. (2022) 64 9.6 9.9 28.3

OV-Seg Liang et al. (2023) 321 9.6 12.5 33.1

SAN Xu et al. (2023) 11 0.9 13.7 33.3

Ours (LLAVA−1.5-7B) 129 11.8 16.5 38.5

Ours (LLAVA-Phi2-2.7B) 129 6.3 15.2 36.7

We reproduce Zegformer Ding et al. (2022), Simple Xu et al. (2022), OV-Seg Liang et al. (2023) and SAN
Xu et al. (2023) with CLIP ViT-L/14. The size of input images is 640x640

Scaled visual attention. We compare different scale
strategies in Table 7. In general, multi-scale methods are
superior to the single-scale approach. Furthermore, scale
selection approaches such as Models L & B outperform
other non-selection methods. Our proposed scale selection
by attribute priors outperforms Model L by 1.3% and 1.1%
onA-847 andA-150, respectively. These results demonstrate
the effectiveness of our scaled visual attention based on LLM
attribute priors.

We visualize the relationships between object attributes
and multi-scale feature maps in Fig. 7. It can be observed
that scale-aware attributes are helpful for scale selection. For
example, in the first image, low-resolution feature maps are
selected for the large bus to reduce over-segmentation. In
contrast, in the second image, the small dog is highlighted in
high-resolution feature maps to generate finer masks. Other
attributes (color, texture, etc.) can also highlight objects, such
aswhite birds in the third image.Nevertheless, such attributes
mainly highlight objects in middle-resolution feature maps,
while scale-aware attributes are able to select very high-/low-
resolution ones.

Relation attention. Table 8 reports the effects of our rela-
tion priors. ComparedwithModelB, our FullModel achieves
increases of 1.7% and 2.3% on A-847 and A-150. In our Full
Model,we incorporateLLMrelationpriors into self-attention
maps, and use a linear layer to integrate them. Only using this
linear layer (ModelM) yields slight improvements compared
to Model B. These results demonstrate that the gains come
from our relation priors.

Different attention methods. We show the results of
different attentions in Table 9. Our attention methods sig-
nificantly outperform masked attention (Cheng et al., 2022)
and TSG Attention (Shi et al., 2023), because they can not
recognize OV objects, while our attention modules exploit
LLM priors to improve OV semantic segmentation.

Cost comparison. Table 10 reports the computational
costs of state-of-the-art methods and our model. Compared
with Zegformer (Ding et al., 2022) and OV-Seg (Liang et al.,
2023), our model includes fewer trainable parameters while
achieving higher accuracy, because we only have trainable
parameters in the adapter, MSDA and decoder. We can also

Table 11 The effects of different questions on ADE20K. ‘Question 1’
only use simple prompts, while ‘Question 2’ includes more detailed
prompts

Model A-847 A-150

Question 1: describe the image 16.5 38.5

Question 2: describe all objects, attributes
and relationships in the image

17.8 39.9

use LLAVA-Phi2-2.7B (Zhu et al., 2024) to further reduce
the computational overhead, while only slightly decreasing
the performance.

Different prompts. In Table 11, we compare questions
with simple prompts ‘describe the image’ as well as detailed
prompts ‘describe all objects, attributes and relationships in
the image’. Detailed prompts are able to further increase the
segmentation performance. Figure 8 shows some examples
of the generated descriptions. With detailed prompts, more
objects, attributes and relationships are generated, such as
lamp and wooden in the second image. Since we focus on
visual predictions, we mainly use simple prompts in other
experiments as a running example.

Cross-domain zero-shot semantic segmentation. To
further evaluate the generalization ability, we conduct cross-
domain zero-shot semantic segmentation experiments. We
train all models on COCO-Stuff while testing on the Pas-
cal Context dataset. During training, we remove annotations
whose classes belong to 59 Pascal Context classes. The
results are shown in Table 12. It can be observed that our
method outperforms SAN (Xu et al., 2023) and FC-CLIP
(Yu et al., 2023) by 5.5% and 9.8%, respectively. We depict
qualitative results in Fig. 9. FC-CLIP (Yu et al., 2023) fails to
segment some objects, such as ground in the first image, and
ceiling, wall as well as floor in the third image. Our method
avoids such errors. These results further demonstrate the gen-
eralization ability of our method.

Failure cases. Figure 10 shows failure cases of our
method. Firstly, some complicated object boundaries are not
well segmented, such as tree in the first image and lamp in the
second image. Enlarging input image sizes can alleviate these
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Fig. 8 Image descriptions generated by different questions. ‘Question 1’ only contains simple prompts ‘describe the image’. ‘Question 2’ uses
more detailed prompts ‘describe all objects, attributes and relationships in the image’, and thus predicts more image information

Table 12 Cross-domain
zero-shot semantic segmentation
results on pascal context

Model Backbone Training data P-59

SAN Xu et al. (2023) VIT-L COCO-Stuff w/o P-59 45.3

FC-CLIP Yu et al. (2023) ConvNeXt-L COCO-Stuff w/o P-59 41.0

Ours ViT-L COCO-Stuff w/o P-59 50.8

‘COCO-Stuff w/o P-59’ means that we remove 59 pascal context classes from the COCO-Stuff dataset during
training

Fig. 9 Visualized cross-domain zero-shot semantic segmentation
results on Pascal Context. Left to right: input images, ground truths,
results of FC-CLIP Yu et al. (2023) and ours. FC-CLIP Yu et al. (2023)

generates several mistakes. For example, ceiling and wall in the third
image are predicted as building. Cow in the second image is over-
segmented. Our method correctly segments these objects
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Table 13 OV semantic segmentation results without pre-defined candidate classes on ADE20K

Model Backbone Training data A-847 A-150

With candidate classes

LSeg+ Li et al. (2022) R101 COCO-Panoptic 2.5 13.0

OpenSeg Ghiasi et al. (2022) R101 COCO-Panoptic 4.0 15.3

OpenSeg Ghiasi et al. (2022) R101 COCO-Panoptic + Loc. Narr 4.4 17.5

GroupVIT Xu et al. (2022) VIT-S GCC + YFCC 4.3 10.6

Zegformer Ding et al. (2022) R101 COCO-Stuff 5.6 18.0

Simple Xu et al. (2022) R101c COCO-Stuff 7.0 20.5

DeOP Han et al. (2023) R101c COCO-Stuff 156 7.1 22.9

LLMFormer (Ours) ViT-L COCO-Stuff 16.5 38.5

Semantic Scaled visual Relation

Model attention attention attention A-847 A-150

Without candidate classes

Model A � 4.9 9.6

Model B � � 6.2 13.8

Full model � � � 7.3 16.4

Bold values indicate the highest results

errors. Secondly, our method confuses several very similar
classes. For instance, thewardrobeobject in the second image
is misclassified as cabinet. We will develop fine-grained OV
methods in the future to address this issue.

4.5 OV Semantic Segmentation without Pre-defined
Candidate Classes

In this section, we evaluate our ability for OV semantic
segmentation without pre-defined candidate classes. Dur-
ing inference, previous methods require a set of candi-
date classes. However, in real-world applications, candidate
classes are usually not provided. Different from prior works,
our method is able to generate OV semantic segmentation
without pre-defined candidate classes, because LLMs pro-
vide object class priors.

Table 13 shows the results. Since previous works cannot
generate such results, we compare different settings of our
method. As introduced in Sect. 3.4, when there is no pre-
defined class, we use object classes in LLM descriptions as
candidate classes. Nevertheless, there is a problem during
evaluation. Due to the language diversity, LLMs may gener-
ate various names for an object, while the target dataset only
labels one or several names. For example, LLM predicts a
student object, while the label on the target dataset is person.
To solve this problem, we leverage CLIP textual similarity
for evaluation. If the textual similarity between the predicted
and ground truth object names is higher than a threshold
Thr , we think this object is correctly predicted. We set Thr
to 70 during evaluation. Our full model achieves 7.3%mIoU
on A-857. Although this result is lower than ours with pre-

Fig. 10 Failure cases on A-150. Left to right: input images, ground
truths and our results. Our method does not well segment complicated
object boundaries, such as the tree object in the first image and the lamp
object in the second image. Fine-grained classes also fail to be distin-
guished. For example, in the second image, wardrobe is misclassified
as cabinet

defined classes, because LLMs miss some objects and the
languagediversity reduces evaluation accuracy, it still outper-
forms many previous methods based on pre-defined classes.
These results show our ability to segment OV objects without
pre-defined candidate classes. Meanwhile, the comparisons
among Model A, Model B and Full Model further demon-
strate the effectiveness of our proposed priors and attention
modules.

5 Conclusion

In this paper, we have presented LLMFormer, a novel
approach exploiting LLM knowledge for OV semantic seg-
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mentation. Three types of attention modules are proposed to
leverage object, attribute and relation priors from LLMs for
segmentation. Firstly, object and attribute priors are used to
improve OV mask prediction and classification by seman-
tic attention. Secondly, scaled visual attention is introduced
to select suitable segmentation scales for each mask based
on attribute priors. Thirdly, our relation attention enhances
visual long-range dependency learning by LLMs relation
priors. Extensive experiments demonstrate the effectiveness
of our LLMFormer and each attention module. Moreover,
our model can predict OV segmentation results without
pre-defined candidate classes, which is more practical for
real-world applications.

Although the current work explores LLM knowledge to
boost OV semantic segmentation performance, the huge
number of parameters inLLMs reduce the speed.Meanwhile,
this work focuses on improving the OV recognition ability,
while there are still fine-grained classification and bound-
ary segmentation problems. Therefore, in the future, we will
effort to study the efficiency, fine-grained classification and
segmentation problems in the OV field.

Data availability Thedata supporting thefindings of this study are based
on public databases (https://github.com/nightrome/cocostuff Caesar et
al. (2018), https://groups.csail.mit.edu/vision/datasets/ADE20K/ Zhou
et al. (2017), https://cs.stanford.edu/~roozbeh/pascal-context/ Mot-
taghi et al. (2014) and http://host.robots.ox.ac.uk/pascal/VOC/ Ever-
ingham et al. (2010)) and are available from the corresponding author
upon request.
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