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Abstract
Cross-domain person re-identification (re-ID), such as unsupervised domain adaptive re-ID (UDA re-ID), aims to transfer the
identity-discriminative knowledge from the source to the target domain. Existing methods commonly consider the source and
target domains are isolated from each other, i.e., no intermediate status is modeled between the source and target domains.
Directly transferring the knowledge between two isolated domains can be very difficult, especially when the domain gap is
large. This paper, from a novel perspective, assumes these two domains are not completely isolated, but can be connected
through a series of intermediate domains. Instead of directly aligning the source and target domains against each other, we
propose to align the source and target domains against their intermediate domains so as to facilitate a smooth knowledge
transfer. To discover and utilize these intermediate domains, this paper proposes an Intermediate Domain Module (IDM) and
a Mirrors Generation Module (MGM). IDM has two functions: (1) it generates multiple intermediate domains by mixing the
hidden-layer features from source and target domains and (2) it dynamically reduces the domain gap between the source/target
domain features and the intermediate domain features.While IDM achieves good domain alignment effect, it introduces a side
effect, i.e., the mix-up operation may mix the identities into a new identity and lose the original identities. Accordingly, MGM
is introduced to compensate the loss of the original identity by mapping the features into the IDM-generated intermediate
domains without changing their original identity. It allows to focus on minimizing domain variations to further promote the
alignment between the source/target domain and intermediate domains, which reinforces IDM into IDM++. We extensively
evaluate our method under both the UDA and domain generalization (DG) scenarios and observe that IDM++ yields consistent
(and usually significant) performance improvement for cross-domain re-ID, achieving new state of the art. For example, on
the challenging MSMT17 benchmark, IDM++ surpasses the prior state of the art by a large margin (e.g., up to 9.9% and 7.8%
rank-1 accuracy) for UDA and DG scenarios, respectively. Code is available at https://github.com/SikaStar/IDM.
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1 Introduction

Person re-identification (re-ID) (Zheng et al., 2016; Leng et
al., 2019; Ye et al., 2021b) aims to identify the same per-
son across non-overlapped cameras. A critical challenge in
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a realistic re-ID system is the cross-domain problem, i.e.,
the training data and testing data are from different domains.
Since annotating the person identities is notoriously expen-
sive, it is of great value to transfer the identity-discriminative
knowledge from the source to the target domain without
incurring additional annotations. To improve the cross-
domain re-ID, there are two popular approaches, i.e., the
unsupervised domain adaption (UDA) and domain gener-
alization (DG). These two approaches are closely related
yet have an important difference: during training, UDA has
unlabeled target-domain data, while DG is not accessible to
the target domain and is thus more challenging. This paper
mainly challenges theUDA re-ID and provides compatibility
to DG re-ID.

Existing UDA re-ID methods commonly consider the
source and target domains are isolated from each other, i.e.,
there is no intermediate status between the source and tar-
get domains. Directly transferring knowledge between two
isolated domains can be very difficult, especially when the
domain gap is large. Specifically, there are two approaches,
i.e., style transfer (Wei et al., 2018; Deng et al., 2018) and
pseudo-label-based training (Song et al., 2020; Fu et al.,
2019; Dai et al., 2021b; Ge et al., 2020b). The style-transfer
methods usually use GANs (Zhu et al., 2017) to transfer the
target-domain style onto the labeled source-domain images,
so that the deep model can learn from the target-stylized
images. Since the source and target domains are isolated and
far away from each other, the style transfer procedure can
be viewed as jumping from the source to the target domain,
which canbedifficult. The pseudo-label-based trainingmeth-
ods require a clustering procedure as the prerequisite for
obtaining the pseudo labels. The domain gap between the iso-
lated source and target domains compromises the clustering
accuracy and incurs noisy pseudo labels. Therefore, we con-
jecture that directly mitigating the domain gap between two
isolated (source and target) domains is difficult for both the
style-transfer and the pseudo-label-based UDA approaches.

From a novel perspective, this paper considers that the
source and target domains are not isolated, but are poten-
tially connected through a series of intermediate domains.
In other words, some intermediate domains underpin a path
that bridges the gap between the source and target domains.
Specifically, we assume that the source and target domains
are located in a manifold, as shown in Fig. 1. There is an
appropriate “path” connecting these two isolated domains.
The source and target domains lie on the two extreme points
of this path, while some intermediate domains exist along
this path, characterizing the inter-domain connections. This
viewpoint leads to an intuition: to align the two extreme
points, comparing them against these intermediate points can
be more feasible than directly comparing the two extreme
points against each other, given that they are far from each
other due to the significant domain gap.

Fig. 1 Illustration of our main idea. Assuming that the source and
target domains (in UDA re-ID) are located in a manifold, there can
be some intermediate domains along with the path to bridge the two
extreme domains. With the generation of intermediate domains, the
source and target domains can be smoothly alignedwith them.To further
preserve the source/target identity information during alignment, we
map source/target identities into the intermediate domains to obtain
source/target mirrors

Motivated by this, we propose an intermediate domain
module (IDM) for UDA re-ID. Instead of directly aligning
the source and target domain against each other (i.e., source
→ target), IDM aligns the source and target domain against a
shared set of intermediate domains (i.e., source → interme-
diate and target → intermediate), as illustrated in Fig. 1. To
this end, IDMfirst synthesizesmultiple intermediate domains
and then minimizes the distance between each intermedi-
ate domain and the source/target domain. Specifically, IDM
mixes the source-domain and target-domain features, which
are output from a hidden layer of the deep network. The
correspondingly-synthesized features exhibit the character-
istics of the intermediate domain and are then fed into the
sub-sequential hidden layer. The consequential output fea-
tures of the intermediate domains are compared against the
original source and target domain features forminimizing the
domain discrepancy. We note that the IDM can be plugged
after any hidden layers and is thus a plug-and-play module.
There are two critical techniques for constructing the IDM:

• Modeling the intermediate domain. We use the Mixup
(Zhang et al., 2018) strategy to mix the source and tar-
get hidden features (e.g., “Stage-0” in ResNet-50) and
forward the mixed hidden feature until the last deep
embedding. Importantly, we consider the mix ratio in the
hidden layer determines the position of the output feature
in the deeply-learned embedding space.More concretely,
if the mixup operation in the hidden feature space assigns
a larger proportion to the source domain, the output fea-
ture should be closer to the source domain than to the
target domain (and vice versa). Correspondingly, when
we minimize its distance to the source and target domain
in parallel, we will emphasize both domains proportion-
ally. In a word, the correspondence between the mix ratio
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and the relative distance on the path connecting the source
and target domain models the intermediate domain.

• Enhancing the intermediate domain diversity. The path
between the source and target domains is jointly depicted
by all the intermediate domains on this path. There-
fore, it is important to generate the intermediate domains
densely. Since themix ratio determines the position of the
mixed features on the path, varying the mix ratio results
in different intermediate domains. IDM adaptively gen-
erates the mix ratios and encourages the mix ratios to be
as diverse as possible for different input hidden features.

Based on the IDM in our previous conference version (Dai
et al., 2021c), this paper makes an important extension, i.e.,
reinforcing IDM into IDM++ by further promoting the align-
ment from source/target domain to intermediate domains. In
IDM, when a source and a target-domain feature are mixed
up, their identities are accordingly mixed into a new identity
(Sect. 3.2.1). This mixup has a side effect, i.e., there are no
original identities in the intermediate domains. Therefore,
the cross-domain alignment by IDM may focus more on
the mixed-identity variation than the diverse cross-domain
styles that are irrelevant to the identity. To compensate
this, we propose a Mirrors Generation Module (MGM)
to map original identities into the already-generated inter-
mediate domains. MGM utilizes a popular statistic-based
style transfer approach AdaIN (Huang & Belongie, 2017),
which replaces the mean and standard deviation value of the
source/target features with those from intermediate features.
Consequently, each feature in the source / target domain has
a “same-identity different-style” mirror in every intermedi-
ate domain, as shown in Fig. 1. It enables IDM++ to focus
on the cross-domain variation when aligning the domains (as
detailed in Sect. 3.4). Thus, IDM++ brings another round of
significant improvement based on IDM.

We note that although the statistic-based style transfer
is not new and is widely adopted by many recent out-of-
distribution literature (Zhou et al., 2021; Nuriel et al., 2021;
Tang et al., 2021), integrating MGM implemented with style
transfer into IDM++ brings novelty and significant benefits.
First, the style transfer in prior methods is between off-
the-shelf domains, while our MGM is the first to conduct
style transfer towards on-the-fly synthesized domains (i.e.,
the IDM-generated intermediate domains). Second, on UDA
re-ID, we show that MGM and IDMmutually reinforce each
other and jointly bring complementary benefits for IDM++.
On the one hand, adding MGM significantly improves IDM
(e.g., 8.6% improvement of rank-1 accuracy on Market-
1501→MSMT17). On the other hand, IDM is a critical
prerequisite for the effectiveness of MGM, because we find
that using MGM without IDM only brings slight improve-
ment. Third, MGM endows IDM++ with the extra capacity
of improving domain generalization, allowing IDM++ to be

the first framework to integrate both UDA and DG capacity
for cross-domain re-ID, achieving state of the art results on
both scenarios.

In addition to the reinforcement from IDM to IDM++,
this paper makes two more extensions w.r.t. the applied sce-
narios and the experimental evaluation. Overall, compared
with our previous conference version (Dai et al., 2021c), the
extensions are from three aspects: (1)Method.We reinforce
IDM into IDM++ by adding a novel MGM (Sect. 3.4). MGM
maps the training identities from the source/target domain as
their mirrors in the IDM-generated intermediate domains.
It allows IDM++ to directly minimize the variation of the
same identity across various domains. This new advantage
improves IDM by a large margin. (2) Applied scenarios.We
investigate IDM++ under two popular cross-domain re-ID
scenarios, i.e., unsupervised domain adaptation (UDA) and
the more challenging domain generalization (DG). We show
that IDM++ provides a unified framework for these two sce-
narios and brings general improvement. (3) Experimental
evaluation. We provide more comprehensive experimental
evaluation, including experiments on more detailed abla-
tion studies (Sect. 4.3), analysis on parameter sensitivity
(Sect. 4.4), two challenging protocols ofDG re-ID (Sect. 4.5),
investigations on key designs of IDM++ (Sect. 4.6), and dis-
cussions on the distribution along the domain bridge and
alignment of domains (Sect. 4.7).

Our contributions can be summarized as follows.

• Weinnovatively propose to explore intermediate domains
for the cross-domain re-ID task. We consider that some
intermediate domains can be densely distributed between
the source/target domain and jointly depict a smooth
bridge across the domain gap. Minimizing the domain
discrepancy along this bridge improves domain align-
ment.

• We propose an IDMmodule to discover the desired inter-
mediate domains by on-the-fly mixing the source and
target domain features with varying mix-ratios. After-
wards, IDM mitigates the gap from source/target to the
intermediate domains so as to align the source and target
domains.

• We propose an MGM module to further promote the
source/target to intermediate domain alignment. In com-
pensation for a loss of IDM (i.e., the feature mix-up loses
the original training identities), MGM maps the original
training identities into the intermediate domains. Incor-
porating MGM and IDM, IDM++ brings another round
of substantial improvement.

• We show that our IDM++ provides a unified framework
for two popular cross-domain re-ID scenarios, i.e., UDA
and DG. Extensive experiments under twelve UDA re-
ID benchmarks and two DG re-ID protocols validate that
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IDM++ brings general improvement and sets new state
of the art for both scenarios.

2 RelatedWork

Unsupervised Domain Adaptation A line of works converts
the UDA into an adversarial learning task (Ganin & Lempit-
sky, 2015; Tzeng et al., 2017; Long et al., 2018b; Russo et al.,
2018). Another line of works uses variousmetrics tomeasure
and minimize the domain discrepancy, such as MMD (Long
et al., 2015) or other metrics (Sun & Saenko, 2016; Zhuo
et al., 2017; Long et al., 2017; Kang et al., 2018). Another
line of traditional works (Gong et al., 2012; Cui et al., 2014;
Gopalan et al., 2013) tries to bridge the source and target
domains based on intermediate domains. In traditional meth-
ods (Gong et al., 2012; Gopalan et al., 2013), they embed the
source and target data into a Grassmann manifold and learn a
specific geodesic path between the two domains to bridge the
source and target domains. Still, they are not easily applied
to the deep models. In deep methods (Gong et al., 2019; Cui
et al., 2020), they either use GANs to generate a domain
flow by reconstructing input images on pixel level(Gong et
al., 2019) or learn better domain-invariant features by bridg-
ing the learning of the generator and discriminator (Cui et
al., 2020). However, reconstructing images may not guaran-
tee the high-level domain characteristics in the feature space
or introduce unnecessary noise in the pixel space. It will
become harder to adapt between the two isolated domains
especially when the large domain gap. Recently, the concept
of intermediate modalities has been explored in the context
of cross-modal re-ID (Li et al., 2020; Wei et al., 2021; Zhang
et al., 2021b; Ye et al., 2021a; Huang et al., 2022; Yu et
al., 2023), which also motivates us to utilize intermediate
domains to tackle the cross-domain re-ID.

Unlike the abovemethods, we propose a lightweight mod-
ule to model the intermediate domains, which can be easily
inserted into the existing deep networks. Instead of hard train-
ing for GANs or reconstructing images, our IDM can be
learned in an efficient joint training scheme. Besides, this
paper also proposes a new module (MGM) to encourage the
model to focus on minimizing the cross-domain variation
when aligning the source and target domains.

Unsupervised Domain Adaptive Person Re-ID In recent
years, many UDA re-ID methods have been proposed and
they can be mainly categorized into three types based on
their training schemes, i.e., GAN transferring (Wei et al.,
2018; Deng et al., 2018; Huang et al., 2019; Zou et al., 2020;
Huang et al., 2021), fine-tuning (Song et al., 2020; Fu et
al., 2019; Ge et al., 2020a; Dai et al., 2021b; Chen et al.,
2020b; Zhai et al., 2020b; Jin et al., 2020a; Lin et al., 2020;
Wang et al., 2022; Zhai et al., 2020a, 2023), and joint train-

ing (Zhong et al., 2019, 2020b; Wang & Zhang, 2020; Ge
et al., 2020b; Ding et al., 2020; Zheng et al., 2021c; Isobe
et al., 2021). GAN transferring methods use GANs to trans-
fer images’ style across domains (Wei et al., 2018; Deng
et al., 2018) or disentangle features into id-related/unrelated
features (Zou et al., 2020). For fine-tuning methods, they
first train the model with labeled source data and then fine-
tune the pre-trained model on target data with pseudo labels.
The key component of these methods is how to alleviate
the effects of the noisy pseudo labels. However, these meth-
ods ignore the labeled source data while fine-tuning on the
target data, which will hinder the domain adaptation pro-
cess because of the catastrophic forgetting in networks. For
joint training methods, they combine the source and target
data together and train on an ImageNet-pretrained network
from scratch. All these joint training methods often utilize
the memory bank (Xiao et al., 2017; Wu et al., 2018) to
improve target domain features’ discriminability. However,
these methods just take both the source and target data as
the network’s input and train jointly while neglecting the
bridge between both domains, i.e., what information of the
two domains’ dissimilarities/similarities can be utilized to
improve features’ discriminability in UDA re-ID. Different
from all the above UDA re-ID methods, we propose to con-
sider the bridge between the source and target domains by
modeling appropriate intermediate domains with a plug-and-
palymodule,which is helpful for gradually adapting between
two extreme domains in UDA re-ID. Besides, we also pro-
pose a novel statistic-based feature augmentation module to
exploit the intermediate domains’ styles, which can encour-
age the model to focus on learning identity-discriminative
features when aligning the domains. The above exploitation
of intermediate domains has not been investigated in this field
as far as we know.

Mixup and Variants Mixup (Zhang et al., 2018) is an effec-
tive regularization technique to improve the generalization of
deep networks by linearly interpolating the image and label
pairs, where the interpolating weights are randomly sam-
pled from a Dirichlet distribution. Manifold Mixup (Verma
et al., 2019) extends Mixup to a more general form which
can linearly interpolate data at the feature level. Recently,
Mixup has been applied to many tasks like point cloud clas-
sification (Chen et al., 2020a), object detection (Zhang et al.,
2019b), and closed-set domain adaptation (Xu et al., 2020;
Wu et al., 2020; Na et al., 2021). Our work differs from these
Mixup variants in: (1) All the above methods take Mixup
as a data/feature augmentation technique to improve mod-
els’ generalization, while we bridge two extreme domains
by generating intermediate domains for cross-domain re-ID.
(2) We design an IDMmodule and enforce specific losses on
it to control the bridging process while all the above methods

123



International Journal of Computer Vision

often linearly interpolate data using the random interpolation
ratio without constraints.

Domain Generalization Domain generalization (DG) aims
to improve the model’s generalization on one or more tar-
get domains by only using one or more source domains for
training. Different from UDA, target data is not accessible
for training DG models. For more comprehensive surveys of
DG, please refer to Zhou et al. (2021),Wang et al. (2021), and
Shen et al. (2021). Following the taxonomy in a DG survey
(Zhou et al., 2021), we briefly review the two categories that
are most related to our work: (1) domain alignment and (2)
data augmentation. The key idea of the existing domain align-
ment methods is to align different source domains by only
minimizing their discrepancy.Different from theseworks,we
align the source and target domains by aligning themwith the
synthetic intermediate domain respectively. The motivation
of our work is to ease the procedure of domain alignment
using intermediate domains, which fundamentally differs
from the existing works. Data augmentation works in DG
aim to improve models’ generalization by designing image-
based (Volpi et al. 2018;Qiao et al. 2020; Zhou et al. 2020b, a)
or feature-based (Mancini et al. 2020; Xu et al. 2021; Zhou et
al. 2021; Nuriel et al. 2021; Tang et al. 2021; Du et al. 2022;
Zhou et al. 2023; Li et al. 2024; Zhao et al. 2023) augmenta-
tionmethods,which can avoid over-fitting to source domains.
For example, several feature-based augmentation researches
(Zhou et al. 2021; Nuriel et al. 2021; Tang et al. 2021) focus
on manipulating feature statistics based on the observation
that CNN feature statistics (i.e.,mean and standard deviation)
can represent an image’s style (Huang & Belongie, 2017).
Motivated by them, we propose a new augmentation mod-
ule (i.e., MGM) implemented by the arbitrary-style-transfer
technique AdaIN (Huang & Belongie, 2017) to augment
source/target features with statistics of the already-generated
intermediate domains. Different from the existing augmenta-
tion works, in this paper, we exploit the diverse inter-domain
variation to augment source/target identities with different
domain styles, and we utilize this augmentation mechanism
to complementwith the procedure of generating intermediate
domains by our IDM.

Domain Generalizable Person Re-ID Recently, a newly pro-
posed cross-domain re-ID task called domain generalizable
re-ID (DG re-ID) (Song et al., 2019; Jia et al., 2019; Jin et
al., 2020b; Zhao et al., 2021b; Choi et al., 2021; Dai et al.,
2021a; Pu et al., 2023; Zhang et al., 2022; Tan et al., 2023;
Xiang et al., 2023; Ni et al., 2022) has gained much interest
of researchers. DG re-ID aims to improve the generalization
on the target domains that are not accessible during train-
ing, where only one or more source domains can be used
for training. Different from the classification task in DG,
the target domain does not share the label space with the

source domains, which poses a new challenge over conven-
tional DG settings. The existing DG re-ID works mainly fall
into two categories: (1) designing specific modules that can
learn better domain-invariant representations (Song et al.,
2019; Jia et al., 2019; Jin et al., 2020b), and (2) adopting the
meta-learning paradigm to simulate the domain bias by split-
ting training domains into pseudo-seen and pseudo-unseen
domains (Zhao et al., 2021b; Choi et al., 2021; Dai et al.,
2021a). For example, SNR (Jin et al., 2020b) designs a Style
Normalization and Restitution module to disentangle object
representations into identity-irrelevant and identity-relevant
ones. RaMoE (Dai et al., 2021a) introduces meta-learning
into a novel mixture-of-experts paradigm via an effective
voting-basedmixturemechanism,which can learn to dynam-
ically aggregatemulti-source domains information.MDA(Ni
et al., 2022) is an innovative approach that seeks to align
the distributions of source and target domains with a known
prior distribution. This is achieved through a meta-learning
strategy that facilitates generalization and supports fast adap-
tation to unseen domains.Different from the aboveworks,we
aim to exploit the bridge among different source domains to
tackle the problem of DG re-ID, which may provide a novel
perspective in solving this problem.

3 Methodology

This paper explores intermediate domains for cross-domain
re-ID. We first focus on the unsupervised domain adapta-
tion (UDA) scenario (from Sects. 3.1 to 3.4) and then extend
our method to the domain generalization (DG) scenario
(Sect. 3.5). Specifically, for UDA,we first introduce the over-
all pipeline of IDM++ in Sect. 3.1, and then elaborate the key
component IDM for discovering the intermediate domains
in Sect. 3.2. Given the learned intermediate domains, we
disentangle the source-to-target domain alignment into a
more feasible one, i.e., aligning source/target to intermedi-
ate domains in Sect. 3.3. Afterwards, we further improve the
source / target to intermediate domain alignment with MGM
and summarize the overall training for IDM++ in Sect. 3.4.
Section3.5 illustrates how to apply IDM++ for DG re-ID.

3.1 Overview

In UDA re-ID, we are often given a labeled source domain
dataset {(xsi , ysi )} and an unlabeled target domain dataset
{xti }. The source dataset contains Ns labeled person images,
and the target dataset contains Nt unlabeled images. Each
source image xsi is associated with a person identity ysi
and the total number of source domain identities is Cs . We
adopt the pseudo-label-based pipeline to perform clustering
to assign the pseudo labels for the target samples. Similar to
the pseudo-label-based UDA re-IDmethods (Fu et al., 2019;
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Fig. 2 The overall of IDM++ (a), which is comprised of IDM (b) and
MGM (c). In (a), IDM++ combines the source and target domain for
joint training. It first plugs IDM after a bottom layer (e.g., stage-0 in
ResNet-50 (He et al., 2016)) and then plugsMGMafter a top layer (e.g.,
stage-3). IDMmixes the hidden-layer features from the source and target
domain (i.e., Gs ,Gt ) to generate intermediate-domain features G inter .
Gs , Gt , and G inter continue to proceed along the network until the final
outputs, i.e., the deep embedding ( f s , f t and f inter) and the softmax
prediction (ϕs , ϕt and ϕinter). Since the intermediate-domain features
are initially generated after stage-0, we consider the following stages
already provide intermediate domains. Given the intermediate-domains
features at the end of stage-3, MGMmaps the features in the source and

target domain into the intermediate domains, i.e.,Gs→inter andGt→inter ,
which are finally output as ϕs→inter and ϕt→inter in the softmax predic-
tion layer. Overall, there are four losses for learning IDM++: 1) Given
the output of the source and target domain, we enforce the popular
ReID loss LReID (including the classification loss Lcls and triplet loss
Ltri). 2) Given the output of IDM, i.e., f inter and ϕinter in the interme-
diate domain, we enforce two bridge losses i.e., L f

bridge and Lϕ
bridge. (3)

Given the output ofMGM, i.e., ϕs→inter and ϕt→inter in the intermediate
domain, we enforce the consistency loss Lcons. (4) To generate more
intermediate domains, we use Ldiv to enlarge the variance of the mix
ratio

Song et al., 2020; Ge et al., 2020b), we perform DBSCAN
clustering on the target domain features at the beginning of
every training epoch and assign the cluster id (a total of Ct

clusters) as the pseudo identity yti of the target sample xti .
We use ResNet-50 (He et al., 2016) as the backbone network
f (·) and add a hybrid classifier ϕ(·) after the global average
pooling (GAP) layer, where the hybrid classifier is comprised
of the batch normalization layer and a Cs + Ct dimensional
fully connected (FC) layer followed by a softmax activation
function.

Figure 2a shows the overall framework of our method.
Our IDM++ adopts the source-target joint training pipeline,
i.e., each mini-batch consists of n source samples and n tar-
get samples. IDM++ has two key components, i.e., IDM and
MGM. Both IDM andMGM can be seamlessly plugged into
the backbone network (e.g., Resnet-50), while IDM should
be placed on earlier layers because it is a prerequisite for
MGM. An optimized configuration is to plug IDM between
the stage-0 and stage-1 and plug MGM between the stage-
3 and stage-4. The IDM generates intermediate domains by
mixing the source-domain and target-domain feature with

two corresponding mix ratios, i.e., as and at . The mixed
features, along with the original source-domain and target-
domain features in the hidden layer continue to proceed until
the deep embedding, i.e., the features after the global aver-
age pooling (GAP), and correspondingly become f inter, f s

and f t . With the classifier, these features are mapped to
ϕinter, ϕs and ϕt respectively. The MGM maps the original
source/target identities into the IDM-generated intermedi-
ate domains to obtain the mirrors. After the classifier, we
obtain the source and target mirrors’ predictions: ϕs→inter

and ϕt→inter.

3.2 Intermediate DomainModule

In this section, we first illustrate how to utilize IDM to gen-
erate intermediate domains’ features in the hidden stage of
the backbone (Sect. 3.2.1). Next, we provide the manifold
assumption to exploit two properties (proportional distance
relationship in Sect. 3.2.2 and diversity in Sect. 3.2.3) that the
intermediate domains should satisfy in the deeply-learned
output space.
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3.2.1 Modelling the Intermediate Domains

We denote backbone network as f (x) = fm(G), where G is
the hidden feature mapG ∈ R

h×w×c after them-th stage and
fm represents the part of the network mapping the hidden
representation G after the m-th hidden stage to the 2048-
dim feature after the GAP layer. As shown in Fig. 2b, IDM
contains two steps: (1) predicting the mix ratios and (2)
mixing the features. Specifically, IDM is plugged after a
bottom (earlier) stage in the backbone network and takes the
hidden-layer features from both the source and target domain
(Gs and Gt ) as its input to predict the two mix ratios (i.e., as

and at ). Next, IDM mixes Gs and Gt with two correspond-
ingmix ratios to generate intermediate domains hidden-layer
features G inter. The Gs , Gt and G inter forward into the next
hidden stage until the final output of the network.

Predicting the Mix Ratios As shown in Fig. 2b, in a mini-
batch comprised of n source and n target samples, we
randomly assign all the samples into n pairs so that each
pair contains a source-domain and a target-domain sample.
For each sample pair (xs, xt ), the network obtains two fea-
ture maps at the m-th hidden stage: Gs,Gt ∈ R

h×w×c. IDM
uses an average pooling and a max pooling operation to
transform each single feature into two 1 × 1 × c dimen-
sional features. Therefore, for each source-target pair, we
have (Gs

avg,G
s
max ) for the source domain, and (Gt

avg,G
t
max )

for the target domain. IDM concatenates the avg-pooled and
max-pooled features for each domain and feed them into a
fully-connected layer, i.e., FC1 in Fig. 2b. The output feature
vectors of FC1 are merged using element-wise summation
and fed into a multi-layer perception (MLP) to obtain a mix
ratio vector a = [as, at ] ∈ R

2. The above step for predicting
the mix ratios is formulated as:

a=δ(MLP(FC1([Gs
avg;Gs

max ])+FC1([Gt
avg;Gt

max ]))),
(1)

where δ(·) is the softmax function to ensure as + at = 1.

Mixing the Features Given the predicted mix ratios as and
at , IDMmixes the source-domain and target-domain features
(Gs and Gt ) using weighted mean operation, as illustrated in
Fig. 2 (b). The mixing step is formulated as:

G inter = as · Gs + at · Gt , (2)

These hidden features (i.e., Gs , Gt , and G inter) proceed
until the outputs (e.g., embeddings after the GAP layer or
logits after the classifier in re-ID) of the network. We note a
side-effect accompany the abovemixing step, i.e., themixing
of identities. Concretely,we consider themixed featureG inter

has a new identity, i.e., yinter = as · ys + at · yt .

Fig. 3 Assuming domains as points in a manifold. The “shortest
geodesic path” connecting the source and target domains (i.e., Ps and
Pt ) is bridged by dense intermediate domains (i.e., Pinter). We use the
mix ratios (i.e., as and at ) to approximate the distance relationship
between domains in the manifold

3.2.2 Proportional Distance Relationship

A series of smooth transformations from the source to the
target domain, can be conceptualized as a form of a ‘mani-
fold’ in the high-dimensional feature space. Though it is not
very mathematically rigorous, the concept of ‘manifold’ can
still serve as an effective tool to analyze the geometric rela-
tionships in the deep embedding space. We assume that the
source and target domains are located on a manifold, i.e.,
a topological space that locally resembles Euclidean space.
On a manifold, the distance between two isolated and far-
away points cannot be measured through Euclidean distance.
Instead, the distance should bemeasure through the “shortest
geodesic distance” (Gong et al., 2012; Gopalan et al., 2013),
i.e., the curve representing the shortest path bridging two
isolated points in a manifold surface (as shown in Fig. 3)

Definition (Shortest Geodesic Distance) To estimate such
“shortest geodesic distance”, we assume there exist many
intermediate domains that are close to both the source and
target domains. In other words, we assume that the dis-
tance between the intermediate domain and the source/target
domain is small enough that they may be viewed as lying
in a local Euclidean space. Therefore, we sum up the
source-to-intermediate Euclidean distance and the target-
to-intermediate Euclidean distance as the shortest geodesic
distance between the source and target domain samples,
which is formulated as:

d(Ps, Pt ) = d(Ps, Pinter) + d(Pt , Pinter). (3)

where the Ps , Pt and Pinter are the source domain, the target
domain and the intermediate domain, respectively. In IDM,
when the mixed feature G inter (Eq. (2)) proceeds along the
sub-sequential layers, we view all the corresponding fea-
tures in the sub-sequential layers are within the intermediate
domain. Based on the above definition, the objective of align-
ing the source against target domain can be transformed into
simultaneously aligning the source and target domain against
the intermediate domains.
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In Eq. (2), the mix ratios as and at jointly control the rel-
evance of the intermediate domains to the source and target.
If the source ratio as is larger than the target ratio at , the
synthetic intermediate domain should be closer to the source
domain than to the target domain. Therefore, we utilize the
mix ratio to approximately estimate the distance relationship
between the intermediate domains’ outputs and other two
isolated domains’ outputs. Specifically, we formulate such
distance relationship of these domains’ outputs as the fol-
lowing Property-1.

Property-1 (Distance Should be Proportional): We use the
mix ratios (i.e., as and at ) to approximate the distance rela-
tionship between the intermediate domains’ output Pinter and
the other two isolated domains’ output (i.e., Ps and Pt ). The
distance relationship is formulated as follows:

d(Ps, Pinter)

d(Pt , Pinter)
= at

as
= 1 − as

as
= at

1 − at
. (4)

Using the proportional distance relationship in Eq. (4),
we can approximately locate the position of the intermediate
domains in the deeply-learned embedding space or prediction
space.

3.2.3 Promoting the Diversity of Intermediate Domains

As shown in the “shortest geodesic distance” definition,
the two isolated domains (i.e., source and target) cannot
be directly measured in the Euclidean space if they are far
away from each other. The distance of two distant points
must be measured by the points existing between them. To
estimate the “shortest geodesic distance” more precisely, we
need asmany as possible intermediate points. Comparedwith
sparse intermediate points, more dense points can character-
ize the “shortest geodesic path” bridging the source and target
domains more comprehensively. Therefore, we propose the
Property-2 as follows.

Property-2 (Diversity) Intermediate domains should be as
diverse as possible.

Based on the above property, the distance of the source
and target domains (i.e., d(Ps, Pt )) can be correctly mea-
sured in the manifold by approximating the distance between
the dense intermediate domains and the other two isolated
domains (i.e., d(Ps, Pinter) and d(Pt , Pinter)). To satisfy such
property when generating intermediate domains in training,
we propose a diversity loss by maximizing the differences of
the mix ratios (as and at ) within a mini-batch. This loss is
formulated as follows:

Ldiv = −[σ({asi }ni=1) + σ({ati }ni=1)], (5)

where σ(·) means calculating the standard deviation of the
values in a mini-batch. By minimizing Ldiv, we can enforce
intermediate domains to be as diverse as enough to model
the characteristics of the “shortest geodesic path”, which can
better bridge the source and target domains.

3.3 Aligning by Intermediate Domains

Instead of directly aligning the source and target domains
(i.e., source → target), we utilize the IDM to align the
source and target domains against the synthetic intermediate
domains (i.e., source → intermediate and target → interme-
diate), as illustrated in Fig. 1. Given the “shortest geodesic
distance” definition and Property-1 in Sect. 3.2.1, we pro-
pose the bridge loss to adaptively minimize the discrepancy
between the IDM-generated intermediate domains’ output
(i.e., Pinter) and the source and target domains’ output (i.e.,
Ps and Pt ). The general form of the bridge loss is formulated
as follows:

Lbridge = as · d(Ps, Pinter) + at · d(Pt , Pinter). (6)

The intuition of the Lbridge is based on Property-1. As
shown inProperty-1, we utilize the proportional relationship
(i.e., Eq. (4)) to estimate the location of the IDM-generated
intermediate domains along the domain bridge. If the inter-
mediate domain Pinter is closer to the source Ps than the target
Pt (i.e., as is larger than at ), the objective of minimizing the
discrepancy of “source→ target” (i.e., d(Ps, Pinter)) is easier
than minimizing the discrepancy of “target → intermediate”
(i.e.,d(Pt , Pinter)). Thus,we force theminimizationobjective
to penalize more on d(Ps, Pinter) than d(Pt , Pinter) by mul-
tiplying d(Ps, Pinter) by as and multiplying d(Pt , Pinter) by
at . By utilizing the mix ratios as the weighting coefficients in
Eq. (6), the alignment between the intermediate domains and
the source and target domains can be adaptively conducted.

In a deepmodel for UDA re-ID,we consider to enforce the
bridge loss (Eq. (6)) on the feature and prediction space of
the network to align the source and target by the intermediate
domains. For the prediction space, we use the cross-entropy
to measure the discrepancy between intermediate domains’
prediction logits and other two extreme domains’ (pseudo)
labels (Eq. (7)). For the feature space, we use the L2-norm
to measure features’ distance among domains (Eq. (8)). Our
proposed two bridge losses are formulated as follows:

Lϕ
bridge = −1

n

n∑

i=1

∑

k∈{s,t}
aki ·

[
yki log(ϕ( fm(G inter

i )))
]
, (7)

L f
bridge = 1

n

n∑

i=1

∑

k∈{s,t}
aki ·

∥∥∥ fm(Gk
i ) − fm(G inter

i )

∥∥∥
2
.

(8)
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In Eqs. (7) (8), we use k to indicate the domain (source or
target) and use i to index the data in a mini-batch. Gk

i is the k
domain’s representation at the m-th stage. G inter

i is the inter-
mediate domain’s representation at the m-th hidden stage by
mixing Gs

i and Gt
i as in Eq. (2). The fm(·) is the mapping

from the m-th hidden stage to the features after GAP layer
and ϕ(·) is the classifier.

In conclusion,wefirst utilize IDM to generate the interme-
diate domains by mixing up the representations of the source
and target (with two corresponding mix ratios (as and at )) at
the m-th hidden stage. Second, we propose the diversity loss
Ldiv by maximizing the diversity of the mix ratios, in order
to generate intermediate domains bridging the source and
target as diverse as possible. Third, we propose the bridge
losses (i.e., Lϕ

bridge and L f
bridge) to adaptively minimize the

discrepancy of “source→ intermediate” and the discrepancy
of “target → intermediate”.

3.4 Mirrors GenerationModule

Werecall thatwhen IDMmixes a source-domain and a target-
domain feature to obtain an intermediate-domain feature,
it has an side-effect of mixing their identities (Sect. 3.2.1).
Consequentially, the intermediate domains do not contain
the original training identities. We argue that these original
identities are also beneficial for domain alignment, because
anchoring the identity allows focusing on the cross-domain
variance and thus benefits the domain alignment. To this
end, Mirrors Generation Module (MGM) (1) maps the origi-
nal source and target-domain identities into the intermediate
domains and obtain their mirrors and (2) uses a cross-domain
consistency loss between the mirrors and their original fea-
tures for domain alignment.

Mapping the Features into the Intermediate Domains
Given a sample’s feature map G ∈ R

H×W×C at the l-th hid-
den stage of the network, its feature statistics are denoted as
themeanμ(G) ∈ R

C and the standard deviationσ(G) ∈ R
C ,

where each channel is calculated across spatial dimensions
independently as follows:

μc(G) = 1

H × W

H∑

h=1

W∑

w=1

Ghwc, (9)

σc(G) =
√√√√ 1

H × W

H∑

h=1

W∑

w=1

(Ghwc − μc(G))2. (10)

Motivated by recent studies on out-of-distribution (Zhou
et al., 2021; Nuriel et al., 2021; Tang et al., 2021), feature
statistics (i.e., μ, σ ) are utilized to represent a sample’s
domain characteristics and the normalized content (i.e.,
(G − μ)/σ ) is utilized to represent a sample’s identity-

specific information. For a sample’s feature map Ga from
the domain “a” and a sample’s feature map Gb from the
domain “b”, we utilize AdaIN (Huang & Belongie, 2017) to
map Ga into the domain “b” as follows:

Ga→b = AdaIN(Ga,Gb) = σ(Gb)

(
Ga − μ(Ga)

σ (Ga)

)

+μ(Gb). (11)

By utilizing AdaIN(Ga,Gb), we can easily characterize the
sample’s feature Ga with the style of the domain “b” to get
the mirror feature Ga→b. Compared with Ga , Ga→b can
represent the same person identity but different domain style.

Similar to the formulation in Sect. 3.2, we can obtain
source, target, and intermediate domains’ feature maps{
(Gs

i ,G
t
i ,G

inter
i )

}n
i=1 at the l-th hidden stage of the network.

Then we utilize Eq. (11) to characterize the source and target
featuremapswith intermediate domains’ statistics as follows:

{
Gs→inter

i = AdaIN(Gs
i ,G

inter
i )

Gt→inter
i = AdaIN(Gt

i ,G
inter
i )

. (12)

WithEq. (12),we can obtain the sourcemirrors {Gs→inter
i }ni=1

and target mirrors {Gt→inter
i }ni=1 characterized by intermedi-

ate domain styles. We denote the operation of Eq. (12) as
generating mirrors in MGM in Fig. 2c.

Cross-Domain Consistency MGM uses cross-domain con-
sistency tomake the original identity-discriminative informa-
tion consistent across different domains. Specifically, MGM
enforces a consistency loss between the prediction space ϕ of
samples and the ϕ of their mirrors. For simplicity, we denote
predictions of n samples in a domain as {ϕi }ni=1, representing
an identity’s distribution characteristic.

In the prediction space, we conduct the softmax function
on the logits after the classifier to model the prediction distri-
bution. Given the featuremapG at the l-th hidden stage of the
network, and the (pseudo) label y, the prediction distribution
is formulated as follows:

P(y | G) = exp(ϕy( fl(G))/τ)
∑Cs+Ct

i=1 exp(ϕi ( fl(G))/τ)
, (13)

where fl(·) denotes the part of the network mapping G after
the l-th hidden stage to the 2048-dim feature after the GAP
layer, ϕi denotes the logit of the classifier for class i , and
τ > 0 is the temperature scaling parameter. Thus, we pro-
pose a class-wise consistency loss that enforces consistency
on predictions of samples and their mirrors in intermediate
domains. Given a sample’s feature mapGa from domain “a”
and its mirror (sharing the same identity of Ga) Ga→b styl-
ized by domain “b”, their discrepancy in the prediction space
is calculated as follows:

123



International Journal of Computer Vision

Algorithm 1 The overall training procedure
Input: Source dataset {(xsi , ysi )} and target dataset {xti };
Output: The trained backbone network f (·) and classifier ϕ(·);

1 Initialize the ImageNet-pretrained backbone network f (·);
2 Initialize the XBM memory as an empty queue M ;
3 Plug our IDM and MGM at the m-th and l-th stage respectively.
4 for epoch = 1 to MaxEpochs do
5 Use f (·) to extract features { f ti } for the target dataset {xti };
6 Assign pseudo labels {yti } for target samples {xti } by performing

DBSCAN clustering on their features { f ti };
7 for i ter = 1 to MaxIters do
8 Sample a mini-batch including n source samples {(xsi , ysi )}ni=1

and n target samples {(xti , yti )}ni=1;
9 Using IDM to obtain f inter and ϕinter ;

10 Using MGM to obtain ϕs→inter and ϕt→inter ;
11 if using XBM then
12 Enqueue(M , {( f t , yt )}, {( f s , ys)});
13 if M is full then
14 Dequeue(M);
15 end
16 Use all entries in M for the hard negatives mining in the

triplet loss in LReID from Eq. (16);
17 end
18 Optimizing the network by the gradients of Eq. (16);
19 end
20 end

Dϕ(Ga,Ga→b) = KL
(
P(y | Ga) ‖ P(y | Ga→b)

)

+ KL
(
P(y | Ga→b) ‖ P(y | Ga)

)
,

(14)

where KL is the Kullback–Leibler (KL) divergence. With
Eq. (14), the cross-domain consistency loss is formulated as
follows:

Lcons = τ 2 ·
(
Dϕ(Gs,Gs→inter) + Dϕ(Gt ,Gt→inter)

)
.

(15)

Following the knowledge distillation method (Hinton et al.,
2015), wemultiple the square of the temperature τ 2. Bymin-
imizing Eq. (15), we can encourage the model to focus on
minimizing the diverse domain variation during the domain
alignment.

Overall Training for IDM++ Commonly, the ResNet-50
backbone contains five stages, where stage-0 is comprised of
the first Conv, BN and Max Pooling layer and stage-1/2/3/4
correspond to the other four convolutional blocks. We plug
our IDM at the m-th stage of ResNet-50 (e.g., stage-0 as
shown in Fig. 2) to generate intermediate domains, and plug
theMGMat the l-th stage (e.g., stage-3 in Fig. 2). The overall
training loss is as follows:

L = LReID + μ1 · Lϕ
bridge + μ2 · L f

bridge

+μ3 · Ldiv + μ4 · Lcons, (16)

where LReID = (1 − μ1) · Lcls + Ltri, and μ1, μ2, μ3, μ4

are the weights to balance losses. The training procedure is
shown in Algorithm 1.

3.5 Extension to Domain Generalizable Person Re-ID

ComparedwithUDA re-ID, domain generalizable re-ID (DG
re-ID) is more challenging because target domain data can
not be accessible during training. Different fromUDA re-ID,
the keynote of DG re-ID is to make the deep model robust to
the variation of multiple source domains, so that the learned
features can bewell generalized to any unseen target domain.
For example, the existing DG re-IDworks (Song et al., 2019;
Jin et al., 2020b; Zhao et al., 2021a) also call these features
as domain-invariant features, or identity-relevant features.

While our IDM++ is initially designed for UDA, we may
apply it to DG scenario through slight modifications. Specif-
ically, we merge multiple domains (without using domain
labels) into a hybrid training domain. During training, each
mini-batch contains features from multiple domains. For a
mini-batch of n samples, we first obtain their feature maps
{Gs

i }ni=1 at the m-th hidden stage and randomly shuffle
them along the batch dimension to obtain out-of-order fea-
ture maps {G̃s

i }ni=1. Next, we consider {G̃s
i }ni=1 as pseudo

target domains’ feature maps and use IDM to generate
intermediate domains’ representations with Eq. (2). When
mapping source identities into intermediate domains with
the MGM, we just use AdaIN(·, ·) to change statistics val-
ues of the source-domain features with statistics values of
the intermediate-domain features and obtain source mir-
rors {Gs→inter

i }ni=1. Next, we only enforce the consistency
loss Lcons between {Gs→inter

i }ni=1 and {Gs
i }ni=1. The learning

objective of DG re-ID is the same as the objective of UDA
re-ID (i.e., Eq. (16)).

Through the above training procedure, IDM++ improves
the robustness against domain variation. There are two main
reasons for the improvement. First, IDM adds more source
domains for training, because the synthetic intermediate
domains may be viewed as extra source domains for training.
Second, MGM further enforces consistency among multiple
domains and promotes learning domain-invariant features.
Therefore, IDM and MGM jointly helps IDM++ to enhance
the feature robustness against domain variation, which ben-
efits generalization towards novel unseen target domains.

4 Experiments

We introduce the datasets and evaluation protocols in
Sect. 4.1. Section4.2 describes the implementation details
of IDM++ for both UDA and DG re-ID, respectively. Sec-
tion4.3 conducts ablation study to analyze the improvement
of IDM++, as well as its two key components (i.e., IDM and
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MGM). Section4.4 analyzes the impact of some important
hyper-parameters. Section4.5 compares our IDM++ with
the state-of-the-art methods on twelve UDA re-ID bench-
marks and two protocols of DG re-ID. Section4.6 validates
some key designs within IDM and MGM, while Sect. 4.7
investigates the mechanism of IDM++ and reveals how the
intermediate domains improve the domain alignment.

4.1 Datasets and Evaluation Protocols

Datasets A total of six person re-ID datasets are used in our
experiments, including Market-1501 (Zheng et al., 2015),
DukeMTMC-reID (Ristani et al., 2016; Zheng et al., 2017),
CUHK03 (Li et al., 2014), MSMT17 (Wei et al., 2018), Per-
sonX (Sun&Zheng, 2019), andUnreal (Zhang et al., 2021a).
Among these datasets, PersonX and Unreal are synthetic
datasets, and all the remaining datasets are from the real-
world. We adopt CUHK03-NP (Zhong et al., 2017) when
testing on CUHK03.

EvaluationProtocols Weusemean average precision (mAP)
and Rank-1/5/10 (R1/5/10) of CMC to evaluate perfor-
mances. In training, we do not use any additional information
like temporal consistency in JVTC+ (Li & Zhang, 2020).
In testing, there are no post-processing techniques like re-
ranking (Zhong et al., 2017) or multi-query fusion (Zheng
et al., 2015). We follow the mainstream evaluation protocols
to evaluate our method in both UDA re-ID and DG re-ID
tasks. (1)UDA re-IDprotocols:During training,we train on a
labeled source dataset and an unlabeled target dataset.We use
mAP andCMC to test themodel on the target dataset. Specif-
ically, we evaluate on two kinds of UDA re-ID tasks, i.e., real
→ real and synthetic → real, where the source datasets are
real and synthetic respectively. (2) DG re-ID protocols: Fol-
lowing recent DG re-ID works (Zhao et al., 2021b; Dai et
al., 2021a), we adopt the leave-one-out setting. Given a pool
of datasets (Market-1501, DukeMTMC-reID, CUHK03, and
MSMT17), we use a single dataset for testing and use all the
other datasets for training. Specifically, we use two protocols,
the “DG-partial” (Zhao et al., 2021b) and the “DG-full” (Dai
et al., 2021a). DG-partial uses only the training set while
DG-full combines the training and testing set for training.

4.2 Implementation Details

ResNet-50 (He et al., 2016) pretrained on ImageNet is
adopted as the backbone network. Following (Ge et al.,
2020b), domain-specific BNs (Chang et al., 2019) are also
used in the backbone network to narrow domain gaps. Fol-
lowing (Luo et al., 2019), we resize the image size to
256×128 and apply some common image augmentation
techniques, including randomflipping, randomcropping, and
random erasing (Zhong et al., 2020a).

For UDA re-ID, we performDBSCAN (Ester et al., 1996)
clustering on the unlabeled target data to assign pseudo labels
before each training epoch, which is consistent with (Fu et
al., 2019; Song et al., 2020; Ge et al., 2020b). The mini-batch
size is 128, including 64 source images of 16 identities and
64 target images of 16 pseudo identities. We totally train 50
epochs and each epoch contains 400 iterations. The initial
learning rate is set as 3.5×10−4 which will be divided by 10
at the 20th and 40th epoch respectively. The Adam optimizer
with weight decay 5×10−4 and momentum 0.9 is adopted in
our training. We implement Strong Baseline of UDA re-ID
with XBM (Wang et al., 2020) to mine more hard negatives
for the triplet loss.

For DG re-ID, the training setting follows BoT (Luo et al.,
2019). However, directly enforcing the cross-domain con-
sistency loss (Eq. (15)) on the domain samples and their
mirrors may cause the feature collapse problem (Grill et al.,
2020). Feature collapse means the learned features become
uninformative and indistinguishable from one another. The
collapse problem can occur when enforcing consistency loss
in domain generalization, as it might lead the model to learn
features that are too smooth and lack the necessary dis-
criminability to distinguish between different identities. As
a result, to prevent learning identity-discriminative features
from getting into collapse solutions when enforcing the con-
sistency loss in DG re-ID, we use the twin-branch network
structure (duplicating the branch from the l−th stage to the
classifier), and feed the original samples and mirrors into
different branches. Similar to BYOL (Grill et al., 2020),
we enforce the consistency loss on the outputs of the twin-
branches.

If not specified, the loss weights μ1, μ2, μ3, μ4 are set
as 0.7, 0.1, 1.0, 1.0 respectively, and the temperature τ is
set as 0.5 in all our experiments. In the IDM module, the
FC1 layer is parameterized by W1 ∈ R

c×2c and MLP is
composed of two fully connected layers (followed by batch
normalization) which are parameterized by W2 ∈ R

(c/r)×c

and W3 ∈ R
2×(c/r) respectively, where c is the represen-

tations’ channel number after the m-th stage and r is the
reduction ratio. If not specified, we plug the IDM module at
the stage-0 of ResNet-50 and set r as 2, and plug the MGM
at the stage-3. The IDM and MGMmodules are only used in
training andwill be discarded in testing.Ourmethod is imple-
mented with Pytorch, and four Nvidia Tesla V100 GPUs are
used for training and only one GPU is used for testing.

4.3 Ablation Study

This section evaluates the effectiveness of each component in
IDM++ and the results are provided in Table 1. The “Oracle”
method in Table 1 uses the ground-truth label for the target
(and source) domain,marking the upper bound ofUDA re-ID
accuracy.
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Table 1 Ablation studies on different components of our method

Method IDM MGM DukeMTMC→Market-1501 Market-1501→DukeMTMC

Lϕ
bridge L f

bridge Ldiv Lcons mAP R1 mAP R1

Oracle 83.9 93.2 75.0 86.1

Baseline1 77.0 90.6 63.4 78.4

IDM � � 79.4 91.5 66.2 79.8

� � 79.2 91.2 65.8 80.4

� � 78.9 91.1 64.8 79.3

� � � 81.9 92.4 68.6 82.3

IDM++ � � � 81.2 92.3 68.5 81.8

� � � 81.4 91.8 69.5 82.1

� � � 80.9 92.0 69.9 82.4

� � � � 82.4 92.7 71.6 83.4

Oracle 86.9 94.8 78.1 88.3

Baseline2 79.1 91.2 65.8 80.1

IDM � � 80.7 92.0 67.3 81.8

� � 81.6 92.2 69.0 82.0

� � 79.7 91.6 67.8 81.6

� � � 82.8 93.2 70.5 83.6

IDM++ � � � 83.4 93.1 70.0 83.0

� � � 84.3 93.4 72.2 83.9

� � � 83.8 93.3 72.5 84.4

� � � � 85.3 94.2 73.2 85.5

Baseline1 (Naive Baseline): only using LReID to train the source and target domains jointly. Baseline2 (Strong Baseline): Baseline1 + XBM (Wang
et al., 2020)

(a) Loss weight μ1 (b) Loss weight μ2 (c) Loss weight μ3 (d) Loss weight μ4 (e) Temperature τ

Fig. 4 Analysis of different values of hyper-parameters: μ1, μ2, μ3, μ4, and τ on the target domain when transferring from Market-1501 to
DukeMTMC-reID

IDM Improves the Baseline IDM is inserted in the hid-
den stage of the network to generate intermediate domains’
features that can be utilized to better align the source and
target domains. In IDM, there are two functions: (1) using
the diversity loss (i.e., Ldiv) to generate dense intermedi-
ate domains as many as possible and (2) using the bridge
losses (i.e., Lφ

bridge and L f
bridge) to dynamically minimize

the discrepancy between the intermediate domains and the
source and target domains. We evaluate the effectiveness
of both functions in Table 1. (1) The effectiveness of Ldiv:
“Baseline2 + IDM w/o Ldiv” degenerates much when com-
paring with the full method. The Rank-1 of “Baseline2
+ IDM++ w/o Ldiv” is 1.1% lower than the full method
on Market → Duke. (2) The effectiveness of Lφ

bridge and

L f
bridge: Taking Market→Duke as an example, mAP/R1 of

“Baseline2 + IDM++ w/o Lφ
bridge” is 3.2%/2.5% lower than

“Baseline2 + IDM++(full)”. The mAP/R1 of “Baseline2 +
IDM++ w/o L f

bridge” is 1.0%/1.6% lower than “Baseline2 +

IDM++(full)”. ComparedwithL f
bridge,Lφ

bridge ismore impor-
tant based on Baseline2. The reason may be that Baseline2
uses XBM (Wang et al., 2020) tomine harder negatives in the
feature space, which will affect the effectiveness of L f

bridge.
The above analyses show that all the functions in the IDM
are important for learning appropriate intermediate domains
that can help to bridge the source and target domains.

MGM Achieves Further Improvement Based on IDM Com-
pared with our previous work (IDM (Dai et al., 2021c)),
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this paper proposes a novel MGM to map source/target fea-
tures into intermediate domains, which can help learn better
identity-discriminative representations across domains. We
first use the MGM to map the source and target domains’
feature maps to intermediate domains at the l-th (if not men-
tioned, we set l as 3) stage and then we use the class-wise
domain consistency loss Lcons to enforce the consistency
on predictions of source and target samples together with
their mirrors. In Table 1, we evaluate the effectiveness of the
newly proposed MGM compared with our previous IDM.
Taking Market→Duke as an example, mAP/R1 of “Base-
line2 + IDM++(full)” is 2.7%/1.9% higher than “Baseline2
+ IDM(full)”.

IDM++ integrating IDM and MGM Brings General Improve-
ment on Multiple Baselines We propose two baseline
methods including Naive Baseline (Baseline1) and Strong
Baseline (Baseline2). Naive Baseline means only using
LReID to train the source and target data in joint manner
as shown in Fig. 2. Compared with Naive Baseline, Strong
Baseline uses XBM (Wang et al., 2020) to mine more hard
negatives for the triplet loss, which is a variant of the mem-
ory bank (Xiao et al., 2017; Wu et al., 2018) and easy to
implement. Similar to those UDA re-ID methods (Zhong et
al., 2020b; Ge et al., 2020b) using the memory bank, we set
the memory bank size as the number of all the training data.
As shown in Table 1, no matter which baseline we use, our
methods can obviously outperform the baseline methods by
a large margin. On Market→Duke, mAP/R1 of “Baseline2
+ our IDM++ (full)” is 7.4%/5.4% higher than Baseline2,
and mAP/R1 of “Baseline1 + our IDM++ (full)” is 8.2% and
5.0% higher than Baseline1. Because of many state-of-the-
arts methods (Ge et al. 2020b; Li and Zhang 2020; Zheng
et al. 2021a, b) use the memory bank to improve the per-
formance on the target domain, we use Strong Baseline to
implement our IDM for fairly comparing with them.

4.4 Parameter Analysis

In Fig. 4, we provide the visualization on the sensitiv-
ity of hyper-parameters. Specifically, we evaluate the loss
weights: μ1, μ2, μ3, and μ4 in Eq. (16), and the temper-
ature value τ in Eq. (13). We conduct the experiments on
Market-1501→DukeMTMC-reID and evaluate the mAP
and Rank-1 on the target domain: DukeMTMC-reID. As
shown in Fig. 4, these hyper-parameters are not very sensi-
tive. The performance achieves the best when we set μ1, μ2,
μ3, μ4, and τ as 0.7, 0.1, 1.0, 1.0, and 0.5 respectively. If not
specified, we utilize the above setting of hyper-parameters in
all other experiments in this paper.

4.5 Comparison with the State-of-the-arts

The existing state-of-the-art (SOTA) UDA re-IDworks com-
monly evaluate the performance on six real → real tasks
(Fu et al., 2019; Wu et al., 2019; Zhong et al., 2020b).
Recently, more challenging synthetic → real tasks (Ge et
al., 2020b; Zhang et al., 2021a) are proposed, where they
use the synthetic dataset PersonX (Sun & Zheng, 2019) or
Unreal (Zhang et al., 2021a) as the source domain and test on
other three real re-ID datasets. Besides, the existing SOTA
DG re-ID works usually evaluate the performance under two
challenging “leave-one-out” protocols (Zhao et al., 2021b;
Dai et al., 2021a), i.e., “DG-partia” and “DG-full”. In the
“DG-partial” protocol (Zhao et al., 2021b), the train-sets of
three datasets among the four datasets are used for training
and the test-set of the remaining dataset is used for testing. In
the “DG-full” protocol (Dai et al., 2021a), all data (includ-
ing train-sets and test-sets) of three datasets among the four
datasets are used for training and the test-set of the remain-
ing dataset is used for testing. To compare with the SOTAs
fairly, we also takeResNet-50 as the backbone.All the results
in Tables 2, and 3 show that our method can outperform the
UDA re-ID SOTAs by a largemargin, and the results in Table
4 show that our method is superior to the DG re-ID SOTAs
significantly.

Comparisons on real → real UDA re-ID tasks. The
existing UDA re-ID methods evaluated on real → real UDA
tasks can be mainly divided into three categories based
on their training schemes. (1) GAN transferring methods
include PTGAN (Wei et al., 2018), SPGAN+LMP (Deng
et al., 2018), (Zhong et al., 2018), and PDA-Net (Li et al.,
2019). (2) Fine-tuning methods include PUL (Fan et al.,
2018), PCB-PAST (Zhang et al., 2019a), SSG (Fu et al.,
2019), AD-Cluster (Zhai et al., 2020a), MMT (Ge et al.,
2020a), NRMT (Zhao et al., 2020), MEB-Net (Zhai et al.,
2020b), Dual-Refinement (Dai et al., 2021b), UNRN (Zheng
et al., 2021a), and GLT (Zheng et al., 2021b). (3) Joint train-
ing methods commonly use the memory bank (Xiao et al.,
2017), including ECN (Zhong et al., 2019),MMCL (Wang&
Zhang, 2020), ECN-GPP (Zhong et al., 2020b), JVTC+ (Li
&Zhang, 2020), SpCL (Ge et al., 2020b), HCD (Zheng et al.,
2021c), CCL (Isobe et al., 2021). However, all these methods
neglect the significance of intermediate domains, which can
smoothly bridge the domain adaptation between the source
and target domains to better transfer the source knowledge
to the target domain. In our previous work IDM (Dai et al.,
2021c), we propose an IDM module to generate appropri-
ate intermediate domains to better improve the performance
of UDA re-ID. As an extension of IDM (Dai et al., 2021c),
we further propose IDM++ by integratingMGM and IDM to
focus on the cross-domain variationwhen aligning the source
and target domains. As shown in Table 2, our method can
outperform the second best UDA re-ID methods by a large
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margin on all these benchmarks. Especially when taking the
most challengingMSMT17 as the target domain, our method
outperforms the SOTA method CCL (Isobe et al., 2021) by
4.4% mAP on Market-1501 → MSMT17 and 4.2% mAP on
DukeMTMC-reID → MSMT17. Adding MGM can signifi-
cantly improve IDM, e.g., the performance gain is up to 6.7%
mAP and 8.6% Rank-1 on Market-1501 → MSMT17.

Comparisons on synthetic → real UDA re-ID tasks.
Compared with the real → real UDA re-ID tasks, the syn-
thetic → real UDA tasks are more challenging because the
domain gap between the synthetic and real images are often
larger than that between the real and real images. As shown
in Table 3, our method can outperform the SOTA methods
by a large margin where mAP of our method is higher than
CCL (Isobe et al., 2021) by 4.7% and 8.8%when transferring
from PersonX to Market-1501 and MSMT17 respectively.
All these significant performance gains inTable 3 have shown
the superiority of our method that can better improve the per-
formance on UDA re-ID by extending IDM to IDM++.

Comparisons on DG Re-ID Tasks In DG re-ID tasks, we uti-
lize BoT (Luo et al., 2019) as the baseline method and it
is competitive to the existing methods (Liao & Shao, 2020;
Zhao et al., 2021a; Dai et al., 2021a). Based on this baseline
method, we implement our method IDM++ and our previous
work IDM. As shown in Table 4, we compare our method
with the SOTAs under two common protocols: i.e., DG-
partial (Zhao et al., 2021a) and DG-full (Dai et al., 2021a).
Under the “DG-partial” protocol, mAP of our IDM++ out-
performs the SOTA method M3L (Zhao et al., 2021a) by
1.5%, 4.5%, 1.8%, and 6.4% when testing on Market-
1501, DukeMTMC, CUHK03, and MSMT17 respectively.
Under the “DG-full” protocol, our method outperforms the
SOTA method RaMoE (Dai et al., 2021a) significantly as
well. Compared with our previous work (IDM (Dai et al.,
2021c)), the performance gain of our IDM++ is significant.
Taking the protocol of “DG-ful” as an example, mAP of
IDM++ outperforms IDM by 6.6%, 5.2%, 4.2%, and 4.8%
when testing on Market-1501, DukeMTMC, CUHK03, and
MSMT17 respectively. In DG re-ID, the performance gain
mainly comes from our MGM. The IDM method is supe-
rior to the baseline BoT because mixing source and target
domains to generate intermediate domains can be seen as
only considering inter-domain knowledge. By reinforcing
IDM into IDM++ by adding MGM, features are learned to
be more identity-discriminative and more robust to cross-
domain variations.

4.6 Investigation on Key Designs of IDM++

Predicting Mixing Ratios by IDM is More Essential than Ran-
dom We compare our method with the traditional Mixup
(Zhang et al., 2018) andManifoldMixup (M-Mixup) (Verma

Fig. 5 Comparison with traditional mixup methods (Mixup (Zhang
et al., 2018), M-Mixup (Verma et al., 2019)) on Market→Duke. The
interpolation ratio in these mixup methods is randomly sampled from
a beta distribution Beta(α, α)

et al., 2019) methods in Fig. 5. We use Mixup to randomly
mix the source and target domains at the image-level, and
use M-Mixup to randomly mix the two domains at the
feature-level. The interpolation ratio inMixup andM-Mixup
is randomly sampled from a beta distribution Beta(α, α).
Specifically, Mixup andM-Mixup are only the image/feature
augmentation technology and we use them to randomly mix
the source and target domains. Unlike them, our method
can adaptively generate the mix ratios to mix up the source
and target domains representations to generate intermediate
domain representations.

We attribute the reasons why the predictive mixing ratio
is better than random as follows:

• Adaptivity This adaptivity of predicting mixing ratio is
crucial because the optimal mix ratio that minimizes the
domain gapmay not be the same for all samples or during
different training stages. In contrast, random sampling
fromabeta distributiondoes not take into account the data
distribution or the training dynamics, potentially leading
to a less effective domain adaptation process.

• Optimization By making the mix ratio learnable, we
enable the model to optimize it as part of the training
objective. This optimization process is guided by the
overall goal of domain alignment and identity preser-
vation, which is directly relevant to the task at hand.
Randomly sampling mix ratios, on the other hand, treats
the ratio as a hyperparameter that is not influenced by the
learning process, potentially missing out on the benefits
of end-to-end learning.

• Fine-grained control The learnable mix ratio provides
fine-grained control over the generation of intermedi-
ate domains. This control is essential for capturing the
nuances of domain-specific information and aligning the
intermediate domains more effectively with both the
source and target domains. Random sampling lacks this
level of control and may not explore the full potential of
intermediate representations.
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Table 5 Comparisons on different mirrors generation mechanisms

Mirrors generation mechanism Market → Duke
mAP R1

IDM+MGM w/ mirrors-I 73.2 85.5

IDM+MGM w/ mirrors-ST 72.5 83.8

MGM w/ mirrors-ST 68.0 81.7

The mirrors-I means using MGM to map source and target samples
into intermediate domains. The mirrors-ST means mapping source and
target samples into each other’s domain

Fig. 6 Evaluation on which stage (stage-m) to plug our IDM and which
stage (stage-l) to plug our MGM. We provide the mAP and Rank-1 on
Market→Duke

Fig. 7 Comparisons between different backbones: ResNet50 and
ResNet50-IBN. We denote Market-1501, DukeMTMC-reID, and
MSMT17 as M, D, and MT respectively

The Mirrors Generation Mechanism in MGM We compare
with different mirrors generation mechanisms in Table 5. In
our IDM++,we use themechanism “IDM+MGMw/mirrors-
I” as shown in Sect. 3.4. If we use the MGM to map source
and target features into each other’s domain (“mirrors-ST”),
the inputs of the MGM (as shown in Fig. 2) are only the
source and target hidden representations (i.e., Gs and Gt ).
Thus, we can obtain the source mirrors Gs→t and the tar-
get mirrors Gt→s that are stylized by the target and source
domains respectively. In Table 5, the mechanism “MGM w/
mirrors-ST” means directly aligning between the source and
target domains, which is inferior to aligning by intermedi-
ate domains. The mechanism “IDM+MGM w/ mirrors-ST”
means utilizing the IDM to generate intermediate domains
but mapping source/target identities into each other other’s
domain to obtain mirrors. From Table 5, we can see the sig-
nificance of our proposed mirrors generation mechanism.

Plugging IDM and MGM at Which Stage Our IDM and
MGM are two plug-and-play modules which can be seam-
lessly plugged into the backbone network. In our experi-
ments, we use ResNet-50 as the backbone, which has five
stages: stage-0 is comprised of the first Conv, BN and Max
Pooling layer and stage-1/2/3/4 correspond to the other four
convolutional blocks.We plug our IDM at them-th stage and
plug ourMGMat the l-th stage to study how different combi-
nations of both kinds of stages will affect the performance of
our method. The stage-l of MGM should not be smaller than
the stage-m of IDM because IDM is a prerequisite for MGM
(i.e., MGM needs to map source/target identities into inter-
mediate domains generated by IDM). As shown in Fig. 6, we
provide the visualization of the target domain’s mAP/Rank-1
ondifferent combinations of the stage-m and the stage-l when
transferring from Market-1501 to DukeMTMC. The Fig. 6
shows that the performance is gradually declining with the
deepening of the network (i.e., m ranges from 0 to 4). This
phenomenon shows that the domain gap becomes larger and
the transferable ability becomes weaker at higher/deeper lay-
ers of the network, which satisfies the theory of the domain
adaptation (Long et al., 2018a). When the stage-l of MGM
ranges from 0 to 3, the performance becomes better, which
shows that our proposed MGM can complement with the
IDM in deeper layers that have weak transferable ability.
We observe that when l is 4, the model will be degenerated
because features after stage-4 will be directly conducted with
global average pooling to learn with the triplet loss. Com-
pared with shallow layers’ features, the little manipulation
on stage-4 features will make a significant effect on the deep
embedding learning. Based on the above analysis, we plug
the IDM at the stage-0 and plug the MGM at the stage-3 in
all our experiments if not specified.

Scalability for Different Backbones Our proposed IDM++
can be easily extended to other backbones which are
equipped with different normalization layers (Pan et al.,
2018; Li et al., 2016; Zhuang et al., 2020). We take the com-
monly used IBN (Pan et al., 2018) as an example and use
the ResNet50-IBN (Pan et al., 2018) as a stronger backbone.
As shown in Fig. 7, our method can achieve the consistent
performance gains with the stronger backbone and the per-
formance gain is especially obvious on the largest and most
challenging MSMT dataset.

4.7 Analysis and Discussions

Analysis on Pseudo Labels Quality Our method can also
be included into the pseudo-label-based UDA re-ID meth-
ods (Dai et al., 2021b; Ge et al., 2020b) where the quality
of pseudo labels is important during training, because tar-
get training data is supervised by pseudo labels. Following
the exisiting methods (Dai et al., 2021b; Yang et al., 2020;
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Fig. 8 Analysis on the F-score, NMI score, and Rank-1 score when training on Market-1501 and testing on MSMT17

Fig. 9 Distribution of samples’ pair-wise distance (Euclidean distance
of the deep embedding) on the target dataset DukeMTMC-reID when
taking Market-1501 as the source dataset. a Distance between source
and intermediate domains d(Ps , Pinter), and distance between target and

intermediate domains d(Pt , Pinter). bDistribution of source samples Ps
and their mirrors Ps→inter in intermediate domains. cDistribution of tar-
get samples Pt and their mirrors Pt→inter in intermediate domains. d
Distribution of source and target samples

Fig. 10 Target domain’s distribution of different methods when transferring from Market-1501 to DukeMTMC-reID

Ge et al., 2020b), we use both the BCubed F-score (Amigó
et al., 2009) and the Normalized Mutual Information (NMI)
score to evaluate the quality of pseudo labels. For F-score and
NMI score, the score towards 1.0 implies better clustering
quality and less label noise. As shown in Fig. 8, we visual-
ize the F-score, NMI score, and Rank-1 score when training
on Market-1501 and testing on MSMT17. It shows that our
IDM++ can outperform our IDM and Baseline method by a
large margin no matter the quality of pseudo labels or on the
Rank-1 performance.

Analysis on the bridge and alignment of domains’ dis-
tribution. In Fig. 9, we provide the visualization on the
bridge between intermediate domains and the source/target
domain, and the distribution alignment between domains

when transferring from the source domain Market-1501
to the target domain DukeMTMC-reID. In Fig. 9 (a), the
distance distribution d(Ps, Pinter) between the source and
intermediate domains is almost aligned with d(Pt , Pinter)
between the target and intermediate domains. The little
discrepancy between d(Ps, Pinter) and d(Pt , Pinter) shows
the distribution of learned intermediate domains is diverse
enough to bridge source and target domains. If the learned
intermediate domains are not diverse or are dominated by
either domain, the discrepancy of the distribution between
d(Ps, Pinter) and d(Pt , Pinter) will be large. To evaluate the
effectiveness of our proposed cross-domain consistency loss
that enforces the consistency between source/target sam-
ples and their mirrors generated by the MGM, we randomly
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sample 20,000 sample pairs in each domain and calcu-
late the Euclidean distances of their L2-normalized features
to visualize the distributions in Fig. 9b, c. As shown in
Fig. 9b, the distribution of source samples and the distri-
bution of their mirrors in intermediate domains can be well
aligned. For target samples and their mirrors, their distribu-
tions are also well aligned as shown in Fig. 9c. It shows
that our proposed MGM can well preserve the original
source/target identity-discriminative distribution in interme-
diate domains. By aligning source and target domains to
intermediate domains respectively, distributions of source
and target domains can be well aligned as shown in Fig. 9d.

Analysis on the discriminability of the target domain’s
features. In Fig. 10, we visualize on the distribution of tar-
get domain’s positives and negatives and compare among
four methods including Direct transfer, Baseline, our IDM,
and our IDM++. Specifically, we randomly sample 10,000
positive pairs and 10,000 negative pairs in the test-set of
the target domain when transferring from Market-1501 to
DukeMTMC-reID.When the overlap between positives’ and
negatives’ distributions is smaller, the model will be more
discriminative. As shown in Fig. 10, when training with our
IDM or IDM++, the discriminability gain is significant than
the Direct transfer or the Baseline method.

5 Conclusion

This paper provides a new perspective for cross-domain re-
ID: the source and target domain are not isolated, but are
connected through a series of intermediate domains. This
perspective motivates us to align the source/target domain
against these shared intermediate domains, instead of the
popular source-to-target alignment. To this end, we pro-
pose an IDM and an MGM module and integrate them
into IDM++. IDM first discovers the intermediate domains
by mixing the source-domain and target-domain features
within the deep network and then minimizes the source-to-
intermediate and target-to-intermediate discrepancy. MGM
further reinforces the domain alignment by solving a side
effect of IDM. Specifically, the intermediate domains gener-
ated by IDM lack the original identities in the source/target
domain, while MGM compensates for this lack by mapping
the original identities into the IDM-generated intermediate
domains. Both IDM and MGM can be seamlessly plugged
into the backbone network and facilitate mutual benefits.
Experimental results show that IDM significantly improves
UDA baseline andMGM brings another round of substantial
improvement. Integrating IDM and MGM, IDM++ achieves
the new state of the art on both UDA and DG scenarios for
cross-domain re-ID.
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